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Abstract An equitable (r, c; v)-rectangle is an r ×cmatrix L = (li j )with symbols from Zv

in which each symbol appears in every row either �c/v� or �c/v� times and in every column
either �r/v� or �r/v� times. We call L diagonally cyclic if l(i+1)( j+1) = li j + 1, where the
rows are indexed byZr and columns indexed byZc.We give a constructive proof of necessary
and sufficient conditions for the existence of a diagonally cyclic equitable (r, c; v)-rectangle.

Keywords Equitable rectangle · Latin square · Latin rectangle · Orthogonal array

Mathematical Subclass Classification 05B15

1 Introduction

Definition An equitable (r, c; v)-rectangle is an r × c matrix L with symbols from Zv in
which each symbol appears

(a) in every row either �c/v� or �c/v� times and
(b) in every column either �r/v� or �r/v� times.

For example, an equitable (r, c; c)-rectangle with r � c is commonly known as a Latin
rectangle and an equitable (r, r; r)-rectangle is a Latin square.
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Suppose L = (li j ) is an equitable (r, c; v)-rectangle and L ′ = (l ′i j ) is an equitable
(r, c; v′)-rectangle, such that rc = vv′. Then L and L ′ are said to be orthogonal if the rc
pairs (li j , l ′i j ) are all distinct. Since rc = vv′, all possible ordered pairs occur in a pair of
orthogonal equitable rectangles. For example

0 1 0 1
1 0 1 0

and
0 3 2 1
2 1 0 3

(1)

give an example of an equitable (2, 4; 2)-rectangle that is orthogonal to an equitable (2, 4; 4)-
rectangle.

Notation • We will always take r, c and v as positive integers.
• For any r × c matrix, we will index its rows by Zr , its columns by Zc and the symbols

will be taken from Zv .
• Define the permutations α = (0 1 · · · r − 1), β = (0 1 · · · c− 1) and γ = (0 1 · · · v − 1)

of Zr , Zc and Zv , respectively.
• Let g = gcd(r, c) and m = gcd(r, c, v).

Definition Suppose L = (li j ) is an r × c matrix such that lα(i)β( j) = γ (li j ) for all i ∈ Zr

and j ∈ Zc. Then we call L diagonally cyclic.

We will be interested in the case of diagonally cyclic equitable (r, c; v)-rectangles, or
(r, c; v)-DCERs for short. For example, the right hand side of (1) is a (2, 4; 4)-DCER.
1.1 History

Equitable rectangles have a short history, although the special case of diagonally cyclic Latin
squares goes back to Euler [9] (see also [3,16]). Diagonally cyclic Latin squares have been
used for a range of applications (e.g. [4,5,10,17]), sometimes disguised as orthomorphisms
or transversals. Equitable rectangles were first defined by Stinson [14], where they were
discovered in the course of studying a generalisation of “mix functions” [13].

Theorem 1 Suppose r, c � 1. There exists an equitable (r, c; r)-rectangle that is orthogonal
to an equitable (r, c; c)-rectangle if and only if (r, c) /∈ {(2, 2), (2, 3), (3, 4), (6, 6)}.

Stinson proved almost all of the cases in Theorem 1, leaving ten possible exceptions that
were later resolved by Guo and Ge [11]. Cao et al. [6] gave the following generalisation of
Theorem 1.

Theorem 2 Suppose r, c, v, v′ � 1 and rc = vv′. There exists an equitable (r, c; v)-
rectangle that is orthogonal to an equitable (r, c; v′)-rectangle if and only if (r, c; v, v′) /∈
{(2, 2; 2, 2), (2, 3; 2, 3), (3, 4; 3, 4), (6, 6; 6, 6)}.

Asplund and Keranen [1] have classified the existence of triples of mutually orthogonal
equitable rectangles (barring some classes of exceptions). For equitable rectangles of parame-
ters (r, c; v), (r, c;w) and (r, c; y) to bemutually orthogonal, we need vw = vy = wy = rc,
and thus v = w = y = √

rc.

1.2 Basic results

We now observe three basic, but important lemmata concerning diagonally cyclic equitable
rectangles.
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Definition Suppose L = (li j ) is an (r, c; v)-DCER. We define an entry of L to be one of the
rc triplets (i, j, li j )with i ∈ Zr and j ∈ Zc. Let G be the group generated by (α, β, γ ). Then
G acts on the set of entries of L . The orbit of an entry (i, j, li j ) is the set {θ(i, j, li j ) : θ ∈ G}.
Lemma 1 An (r, c; v)-DCER has exactly g orbits, each of size lcm(r, c).

Lemma 2 An (r, c; v)-DCER is determined by the first g entries in the first row.

Lemma 3 If an (r, c; v)-DCER exists, v divides lcm(r, c).

Proofs of Lemmata 1–3 If L = (li j ) is an (r, c; v)-DCER, then, for any i ∈ Zr and j ∈ Zc,
the entry

(
αlcm(r,c)(i), β lcm(r,c)( j), γ lcm(r,c)(li j )

) = (
i, j, γ lcm(r,c)(li j )

)
,

since α has order r and β has order c. So we must have γ lcm(r,c)(li j ) = li j . Since γ is
a v-cycle without fixed points, γ lcm(r,c) is the identity permutation and so v must divide
lcm(r, c), thereby proving Lemma 3.

Any orbit is thus of the form
{(

αk(i), βk( j), γ k(li j )
) : 0 � k � lcm(r, c) − 1

}

and has size lcm(r, c). So there are rc/ lcm(r, c) = g orbits. Thus Lemma 1 holds.
To prove Lemma 2, it is sufficient to show that (0, j, l0 j ) and (0, j ′, l0 j ′) belong to distinct

orbits whenever 0 � j < j ′ � g − 1. If (0, j, l0 j ) and (0, j ′, l0 j ′) belong to the same orbit,
then

(
αk(0), βk( j), γ k(l0 j )

) = (0, j ′, l0 j ′)

for some k ∈ Z. Since αk(0) = 0, we have that r (and hence g) divides k. Since βk( j) = j ′,
we have that c (and hence g) divides k − j + j ′. Hence g divides j − j ′, contradicting that
0 � j < j ′ � g − 1. 	


For example, G induces two orbits on the entries of the (2, 4; 4)-DCER on the right
hand side of (1), specifically {(0, 0, 0), (1, 1, 1), (0, 2, 2), (1, 3, 3)} and {(1, 0, 2), (0, 1, 3),
(1, 2, 0), (0, 3, 1)}, and the (2, 4; 4)-DCER is determined by the two entries (0, 0, 0) and
(0, 1, 3).

1.3 Motivation

In this paper, we will solve the existence problem for diagonally cyclic equitable rectangles.
There are several factors motivating the study of DCERs, for example, they can be described
compactly—the first g entries in the first row (or the first column) determine the entire
rectangle (Lemma 2). For example, the following (2, 12; 3)-DCER is determined by the 0
and the 2 in the top-left corner.

0 2 2 1 1 0 0 2 2 1 1 0
1 1 0 0 2 2 1 1 0 0 2 2

(2)

Another motivating factor, as we will detail in the following theorem, is that for any
(r, c; v)-DCER, there always exists an orthogonal equitable (r, c; v′)-rectangle where v′ =
rc/v.

Theorem 3 Any (r, c; v)-DCER is orthogonal to some equitable (r, c; rc/v)-rectangle.
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Proof Suppose L = (li j ) is an (r, c; v)-DCER and let v′ = rc/v. We will construct an
equitable (r, c; v′)-rectangle M = (mi j ) that is orthogonal to L . We process each of the v′
copies of the symbol 0 in L sequentially. If li j is the t-th copyof 0 in L , we assignmαa (i)βa( j) =
t for all 0 � a < v. The diagonally cyclic property of L ensures that lαa(i)βa( j) �= lαs (i)βs ( j)

whenever 0 � a < s < v, while we have assigned mαa(i)βa( j) = t = mαs (i)βs ( j) for all
0 � a < s < v. We can easily check that M is indeed an equitable (r, c; v′)-rectangle. Hence
L and M are orthogonal equitable rectangles. 	


So in fact, with knowledge of merely the parameters (2, 12; 3) and the 0 and 2 in the top-
left corner of (2), we can quickly construct not only a diagonally cyclic equitable rectangle
with those parameters, but also an orthogonal equitable rectangle.

Diagonally cyclic equitable rectangles also have potential applications in constructing gen-
eralised Latin squares with non-trivial symmetries, such as frequency squares [7, Sec. 12.5].
For Latin squares, [15] gave a classification of which permutations α, consisting of three or
fewer non-trivial cycles, are automorphisms of some Latin square of order n.Within the Latin
squares that admit an automorphism consisting of three non-trivial cycles, constructions of
(r, c; v)-DCERs arise, giving the following result.

Theorem 4 There exists an (r, c; lcm(r, c))-DCER except if r = c and r is even.

The exception in Theorem 4 arises due to the non-existence of diagonally cyclic Latin
squares of even order [16].

1.4 Main theorem

The aim of this paper is to classify for which parameters r, c, v there can exist an (r, c; v)-
DCER. More specifically, we will prove the following theorem.

Theorem 5 An (r, c; v)-DCER exists if and only if

• v divides lcm(r, c),
• either v is odd or g �≡ v (mod 2v),
• if Nrow > 1 then vNrow divides c, and
• if Ncol > 1 then vNcol divides r ,

where

Nrow = c gcd(r, v)

vg
and Ncol = r gcd(c, v)

vg
.

Some elementary number theory reveals that Nrow and Ncol are positive integers whenever
v divides lcm(r, c); see Lemma 8 in the Appendix.

The proof we present for Theorem 5 is constructive (where relevant), and a pseudo-code
implementation is given in Sect. 5. Note that, in the statement of Theorem 5, both Nrow

and Ncol are interpreted as numbers, but we will later show that they have a combinatorial
interpretation.

In Table 1 we identify which divisors v of lcm(r, c) admit an (r, c; v)-DCER for 1 � r �
c � 10. Note that there exists an (r, c; v)-DCER if and only if there exists a (c, r; v)-DCER,
so we do not include results regarding (r, c; v)-DCERs when r > c in Table 1.

2 Necessary conditions

To begin, we will prove the necessity of the conditions in Theorem 5; note we have already
shown that v must divide lcm(r, c) in Lemma 3.
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Table 1 The divisors v of
lcm(r, c) for which there exists
(or does not exist) an
(r, c; v)-DCER

r,c v:∃ DCER v:�DCER

1,1 1

1,2 1,2

2,2 1 2

1,3 1,3

2,3 1,6 2,3

3,3 1,3

1,4 1,2,4

2,4 1,4 2

3,4 1,12 2,3,4,6

4,4 1,2 4

1,5 1,5

2,5 1,10 2,5

3,5 1,15 3,5

4,5 1,20 2,4,5,10

5,5 1,5

1,6 1,2,3,6

2,6 1,3,6 2

3,6 1,2,3,6

4,6 1,12 2,3,4,6

5,6 1,30 2,3,5,6,10,15

6,6 1,3 2,6

1,7 1,7

2,7 1,14 2,7

3,7 1,21 3,7

4,7 1,28 2,4,7,14

5,7 1,35 5,7

6,7 1,42 2,3,6,7,14,21

7,7 1,7

1,8 1,2,4,8

2,8 1,4,8 2

3,8 1,24 2,3,4,6,8,12

4,8 1,2,8 4

5,8 1,40 2,4,5,8,10,20

6,8 1,24 2,3,4,6,8,12

7,8 1,56 2,4,7,8,14,28

8,8 1,2,4 8

1,9 1,3,9

Euler [9] showed that diagonally cyclic Latin squares of even orders cannot exist, that is,
(r, r; r)-DCERs cannot exist for even r . The following condition generalises Euler’s result;
a related generalisation was given in [15], which showed the non-existence of Latin squares
with certain automorphisms.
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Table 1 continued
2,9 1,18 2,3,6,9

3,9 1,3,9

4,9 1,36 2,3,4,6,9,12,18

5,9 1,45 3,5,9,15

6,9 1,3,18 2,6,9

7,9 1,63 3,7,9,21

8,9 1,72 2,3,4,6,8,9,12,18,24,36

9,9 1,3,9

1,10 1,2,5,10

2,10 1,5,10 2

3,10 1,30 2,3,5,6,10,15

4,10 1,20 2,4,5,10

5,10 1,2,5,10

6,10 1,15,30 2,3,5,6,10

7,10 1,70 2,5,7,10,14,35

8,10 1,40 2,4,5,8,10,20

9,10 1,90 2,3,5,6,9,10,15,18,30,45

10,10 1,5 2,10

Lemma 4 If v is even and g ≡ v (mod 2v) then an (r, c; v)-DCER does not exist.

Proof Suppose L is an (r, c; v)-DCER, and let the first g elements of the first row of L be
a0, a1, . . . , ag−1. By assumption, v divides g and hence v divides both r and c. Hence the
first row of L is a0, a1, . . . , ag−1 repeated c/g times. Similarly, the first column of L will
comprise of the first g entries in that column repeated r/g times. Since L is diagonally cyclic,
the first g entries in the first column are a0 − 0, ag−1 − (g − 1), ag−2 − (g − 2), . . . , a1 − 1.
Hence, the matrix

⎛

⎝
0 0 · · · 0
a0 a1 · · · ag−1

0 1 · · · g − 1

⎞

⎠

is a (v, 3; g/v)-difference matrix over Zv ; Drake [8, Theorem 1.10] showed that such a
difference matrix cannot exist when v is even and g is an odd multiple of v.

The remaining necessary conditions we present are motivated by the following observa-
tion. If 0 were in the top-left corner of an (8, 12; 3)-DCER, its orbit would look like the
following.

0 · · · 1 · · · 2 · · ·
· 1 · · · 2 · · · 0 · ·
· · 2 · · · 0 · · · 1 ·
· · · 0 · · · 1 · · · 2
0 · · · 1 · · · 2 · · ·
· 1 · · · 2 · · · 0 · ·
· · 2 · · · 0 · · · 1 ·
· · · 0 · · · 1 · · · 2
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Ifwe let 2ai be the number of copies of i ∈ Z3 in column 0,wemust have 2a0+2a1+2a2 = 8,
while at the same time have |2ai − 2a j | � 1 for all i, j ∈ Z3. It is impossible to satisfy this
system of equations and we can conclude that an (8, 12; 3)-DCER cannot exist. (Note that
these parameters satisfy the previous necessary conditions, namely Lemmata 3 and 4.)

We will now generalise the above observation.

Definition Let L = (li j ) be an (r, c; v)-DCER. Let Nrow be the number of copies of the
symbol l00 in the first row of L in the orbit of (0, 0, l00). Let Ncol be the number of copies of
the symbol l00 in the first column of L in the orbit of (0, 0, l00).

We will show that

Nrow = c gcd(r, v)

vg
and Ncol = r gcd(c, v)

vg
. (3)

Let X be the set of entries of the orbit of (0, 0, l00) that appear in row 0 of L . By Lemma 1,
there are g orbits in total, so |X | = c/g. Since there are v/ gcd(r, v) symbols congruent to l00
(mod gcd(r, v)) in Zv , each symbol congruent to l00 (mod gcd(r, v)) appears in X exactly
Nrow times. We can similarly show the identity for Ncol.

To further illustrate, consider the following (2, 8; 4)-DCER:
1 0 3 2 1 0 3 2
3 2 1 0 3 2 1 0

.

Here we have X = {(0, 0, 1), (0, 2, 3), (0, 4, 1), (0, 6, 3)}, so |X | = 4. Its entries have
symbols that are distributed evenly among all symbols congruent to 1 (mod 2) (namely 1
and 3), and there are 2 such symbols. Hence we have Nrow = 2.

Lemma 5 Suppose an (r, c; v)-DCER exists. If Nrow > 1, then vNrow divides c. Similarly,
if Ncol > 1, then vNcol divides r .

Proof We know Nrow and Ncol are positive integers because of their combinatorial interpre-
tation (or by Lemma 8, since the existence of a (r, c; v)-DCER implies v divides lcm(r, c)).

Assume Nrow > 1. For s ∈ Zv , let ks be the number of symbols congruent to s
(mod gcd(r, v)) in the partial row (l00, l01, . . . , l0(g−1)). Hence s ∈ Zv occurs exactly ks Nrow

times in row 0. Since L is an equitable rectangle, we must therefore have �c/v� � ks Nrow �
�c/v� for all s ∈ Zv . Since Nrow > 1, we find k0 = k1 = · · · = kv−1. It follows that
k0Nrow = c/v. Since k0 is a positive integer, vNrow must divide c.

A symmetric argument implies that if Ncol > 1, then vNcol divides r . 	

The main theorem of this paper (Theorem 5) asserts that the necessary conditions for the

existence of an (r, c; v)-DCER presented thus far are also sufficient.

3 Group-theoretical interpretation

If L = (li j ) is an (r, c; v)-DCER, thenLemma2 implies the entries (0, 0, l00), (0, 1, l01), . . . ,
(0, g−1, l0(g−1))determine L .As such, it is natural to rephrase the conditions for the existence
of an (r, c; v)-DCER as conditions about these entries. We will use (x j )0� j�g−1 to denote
an arbitrary element of (Zv)

g , and if there exists an (r, c; v)-DCER L = (li j ) with l0 j = x j
for all 0 � j � g − 1, then we say (x j )0� j�g−1 generates an (r, c; v)-DCER.

We will frequently use the following subgroups of Zv :
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• R is the subgroup of Zv generated by r , so R = 〈gcd(r, v)〉, and |R| = v/ gcd(r, v).
• C is the subgroup of Zv generated by c, so C = 〈gcd(c, v)〉, and |C | = v/ gcd(c, v).
• RC is the subgroup of Zv generated by r and c, so RC = 〈gcd(r, c, v)〉, and |RC | =

v/ gcd(r, c, v).

These groups are depicted by the (partial) subgroup lattice:

RC

CR

{0}

Definition Let (a j ) be a sequence of length n � 1. Let � be a collection of m disjoint sets.
Suppose each a j belongs to ∪S∈�S.

1. We say that (a j ) is equitably distributed among � if each S ∈ � has either �n/m� or
�n/m� representatives in (a j ).

2. We say that (a j ) is equally distributed among � if each S ∈ � has exactly n/m repre-
sentatives in (a j ).

Of course, for (a j ) to be equally distributed among �, we need n/m to be a positive integer,
or equivalently, that m divides n. If (a j ) is equitably distributed among � and m divides n,
then it is equally distributed among �. Thus, “equally distributed” is simply the special case
of “equitably distributed” with the additional condition that m divides n.

Definition Let (a j ) be a sequence of length n, whose elements belong some set S of size
v. We will say S is equitably distributed in (a j ) if each element in S occurs either �n/v� or
�n/v� times in (a j ). We will say S is equally distributed in (a j ) if each element in S occurs
exactly n/v times in (a j ).

Theorem 6 The sequence (x j )0� j�g−1 generates an (r, c; v)-DCER if and only if v divides
lcm(r, c) and

1. (x j )0� j�g−1 is equitably distributed among Zv/R,
2. (x j − j)0� j�g−1 is equitably distributed among Zv/C,
3. if Nrow > 1 then vNrow divides c, and
4. if Ncol > 1 then vNcol divides r .

Proof Provided v divides lcm(r, c), we can use (x j )0� j�g−1 to generate an r × c matrix
L = (li j ) in which (a) l0 j = x j for all 0 � j � g − 1, and (b) lα(i)β( j) = γ (li j ) for all
i ∈ Zr and j ∈ Zc (i.e., L is diagonally cyclic). We wish to determine whether or not L is an
(r, c; v)-DCER.

We know that L is an (r, c; v)-DCER if and only if (a) Zv is equitably distributed in
row 0 of L and (b) Zv is equitably distributed in column 0 of L . (If this holds, the identity
lα(i)β( j) = γ (li j ) implies thatZv is equitably distributed in the remaining rows and columns.)

The symbols in row 0 of L in the same orbit as entry (0, j, x j ) are x j + R, with each
element of this coset occurring Nrow times.
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Case I Nrow = 1. The elements of Zv are equitably distributed in row 0 of L if and only
if (x j )0� j�g−1 is equitably distributed among Zv/R.

Case II Nrow > 1. The elements of Zv are equitably distributed in row 0 of L if and only
if (x j )0� j�g−1 is equally distributed among Zv/R, which occurs if and only if (x j )0� j�g−1

is equitably distributed among Zv/R and [Zv : R] = gcd(r, v) divides g. Lemma 10 (in the
Appendix) implies that “gcd(r, v) divides g” and “vNrow divides c” are equivalent statements.

A symmetric proof works for columns instead of rows. 	

While Theorem 6 indeed gives necessary and sufficient conditions for the existence of an

(r, c; v)-DCER, we cannot be satisfied just yet—we still need to find sequences (x j )0� j�g−1

that satisfy the conditions of Theorem 6 whenever possible. Largely because of the next
lemma, we will find that constructing such sequences (x j )0� j�g−1 is made much easier by
studying the “in-between” group RC .

Lemma 6 Let K be a coset of RC in Zv .

• Let R1 and R2 be cosets of R in Zv such that R1, R2 ⊆ K. If x ∈ R1, then there exists
y ∈ R2 such that x − y ∈ C. Hence, x and y belong to the same coset of C in Zv .

• Let C1 and C2 be cosets of C in Zv such that C1,C2 ⊆ K. If x ∈ C1, then there exists
y ∈ C2 such that x − y ∈ R. Hence, x and y belong to the same coset of R in Zv .

Proof By definition, for some n ∈ Zv ,

• K = {n + a + b : a ∈ R and b ∈ C},
• R1 = {n + a + b′ : a ∈ R}, for some b′ ∈ C , and
• R2 = {n + a + b′′ : a ∈ R}, for some b′′ ∈ C .

Hence, if x ∈ R1, then y := x −b′ +b′′ ∈ R2 and x − y = b′ −b′′ ∈ C . The second bulleted
item is proved symmetrically. 	


Underneath the technical detail in Lemma 6 is the essence of how we will construct many
sequences (x j )0� j�g−1 that satisfy Theorem 6; the idea is illustrated below:

K · · · cosets of RC in

cosets of R in

some elements in

· · · R1 R2 · · · · · · · · · · · ·

x y

x ∈ R1 =⇒ ∃y ∈ R2 : x − y ∈ C

Suppose an element x j belongs to a coset R1 in Zv , but we want it to instead belong to
the coset R2, then we can try to achieve this by replacing x j by x j + k, for some k ∈ C .
Importantly, this change does not affect which coset ofC in Zv the element x j − j belongs to
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(see Theorem 6). Lemma 6 states that if R1 and R2 happen to be subsets of the same coset of
RC in Zv , then there exists a k ∈ C for which x j +k ∈ R2, and we can achieve our objective.

Similarly, we might also have x j − j ∈ C1, but want it to instead belong to the coset C2.
This time, we replace x j by x j +k for some k ∈ R, which does not affect which coset of R in
Zv the element x j belongs to (and, thus, we don’t “undo” the changes made in the first step
of this process). If C1 and C2 are subsets of the same coset of RC in Zv , then there exists
such a k.

In Theorem 7wewill identify some caseswhen, given some initial sequence (z j )0� j�g−1,
we can turn it into a sequence (x j )0� j�g−1 that satisfies the conditions of Theorem 6, using
the above procedure.

Definition Let (a j ) be a sequence of length n. Let � = {S1, S2, . . . , Sm} be a collection of
m disjoint sets. Suppose each a j belongs to ∪i Si . We say (a j ) is near-equally distributed
among � if m divides n and there exists two distinct indices k, l ∈ {1, 2, . . . ,m} such that:
• Sk is represented n/m − 1 times in (a j ),
• Sl is represented n/m + 1 times in (a j ), and
• Si is represented n/m times in (a j ) whenever 1 � i � m except when i /∈ {k, l}.

Definition Let (z j )0� j�g−1 be a sequence of g elements in Zv .

• If (z j ) and (z j − j) are both equitably distributed among Zv/RC , then we call (z j ) a
biequitable sequence.

• If (z j ) is near-equally distributed among Zv/RC and (z j − j) is equitably distributed
among Zv/RC , then we call (z j ) a near-biequitable sequence.

• If (z j ) is equitably distributed among Zv/RC and (z j − j) is near-equally distributed
among Zv/RC , then we call (z j ) a co-near-biequitable sequence.

Theorem 7 Suppose v divides lcm(r, c). Let P be the proposition “there exists (x j )0� j�g−1

such that (x j ) is equitably distributed among Zv/R and (x j − j) is equitably distributed
among Zv/C.”

I. If there exists a biequitable sequence, then P is true.
II. If there exists a near-biequitable sequence, then P is true, except possibly if v divides c.
III. If there exists a co-near-biequitable sequence, then P is true, except possibly if

v divides r .

Proof For Cases I–III below, let (z j )0� j�g−1 be the biequitable, near-biequitable or co-near-
biequitable sequence, respectively. Let (X j )0� j�g−1 and (Y j )0� j�g−1 be the two sequences
of cosets of RC in Zv for which z j ∈ X j and z j − j ∈ Y j for all 0 � j � g.

Case I (z j )0� j�g−1 is a biequitable sequence.
Step 1: Let K ∈ Zv/RC . There are |Zv/RC | = m cosets in Zv/RC . Since m divides

g, we know K occurs in both (X j ) and (Y j ) exactly g/m times. Let λ = [RC : R]. Let
R0, R1, . . . , Rλ−1 be the cosets of R in Zv inside K . Define the subsequence (zti )0�i�g/m−1

where ti is the index of the i-th element of (z j ) that belongs to K .
If zti /∈ Ri mod λ, we replace zti by zti + k for some k ∈ C to achieve zti ∈ Ri mod λ.

Lemma 6 asserts that such a k ∈ C exists. Since k ∈ C , this operation preserves zti ∈ Xti
and zti − ti ∈ Yti . Hence (zti ) is equitably distributed among {Ri }0�i�λ−1.

Step 2: Repeat Step 1 for every coset K ∈ Zv/RC . We conclude that (z j ) is equitably
distributed among Zv/R.

Step 3: Repeat Steps 1 and 2 for C instead of R so that (z j − j) is equitably distributed
among Zv/C . Importantly, Lemma 6 ensures that these changes do not affect the changes
already made in Steps 1 and 2.
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Step 4: Once we have completed Steps 1–3, set (x j ) = (z j ), completing the proof of this
case.

Case II (z j )0� j�g−1 is a near-biequitable sequence.
First, repeat Steps 1–3 in Case I. However, unlike Case I, we cannot immediately conclude

that (z j ) is equitably distributed among Zv/R. Let μ = g/[Zv : RC] = g/m. Since (X j )

is near-equally distributed among Zv/RC , there exists two cosets K ′, K ′′ ∈ Zv/RC , which
appear μ + 1 times and μ − 1 times in (X j ), respectively, while all other cosets in Zv/RC
(if any) appear exactly μ times in (X j ).

Since we have performed Steps 1–3 from Case I, we can assume that any coset Zv/R has
at most �(μ + 1)/[RC : R]� representatives in (z j ), and has at least �(μ − 1)/[RC : R]�
representatives in (z j ). Hence, (z j ) is equitably distributed among Zv/R provided

⌈
μ + 1

[RC : R]
⌉

−
⌊

μ − 1

[RC : R]
⌋

� 1. (4)

Equation 4 remains unchanged after replacingμ by its remainder when divided by [RC : R].
Hence we will assume 0 � μ < [RC : R]. If μ = 0 (which is when [RC : R] divides μ),
then the left hand side of (4) is 1 − (−1), so (4) is false. If μ > 0 then

⌈
μ + 1

[RC : R]
⌉

−
⌊

μ − 1

[RC : R]
⌋

=
⌈

μ + 1

[RC : R]
⌉

�
⌈ [RC : R]

[RC : R]
⌉

� 1.

Hence (4) is false if and only if [RC : R] divides μ. Note that [RC : R] = |RC |/|R| =
gcd(r, v)/ gcd(r, c, v) and μ = g/m. Hence [RC : R] divides μ if and only if gcd(r, v)

divides g. If gcd(r, v) divides g, Lemma 11 implies v divides c.
Case III (z j )0� j�g−1 is a co-near-biequitable sequence. This case can be proved similar

to Case II. 	

The next step in the proof, is to find sequences (z j )0� j�g−1 that satisfy Theorem 7.

Construction 1 If m is odd, then (z j )0� j�g−1 defined by z j = 2 j is a biequitable sequence.

Proof We have (z j )0� j�g−1 = (0, 2, . . . , 2(g − 1)). But since m is odd, Zv/RC is gen-
erated by the coset containing 2. Hence Zv/RC is equitably distributed in (z j ). Since
(z j − j)0� j�g−1 = (0, 1, . . . , g− 1), we immediately find that Zv/RC is equitably distrib-
uted in (z j − j). 	

Construction 2 Suppose m is even. Define (z j )0� j�g−1 by

z j =
{
2 j for 0 � j � 1

2 g − 1,

2 j + 1 for 1
2 g � j � g − 1.

Define (y j )0� j�g−1 by y j = j − z j for all 0 � j � g − 1.

• If g/m is even, then (z j ) is a biequitable sequence.
• If g/m is odd, then (z j ) is a co-near-biequitable sequence and (y j ) is a near-biequitable

sequence.

Proof We have

(z j ) = (0, 2, . . . , g − 2, g + 1, g + 3, . . . , 2g − 1).

We can reorder (z j ) to obtain the sequence

(0, g + 1, 2, g + 3, . . . , g − 2, 2g − 1) ≡ (0, 1, 2, 3, . . . ,−2,−1) (mod m).

123



562 A. B. Evans et al.

(This can be achieved by interlacing the subsequences (0, 2, . . . , g − 2) and (g + 1, g +
3, . . . , 2g − 1).) Hence Zv/RC is equally distributed in (z j ). Further, Zv/RC is equally
distributed in (y j − j), since y j − j = −z j , and Zv/RC is equally distributed in (z j ).

We also have

(z j − j) = (0, 1, . . . , g/2 − 1, g/2 + 1, g/2 + 2, . . . , g).

Case I g/m is even. Since g/m is even, m divides g/2. Hence

• the subsequence (0, 1, . . . , g/2− 1) contains g/(2m) representatives from each coset in
Zv/RC , and

• the subsequence (g/2 + 1, g/2 + 2, . . . , g) contains g/(2m) representatives from each
coset in Zv/RC .

Therefore Zv/RC is equally distributed in (z j − j).
Case II g/m is odd. In this case,m does not divide g/2, but rather g/2 ≡ m/2 (mod m).

Thus

• the subsequence (0, 1, . . . , g/2 − 1) contains (g/m + 1)/2 representatives from the
cosets in Zv/RC containing an element from {0, 1, . . . ,m/2 − 1} and (g/m − 1)/2
representatives from the cosets in Zv/RC containing an element from {m/2,m/2 +
1, . . . ,m − 1}, and

• the subsequence (g/2 + 1, g/2 + 2, . . . , g) contains (g/m + 1)/2 representatives from
the cosets in Zv/RC containing an element from {m/2 + 1,m/2 + 2, . . . ,m − 1} ∪ {0}
and (g/m − 1)/2 representatives from the cosets in Zv/RC containing an element from
{1, 2, . . . ,m/2}.
Therefore, the cosets in Zv/RC containing an element from {1, 2, . . . ,m/2−1}∪{m/2+

1,m/2+2, . . . ,m−1} have (g/m+1)/2+(g/m−1)/2 = g/m representatives in (z j − j).
The coset containing 0 has g/m + 1 representatives in (z j − j) and the coset containing
m/2 has g/m + 1 representatives in (z j − j). Hence Zv/RC is near-equally distributed in
(z j − j). Further, Zv/RC is near-equally distributed in (y j ), since y j = −(z j − j), and
Zv/RC is near-equally distributed in (z j − j).

Corollary 1 Suppose (a) v divides lcm(r, c), (b) if Nrow > 1 then vNrow divides c, and if
Ncol > 1 then vNcol divides r . Suppose also that v does not divide g. Then an (r, c; v)-DCER
exists.

Proof Apply Theorems 6 and 7 to the sequences in Construction 1 and 2. 	

To complete the proof of the main theorem, we need only resolve the case when v

divides g, which we will do in the next section.

4 Regular DCERs

An equitable (r, c; v)-rectangle is said to be row-regular if v divides c, column-regular if v

divides r and regular if it is both row-regular and column-regular, that is, if v divides g. In
this section, we will present necessary and sufficient conditions for the existence of a regular
(r, c; v)-DCER.

Construction 3 Suppose g is even and v divides g/2. An (r, c; v)-DCER exists for which
x j = � j/2� for 0 � j � g − 1.
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Proof We have

(x j )0� j�g−1 = (0, 0, 1, 1, . . . , g/2 − 1, g/2 − 1)

and

(x j − j)0� j�g−1 = (0,−1,−1,−2,−2, . . . , −g/2 + 1,−g/2 + 1,−g/2).

Since g/2 ≡ 0 (mod v), we know that (x j ) and (x j − j) are equally distributed in Zv/R and
Zv/C , respectively. Since v divides g, Lemma 12 (in the Appendix) implies vNrow divides
c and vNcol divides r . Thus Theorem 6 implies that (x j ) generates an (r, c; v)-DCER. 	


For example, Construction 3 can be used to generate the following (4, 4; 2)-DCER and
(6, 6; 3)-DCER.

0 0 1 1
0 1 1 0
1 1 0 0
1 0 0 1

0 0 1 1 2 2
0 1 1 2 2 0
1 1 2 2 0 0
1 2 2 0 0 1
2 2 0 0 1 1
2 0 0 1 1 2

In the following construction, we classify when (x j ) defined by x j = 2 j generates an
(r, c; v)-DCER. For the purpose of proving the main theorem in this paper, we need only
need the special case of when v is an odd divisor of g. Nevertheless, we include a complete
classification of when the 2 j construction generates an (r, c; v)-DCER since it is of special
interest.

Construction 4 Suppose v divides lcm(r, c). An (r, c; v)-DCER is generated by (x j ) defined
by x j = 2 j for 0 � j � g − 1, if and only if

1. gcd(r, v) is odd or 2g � gcd(r, v) (or both),
2. if Nrow > 1 then vNrow divides c, and
3. if Ncol > 1 then vNcol divides r .

Proof To begin, observe

(x j − j)0� j�g−1 = (0, 1, 2, . . . , g − 1).

We immediately find that (x j − j) is equitably distributed among Zv/C . We have
(
x j

)
0� j�g−1 = (

0, 2, . . . , 2(g − 1)
)
.

We immediately find that (x j ) is equitably distributed among Zv/R when 2g � gcd(r, v),
since there are no duplicated cosets. When gcd(r, v) is odd, (x j ) is equitably distributed
among Zv/R since gcd(r, v) and 2 are coprime (and thus, the coset containing 2 generates
Zv/R). Theorem 6 thus implies that if conditions 2. and 3. hold, then an (r, c; v)-DCER
exists.

Now suppose gcd(r, v) is even and 2g > gcd(r, v). Then (x j ) is not equitably distributed
among Zv/R, since the coset containing 0 has at least two representatives whereas the coset
containing 1 has no representative. Theorem 6 thus implies (x j ) does not generate an (r, c; v)-
DCER. 	


123



564 A. B. Evans et al.

ForConstructions 3 and 4, unlikeConstructions 1 and 2,we donot need to applyTheorem7
to construct an (r, c; v)-DCER; they are direct constructions of sequences (x j )which generate
the (r, c; v)-DCER.

We are now ready to give necessary and sufficient conditions for the existence of a regular
(r, c; v)-DCER.

Corollary 2 There exists a regular (r, c; v)-DCER whenever v divides g except if v is even
and g ≡ v (mod 2v).

Proof Construction 3 resolves the case when v is even and g ≡ 0 (mod 2v). Construction 4
resolves the odd v case (Lemma 10 ensures that vNrow divides c and vNcol divides r ).
Lemma 4 resolves the case when v is even and g ≡ v (mod 2v). 	


Corollaries 1 and 2 combine to give a proof of the main theorem in this paper (Theorem 5),
thereby resolving the existence problem for (r, c; v)-DCERs.

5 Implementation

Algorithm 1 gives a pseudo-code implementation of Theorem 7. We continue using the
notation introduced in Sects. 1 and 3.

Algorithm 1 Balancing cosets
Require: (x j )0� j�g−1 with each x j ∈ Zv

1: for all k ∈ {0, 1, . . . ,m − 1} do
2: T ← R + k
3: S ← C + k
4: for all j ∈ {0, 1, . . . , g − 1} do
5: if x j ≡ k (mod m) then
6: T ← T + m
7: while not x j ∈ T do
8: x j ← x j + gcd(c, v) mod v

9: end while
10: end if
11: if x j − j ≡ k (mod m) then
12: S ← S + m
13: while not x j − j ∈ S do
14: x j ← x j + gcd(r, v) mod v

15: end while
16: end if
17: end for
18: end for
19: return (x j )0� j�g−1

Algorithm1proceeds as follows: for each k ∈ {0, 1, . . . ,m−1}, we edit the input sequence
(x j ) to ensure that the cosets of R inside RC + k appear in (x j ) in the order

R + k + m, R + k + 2m, . . . (5)

and representatives from the cosets of C in RC + k will appear in the order

C + k + m, C + k + 2m, . . . . (6)
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The cosets listed in (5) and (6) respectively include all cosets of R and C inside RC + k an
equitable number of times (since m generates RC).

If x j∗ is the t-th element of (x j ) that belongs to coset RC + k, then we want to ensure
it belongs to coset R + k + tm. By Lemma 6, there exists an element s ∈ C for which
x j∗ + s ∈ R+ k + tm. Since C is generated by gcd(c, v), in Algorithm 1, Line 1, we replace
x j∗ by x j∗ + gcd(c, v) until we have x j∗ ∈ R + k + tm. We perform a similar operation for
(x j − j) in Line 1. Importantly, Lemma 6 ensures that Algorithm 1 will terminate.

If the input sequence for Algorithm 1 satisfies the conditions of Theorem 7 (i.e., (x j ) is
either (a) biequitable, (b) near-biequitable and v does not divide c, or (c) co-near-biequitable
and v does not divide r ), then Algorithm 1 will output a sequence (x j ) which generates and
(r, c; v)-DCER, as demonstrated in the proof of Theorem 7.

If an (r, c; v)-DCER exists, we can construct it either by using either Constructions 1
and/or 2 (with Algorithm 1) or Constructions 3 and/or 4.

6 Concluding remarks

We conclude this paper with some comments about generalising this work. Suppose we have

• a finite group (G,+),
• groups H1, H2 and H3 of cardinalities r, c and v, respectively, and
• three onto homomorphisms ζ : G → H1, η : G → H2 and θ : G → H3 that satisfy

|ker(ζ ) ∩ ker(η) ∩ ker(θ)| = 1.

We say an r × c matrix M = (mi j ), with rows indexed by H1 and columns indexed by H2

and symbols from H3, is a generalised diagonally cyclic equitable rectangle (genDCER) if

M(i+ζ(g))( j+η(g)) = Mi j + θ(g) (7)

for all i ∈ H1, j ∈ H2 and g ∈ G.
For example, the cyclic case we have looked at thus far is (up to isomorphism) when:

• G = 〈(1, 1, 1)〉 � Zr × Zc × Zv ,
• H1 = Zr × {0} × {0}, H2 = {0} × Zc × {0} and H3 = {0} × {0} × Zv ,
• ζ, η and θ are defined by

ζ
(
(i, j, k)

) = (i, 0, 0)

η
(
(i, j, k)

) = (0, j, 0)

θ
(
(i, j, k)

) = (0, 0, k)

for all (i, j, k) ∈ G.

If we were to allow |ker(ζ ) ∩ ker(η) ∩ ker(θ)| > 1 in our definition of a genDCER, there
would be redundancy in (7). This redundancy is unnecessary since we can achieve essentially
the same definition by working in G/(ker(ζ )∩ ker(η)∩ ker(θ)) instead of G. Hence we add
the condition |ker(ζ ) ∩ ker(η) ∩ ker(θ)| = 1.

Lemma 7 Suppose we have a genDCER with G, H1, H2, H3, ζ, η and θ as defined above.
Then |ker(ζ ) ∩ ker(η)| = 1.

Proof If g ∈ ker(ζ ) ∩ ker(η), then, by definition,

Mi j = M(i+ζ(g))( j+η(g)) = Mi j + θ(g)
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implying g ∈ ker(θ), and so g ∈ ker(ζ )∩ker(η)∩ker(θ). Since |ker(ζ )∩ker(η)∩ker(θ)| = 1,
we know g = idG .

The following theorem generalises the “v divides lcm(r, c)” condition (of Theorem 5)
which holds in the cyclic group case; for simplicity, we switch to multiplicative notation.

Theorem 8 Suppose we have a genDCER with G, H1, H2, H3, r, c, ζ, η and θ as defined
above. Then every h ∈ H3 satisfies hlcm(r,c) = idH3 (i.e., H3 has exponent dividing lcm(r, c)).

Proof Define the subset S ⊆ H1 × H2 × H3 by

S = {(
ζ(g), η(g), θ(g)

) : g ∈ G
}
.

Lemma 7 implies |ker(ζ ) ∩ ker(η)| = 1, so there is only one element of S of the form
(idH1 , idH2 , ?), namely (idH1 , idH2 , idH3).

For g ∈ G define g∗ = (
ζ(glcm(r,c)), η(glcm(r,c)), θ(glcm(r,c))

)
. Thus

g∗ = (
ζ(g)lcm(r,c), η(g)lcm(r,c), θ(g)lcm(r,c)) since ζ, η, θ are homomorphisms

= (
idH1 , idH2 , θ(g)lcm(r,c)) since |H1| and |H2| divide lcm(r, c)

= (
idH1 , idH2 , idH3

)
since g∗ ∈ S.

Hence θ(g)lcm(r,c) = idH3 for all g ∈ G. The result follows since θ is an onto
homomorphism. 	


In the cyclic case, we know (0, 0, 1) generates H3, so v = |H3| = ord
(
(0, 0, 1)

)
, and

Theorem 8 implies v divides lcm(r, c). However, the property “v divides lcm(r, c)” is not
true for all genDCERs, one such example is when:

• G = Z6 × Z10,
• H1 = Z6 × {0}, H2 = {0} × Z10 and H3 = G, and
• ζ, η, θ are defined by

ζ
(
(i, j)

) = (i, 0)

η
(
(i, j)

) = (0, j)

θ
(
(i, j)

) = (i, j)

for all (i, j) ∈ G.

In this case, we have the following genDCER.

00 01 02 03 04 05 06 07 08 09
00 00 01 02 03 04 05 06 07 08 09
10 10 11 12 13 14 15 16 17 18 19
20 20 21 22 23 24 25 26 27 28 29
30 30 31 32 33 34 35 36 37 38 39
40 40 41 42 43 44 45 46 47 48 49
50 50 51 52 53 54 55 56 57 58 59

Note that, in this case, r = 6, c = 10 and v = 60, so v does not divide lcm(r, c).
Another condition that no longer holds when considering genDCERs is Lemma 4, i.e.,

we may have the situation where g ≡ v (mod 2v) and v is even. One such example is when

• G = Z2 × Z2 × Z2,
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• H1 = H3 = {0} × Z2 × Z2 and H2 = G, and
• ζ, η, θ are defined by

ζ((i, j, k)) = (0, j, k)

η((i, j, k)) = (i, j, k)

θ((i, j, k)) = (0, j, k)

for all (i, j, k) ∈ G.

Then we have the (4, 8; 4)-genDCER:
000 001 010 011 100 101 110 111

000 000 011 001 010 000 011 001 010
001 010 001 011 000 010 001 011 000
010 011 000 010 001 011 000 010 001
011 001 010 000 011 001 010 000 011

This is an example of where Lemma 4 doesn’t generalise; we have g = v = 4, and hence
g ≡ v (mod 2v) and v is even, but a (4, 8; 4)-genDCER exists.

This construction comes from themethod used to construct diagonally cyclic Latin squares
of size 2a for a � 2 over the group (Z2)

a (historical references [2,12]). We can generalise
this construction to give a (2a, 2b; 2c)-genDCER for all a, b, c � 2. The parameters are

• G = (Z2)
k where k = max(a, b, c),

• H1 = {0}k−a × Z
a, H2 = {0}k−b × Z

b, and H3 = {0}k−c × Z
c,

• ζ : G → H1 sets the first k − a components to 0, η : G → H2 sets the first k − b
components to 0, and θ : G → H3 sets the first k − c components to 0. (Note that since
k = max(a, b, c), one of these homomorphisms is the identity, and thus has a trivial
kernel, and hence |ker(ζ ) ∩ ker(η) ∩ ker(θ)| = 1.)

The entry in cell (x, y) := (x1x2 · · · xk−1xk, y1y2 · · · yk−1yk) in the (2a, 2b; 2c)-genDCER
can be generated as follows:

• Let x + y = z1z2 · · · zk−1zk .
• Define z by replacing zk−1zk in x + y with Axk−1xk ,yk−1yk where A is the following

(22, 22; 22)-genDCER:
00 01 10 11

00 00 11 01 10
01 10 01 11 00
10 11 00 10 01
11 01 10 00 11

• Set z1, z2, . . . , zk−c equal to 0.

This is a direct product-like construction, essentially gluing together copies of A with the
symbol indices suitably edited.We can verify its correctness by verifying that each coordinate
satisfies (7) separately. When a = c and a < b, we will satify g ≡ v (mod 2v) when v is
even, so Lemma 4 would not hold in these cases.

Acknowledgments Stones supported by NSFC grant 61170301. Stones was also partially supported by
AARMS.
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Appendix: Technical lemmata

In the following lemmata, we say pk exactly divides n if pk divides n and pk+1 does not
divide n. For these results, we assume r, c and v are arbitrary positive integers, and, as in the
rest of the paper,

Nrow = c gcd(r, v)

v gcd(r, c)
and Ncol = r gcd(c, v)

v gcd(r, c)
.

Lemma 8 Suppose v divides lcm(r, c). Then Nrow and Ncol are positive integers.

Proof Let p be a prime. Suppose pa exactly divides v, and pb exactly divides r and
px exactly divides c. If Nrow is a positive integer, then it would be exactly divisible by
px+min(a,b)−a−min(b,x). Since p is arbitrary, it is sufficient to show that

x + min(a, b) − a − min(b, x) � 0 (8)

as, if Nrow were not a positive integer, then (8) would be false for some prime p. Note that
a � max(b, x) since v divides lcm(r, c).

Case I min(a, b) = a. Then (8) follows immediately.
Case IImin(a, b) = b and min(b, x) = b. The left hand side of (8) becomes x−a, which

is non-negative, since a � max(b, x) = x .
Case III min(a, b) = b and min(b, x) = x . The left hand side of (8) becomes b − a,

which is non-negative, since a � max(b, x) = b.
We can show that Ncol is a positive integer by switching r and c.

Lemma 9 Let χ = c gcd(r, v)/ gcd(r, c). Then χ divides c if and only if gcd(r, v) divides
c.

Proof If gcd(r, v) does not divide c, then χ , which is a multiple of gcd(r, v), also does not
divide c.

Conversely, assume gcd(r, v) divides c. Let p be a prime. Suppose pa exactly divides
gcd(r, v), and pb exactly divides gcd(r, c) and px exactly divides c. Hence px+a−b exactly
divides χ . Since p is arbitrary, it is sufficient to show that b � a. Since pa divides gcd(r, v),
we know pa divides r , and since gcd(r, v) divides c, we know pa also divides c, so pa divides
gcd(r, c). Hence b � a. 	

Lemma 10 We have:

• gcd(r, v) divides gcd(r, c) if and only if vNrow divides c and
• gcd(c, v) divides gcd(r, c) if and only if vNcol divides r .

Proof

gcd(r, v) divides gcd(r, c) ⇐⇒ gcd(r, v) divides c

⇐⇒ c
gcd(r, v)

gcd(r, c)
divides c by Lemma 9

⇐⇒ vNrow divides c.

The second dot-point is the same as the first with r and c switched. 	

Lemma 11 Suppose v divides lcm(r, c). Suppose also that gcd(r, v) divides gcd(r, c). Then
v divides c.
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Proof Let d be a prime power divisor of v. Since v divides lcm(r, c) and d is a prime power,
we know that d divides r or c (or both). Since we want to prove that d divides c, assume d
divides r . Since d divides both r and v, we know that d divides gcd(r, v) and hence d divides
gcd(r, c) by assumption. Therefore d divides c. Since d is an arbitrary prime power divisor
of v, we conclude that v divides c. 	

Lemma 12 If v divides gcd(r, c), then vNrow divides c and vNcol divides r .

Proof If v divides gcd(r, c), then v divides r and hence v divides gcd(r, v). But since gcd(r, v)

divides v, we must have that v = gcd(r, v). Hence Nrow = c/ gcd(r, c) and

vNrow = c
(
gcd(r,c)

v

) ,

which divides c (since v divides gcd(r, c), and gcd(r, c) divides c).
The second claim, that vNcol divides r , follows from the first claim with r and c

switched. 	
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