
GPU-Accelerated Block-Max Query Processing

Haibing Huang, Mingming Ren*, Yue Zhao,Rebecca J. Stones, Rui Zhang,
Gang Wang, Xiaoguang Liu

Nankai-Baidu Joint Lab, College of Computer and Control Engineering,
Nankai University, Tianjin, 300071, China

{hbhuang,renmingming, zhaoy,rebecca.stones82, zhangruiann, wgzwp,

liuxg}@nbjl.nankai.edu.cn

Abstract. In this paper, we propose a method for parallel top-k query
processing on GPU(s). We employ a novel partitioning strategy which
splits the posting lists according to document ID numbers. Individual
GPU threads simultaneously perform top-k query processing within their
allocated subsets of posting lists, the results of the query are merged to
give the final top-k results. We further design a CPU-GPU cooperative
query processing method, where a majority of queries involving shorter
posting lists are processed on the GPU side. We experiment with AND,
OR, WAND, and Block-Max WAND (BMW) queries, with experimental
results showing a promising improvement in query throughput, particu-
larly in the case of BMW queries.

Keywords: Information Retrieval, GPU, Index Partition, Query As-
signment

1 Introduction

Search engines face a large number of queries from users. To provide high query
throughput and response time, current commercial search engines use large clus-
ters consisting of thousands of nodes. Each node is responsible for processing a
subset of the whole posting data. Distributing the workload over a large number
of nodes facilitates the timely return of top-k results to users. In this paper,
we design a GPU-accelerated query processing method, where the workload is
distributed over GPU threads (and even the CPU).

In many domains, we see applications of graphics processing units (GPUs)
extending from their original purpose (graphics processing) into a wide range of
general-purpose applications, primarily for the single goal of making software run
faster. GPU programming requires carefully balancing workloads, data transfers,
and utilizing the GPU’s memory hierarchy, and programs are typically custom
built for an application.

Several GPU-based query processing techniques have been proposed previ-
ously (see Section 2.5 for a review). The research presented here takes three new
directions: (a) we design a method which can subdivide the task of generating the
top-k results for a single query among threads, (b) we address several query pro-
cessing strategies, such as WAND [3] and block-max WAND (BMW) [6] (WAND

2 Haibing Huang et al.

queries for block-max indexes), and (c) we extend the proposed method to uti-
lize both the CPU and GPU for query processing. In addition, previous work
has typically assumed that the inverted index can be fully loaded into the GPU
memory, which is unrealistic for large indexes, which we do not assume here.

The remainder of this paper proceeds as follow: Section 2 gives the back-
ground and related research of the information retrieval and parallel query pro-
cessing. Section 3 presents our method of GPU-based and CPU-GPU coop-
eration algorithm. Section 4 presents the experimental results of our method.
Finally, Section 5 concludes and discusses future work.

2 Background and Related Work

2.1 Block-max index

Documents are assigned docID numbers 0, 1, . . . , N − 1, where N is the number
of indexed documents. A term t has a corresponding posting list, denoted

`(t) = 〈st; (d0, f0), (d1, f1), . . . , (dst−1, fst−1)〉 (1)

which lists the documents d0, d1, . . . , dst−1 containing the term t. The posting
list has length st and the number of occurrences of term t in document di is
denoted fi = f(t, di). We assume d0 < d1 < · · · < ds−1. Posting lists belong to
a large index known as the inverted index.

The differences between consecutive docIDs in a posting list are referred to
as d-gaps, and are numerically much smaller than the raw docID values. As such,
d-gaps are typically used in place of the raw docIDs to reduce the inverted index
size with effective compression method.

The inverted index is usually stored in a compressed form to significantly
reduce its size. At the same time, its contents need to be readily accessible to
allow fast query processing. Many inverted index compression techniques having
been proposed [17] balancing these goals. In this paper we use NewPFD [15] to
compress the posting lists and corresponding frequency lists with a block size of
64 (although the proposed method could use other compression techniques).

Ding and Suel [6] proposed a block-max index data structure, where posting
lists are partitioned into blocks comprising, say, 64 docIDs (corresponding to
the 64 docIDs in the NewPFD blocks). The docIDs and their frequencies are
stored in a compressed format, and are stored along with the least and greatest
docIDs and the maximum “impact score” (essentially, the maximum contribution
to the top-k ranking). In this way, every NewPFD block can be decompressed
separately, and the top-k results can be computed with early termination. This
was shown to be an effective technique for improving the performance of WAND
query processing. In this paper, we borrow aspects of this index method.

2.2 Query Processing

In query processing, for documents relevant to a query, we compute a score, and
those with the highest score are considered the most relevant. To this end, we

GPU-Accelerated Block-Max Query Processing 3

traverse all of the relevant posting lists (those with terms in the query) from
beginning to end. For index traversal, we use a Document-At-A-Time (DAAT)
approach, where each list has a pointer that points to the “current” docID, which
moves forward to identify the docIDs which are common among the relevant
posting lists for conjunctive query. The document scores are computed while
traversing the lists, and we can use min-heap data structure to store the top-k
results.

The DAAT approach can work well for conjunctive (AND) and disjunctive
(OR) query processing [3], and WAND [3] and BMW [6] can also be implemented
using the DAAT approach. The WAND and BMW algorithm can avoid fully
evaluating the score of all documents in the posting list of each term belonging
to a given query, a smart pointer movement technique is used to skip many
documents that would be evaluated by an exhaustive algorithm. In this paper,
we will take these four kind query processing strategies into consideration.

2.3 Scoring

Ranking functions are used to give a numerical score for a document d and a
query q. BM25 [9] is a well-known ranking function, which varies with both d
and q (and two parameters a ≥ 0 and b ∈ [0, 1]), given by

BM25a,b(d, q) :=
∑
t∈q

wt(q) IRa,b(d, t) (2)

where

IRa,b(d, t) =
(1 + a)f(d, t)

a
(
1 + b(ld − 1)

)
+ f(d, t)

(3)

where ld is the length of document d divided by the average document length,
f(d, t) is the number of occurrences of t in document d, and the inverse document
frequency weight is defined as

wt(q) = log
N − st + 0.5

st + 0.5
(4)

where N is the number of the documents in the collection and st is the number
of documents containing term t (which is included in the posting list (1)).

During query processing, we use DAAT approach to iterate through the rel-
evant posting lists, retaining the top-k highest scoring documents, the top-k
results are returned to the user finally.

2.4 GPUs

Modern GPUs have a massively parallel architecture consisting of thousands
of cores. NVIDIA brand GPUs support Compute Unified Device Architecture
(CUDA) [8], where threads are organized into thread blocks and thread blocks
are organized into Grid. A GPU computation is performed by invoking a kernel
which is executed by a grid of thread blocks.

4 Haibing Huang et al.

GPUs have their own memory, which is organized into a hierarchy, and the
GPU memory is usually far smaller than the (CPU side) system memory. The
relevant GPU memories for this paper are: (a) Global memory, the largest but the
slowest GPU memory, and is accessible to all the GPU threads. Data transferred
from the CPU to the GPU goes into the global memory. (b) Shared memory,
which is much faster than the global memory, but is much smaller, and is only
accessible to the threads in the corresponding thread block. (c) Registers, the
fastest but the most scarce memory resource. Each multiprocessor has a set of
registers partitioned among the warps (which partition thread blocks). Overall,
registers are unique to a thread, shared memory is unique to a block, and global
memory exist across all blocks.

Efficient GPU programming requires careful consideration of (a) GPU mem-
ory usage, (b) CPU-GPU transfers, (c) workload distribution. and (d) parallel
algorithm.

2.5 Related work

GPUs have been widely utilized in general-purpose application. Zhang et al. [18]
proposed an effective algorithm which can parallelize DNN training on multiple
GPU cards in a single computing server. Fang et al. [7] proposed a in-memory
GPU algorithms, which support three common database operations. Agrawal [1]
utilized data parallel accelerators and a software architecture, Rhythm, to ad-
dress throughput and efficiency demands of future server workloads.

To speed up the query processing, there are many previous papers that fo-
cus on how to efficient parallel query processing. Rojas et al. [10] proposed
the parallelization the Block-Max WAND algorithm using two-level ranking on
distributed search engine. Ding et al. [4] achieved good performance using spe-
ciallized mechanisms for executing batch queries. Tatikonda et al. [12] achieved
more than five times reduction average query processing time by exploiting par-
allelism at the finest-level of granularityin on an eight-core system.

There are also several previous papers that focus on GPU-based query pro-
cessing. Ding et al. [5] presented a general architecture for GPU-based query
processing and proposed a parallel lists intersection algorithm with the GPU,
but queries are dispatched to CPU or GPU one by one, incurring a impracti-
cal transfer overhead. Wu et al. [14] presented a GPU-based lists intersection
framework in which queries are first grouped into batches, and then processed
in parallel on the GPU using their proposed PARA algorithm. Zhang et al. [16]
proposed a Bloom filter batched algorithm for intersection aiming at reducing
the number of memory accesses for each GPU thread. Ao et al. [2] proposed
linear regression and hash segmentation algorithms for GPU-based lists inter-
section (a component of query processing), which was up to around 23 times
faster using a NVIDIA GTX480.

However, previous GPU-based query processing methods have some limita-
tions:

– Methods have been restricted to conjunctive (AND) query processing.

GPU-Accelerated Block-Max Query Processing 5

– The total inverted index is typically assumed to be residing in the GPU
global memory, which might be assuming an unrealistic GPU memory size
on current hardware for large indexes.

In this paper, we do not assume the whole inverted index resides in the GPU
memory. To cope with this, we batch transfer the user queries together with the
relevant posting lists not residing in the GPU memory. Another major aspect
of this paper is also incorporating OR, WAND, and BMW strategies for query
processing.

3 The Proposed Method

3.1 Overview

Figure 1 illustrates the proposed GPU-based query processing framework.

Batch of
Queries

Batch of
Results

List
Cache

Buffer

GPU
Memory

Thread Blocks

CPU

q0 q2q1

q0

q2

q1

User queries

Inverted
Index

GPU

Cache
Lists

Fig. 1. The workflow of GPU-based query processing.

The entire inverted index is assumed to reside in the (CPU-side) system
memory. In the case that the index’s size actually exceeds the CPU memory ca-
pacity, some queries will require disk access to be processed. Without modifying
the inverted index compression method, this will be unavoidable and an essen-
tially constant overhead (i.e., will not substantially vary with the design of the
GPU query processing method). and we assume user queries are continuously
incoming rapidly enough to allow them to be batched and transferred jointly to
the GPU. The queries will be added to the current batch along with any required
posting list not residing in the GPU list cache. Once the batch size reaches a
certain threshold, or the number of queries in the batch reaches the maximum
value that can be processed, the batch is transferred to the GPU global memory.

The GPU global memory space contains two main parts: a list cache, which
contains a portion of the whole inverted index, and a buffer space, which contains
the batches. The posting lists residing in the list cache is determined by some

6 Haibing Huang et al.

admission policy (described in Section 4.1). A hash table is maintained on the
CPU side to record which posting lists in the GPU list cache.

Algorithm 1 shows our proposed GPU-based query processing algorithm.
The algorithm assigns a thread block the task of generating the top-k results for
a single user query. An individual thread within a thread block generates the local
top-k results on its assigned subset of the docIDs. Specifically, the set of docIDs
{0, 1, . . . , N−1} is partitioned into d-sized (d = dN/P e) intervals {0, 1, . . . , d−1},
{d, d+ 1, . . . , 2d−1}, and so on, with each thread being assigned to work on one
part, and we have P threads in every thread block. In our experiments, we will
test a range of P -values.

Algorithm 1 The proposed GPU-based query processing algorithm

Input: a batch of queries Q
Output: top-k results for each query in Q
1: Transfer Q to the GPU buffer space
2: for thread block bid ∈ {0, 1, . . . , (|Q| − 1)} do
3: for each thread tid ∈ {0, 1, . . . , P − 1} do
4: Compute local top-k results by using a query processing strategy.
5: end for
6: Synchronize threads for thread block bid
7: Merge local top-k results for thread block bid
8: end for
9: Transfer every thread block top-k results to CPU

Figure 2 shows a toy example of the inverted index partition strategy. The
four threads T0, T1, T2, and T3 are responsible for processing the subsets of
three compressed block-max posting lists respectively. Thread T0, for example,
is responsible for the subsets of posting lists in first left dashed box, i.e., the
docIDs interval {0, . . . , 999}.

After the posting lists are partitioned for each thread, the threads perform
query processing on their assigned sub-posting lists and compute the local top-k
results. Before computing the merge operation in a thread block, a synchro-
nization barrier is needed. Once all of the local top-k results are obtained, the
threads in a thread block merge every thread’s local top-k results to compute the
thread block top-k results. we select insert sort method to complete the merge
operation. Once the thread block top-k results for the whole batch of queries
has been computed, they are transferred to the CPU as a batch, and the final
results can be displayed to the users.

3.2 CPU-GPU cooperative version

Algorithm 1, by itself, would result in a large amount of CPU idle time. To
avoid this, we propose a CPU-GPU cooperative algorithm, which is a modified
version of the proposed GPU query processing method. Essentially, some queries

GPU-Accelerated Block-Max Query Processing 7

Fig. 2. A toy example of the document-based index partition strategy. Threads T0,
T1, T2, and T3 are responsible for their assigned subsets of three compressed block-
max posting lists. The number in the solid box shows the max docID in corresponding
compressed a NewPFD block. The subsets are indicated by a dashed boundary and
each subset’s docIDs interval is 1000 in this example. For term Term0, thread T0 is
responsible for the whole first NewPFD block and first part of the second NewPFD
block. Thread T1 is responsible for second part of the second NewPFD block and the
whole third NewPFD block, and so on.

are processed on the CPU side and the other queries would be transferred to the
GPU for query processing.

0

10

20

30

40

50

60

70

80

90

10000 50000 100000 150000 200000

A
ve

ra
ge

 q
u

e
ry

 p
ro

ce
ss

in
g

ti
m

e
(m

s)

Queries' block number(S)

AND CPU

AND GPU

A
ve

ra
ge

 q
u

e
ry

 p
ro

ce
ss

in
g

ti
m

e
(m

s)

0

100

200

300

400

500

600

700

10000 50000 100000 150000 200000

A
ve

ra
ge

 q
u

e
ry

 p
ro

ce
ss

in
g

ti
m

e
(m

s)

Queries' block number(S)

OR CPU

OR GPU

0

10

20

30

40

50

60

70

80

90

100

10000 50000 100000 150000 200000

A
ve

ra
ge

 q
u

e
ry

 p
ro

ce
ss

in
g

ti
m

e
(m

s)

Queries' block number(S)

WAND CPU

WAND GPU

0

10

20

30

40

50

60

70

10000 50000 100000 150000 200000

A
ve

ra
ge

 q
u

e
ry

 p
ro

ce
ss

in
g

ti
m

e
(m

s)

Queries' block number(S)

BMW CPU

BMW GPU

Fig. 3. The average query processing time on different queries’ block number S (hori-
zontal axis) on CPU and GPU for AND, OR, WAND, and BMW queries.

Before we introduce the CPU-GPU cooperative algorithm, we first do some
experiments about the relation between the queries’ posting length and query
processing time about our GPU algorithm. Figure 3 shows the average query
processing time for different queries’ posting block number S with AND, OR,
WAND, and BMW queries (both with P = 64 threads per thread block and top-

8 Haibing Huang et al.

K = 10, other parameters have similar results). We can see that CPU algorithm is
more effective than GPU algorithm when query block number S increases(except
for OR queries).

The reason is that: as the document-based index partition is a simple par-
titioning method and the distribution of docIDs is clustered, long posting lists
result in imbalanced lengths of sub-posting lists. A thread responsible for pro-
cessing longer sub-posting lists will spend a greater amount of time than other
threads, which will be idle because of the synchronization step.

Therefore, we propose a length-based distribution (LBD) method to determine
which queries to distribute to the CPU and GPU. From the figure 4, we can
find that short posting lists queries (queries’s posting lists block number less
50000) take up the majority of the query set, approximately 81%. The GPU will
be responsible for processing queries involving short posting lists, comprising
a majority of the queries. and the CPU will be responsible for processing the
smaller number of queries containing longer posting lists. Specifically, the GPU
processes the queries whose relevant posting lists have fewer than S NewPFD
blocks in total, and we will experiment with varying the threshold S.

49%

32%

13%

4% 2%

10000

50000

100000

150000

200000

Fig. 4. The proportion of the queries’ posting lists block number in TREC 2009 query
set.

4 Experimental testing

4.1 Experimental setup

For our experiments, we use the TREC GOV2 [13] data set which consists of
about 25 million documents crawled from web sites in the .gov domain during
early 2004. The index data is composed of approximately 12 GB inverted index,
another 12 GB frequency information index and a file about 97 MB storing
document sizes. The docIDs are assigned according to the lexicographic order of

GPU-Accelerated Block-Max Query Processing 9

their URLs [11]. We use NewPFD to compress the index and also store a array
about the greatest docIDs and the maximum ”impact score” of each block. We
choose the RREC 2009 query set, which contains 32,255 queries, as our test
query set. We carry out our experiments on a 2.60 GHz Intel(R) Xeon(R) E5-
2630 CPU with 64 GB of memory and a NVIDIA GeForce GTX Titan graphics
card with 6 GB global memory. The gcc version is 4.4.6, and the nvcc version is
6.5.12.

For the parameters in the ranking function BM25, we set a = 1.2 and b =
0.75. These parameters may affect the quality of the final top-k ranking, but
will not significantly affect the throughput and response time of our method.
We experiment with top-k = 10 unless we have special statement.

For the GPU list cache policy, we calculate that the number of the short
lists (posting length 1,. . . ,64) takes up the majority of the whole compression
lists; approximately 97.45% in GOV2 data set. As long lists need more transfer
time and there are fewer long lists. Therefore we put the lists with more than 1
NewPFD block in the GPU list cache memory as our (static) cache policy.

4.2 Query processing time

Table 1 shows the average query processing time of the proposed GPU query par-
allel processing method (the non-cooperative version) as the number of threads
GPU thread block and top-K vary (i.e., the P -value and top-K), for AND, OR,
WAND and BMW query processing strategies. For comparison, we also include
CPU a thread results in the bottom of Table 1.

Table 1. The comparison between average query processing time (ms) for the GPU as
the number of threads per GPU thread block and top-K vary with the CPU a thread
, for the AND, OR, WAND, and BMW queries. Values in bold show the best result in
corresponding row.

P
AND OR WAND BMW

top1 top10 top20 top1 top10 top20 top1 top10 top20 top1 top10 top20

32 8.07 8.08 8.14 45.57 45.88 45.97 8.29 10.22 11.18 3.54 4.90 6.49

64 5.78 5.81 5.86 30.26 30.32 30.37 5.97 7.45 8.23 2.69 4.47 5.21

128 6.06 6.08 6.13 29.48 29.53 29.57 6.19 7.86 8.73 2.96 4.47 5.21

256 7.53 7.56 7.61 34.38 34.42 34.49 7.55 8.97 9.65 4.14 6.51 7.60

320 9.33 9.35 9.39 39.86 39.91 39.95 9.24 11.71 13.03 4.91 7.51 8.71

512 12.24 12.28 12.36 49.02 49.08 49.21 12.05 15.23 16.93 6.17 9.14 10.53

CPU 12.70 12.82 12.93 65.77 66.08 66.15 15.11 15.25 15.34 8.82 8.96 9.03

10 Haibing Huang et al.

We see that the GPU method results in improved query processing times for
every query type, AND, OR, WAND, and BMW, with a average query processing
time drop of up to 54.68%, 55.31%, 51.15%, and 50.11%, respectively (all when
P = 64 and top-K = 10). We attribute this modest improvement to workload
imbalance: the processing of long posting lists is time-consuming, resulting in
long synchronization waiting times. The proposed CPU-GPU cooperative version
aims to reduce this problem, by performing query processing on queries involving
long posting lists on the CPU. and P = 64 threads per thread block is almost
always the best P -value among those tested except for OR queries . In addition,
average query processing time increases as top-K increases for every query type
and different threads per thread block.

In the proposed GPU-based query processing algorithm, the query processing
time splits into three major stages: (a) Initialization: The GPU threads identify
which docIDs in posting lists belong to its assigned docID range, along with other
initialization tasks; (b) Scoring : Traversing the posting lists to calculate the top-
k results with the different strategies (AND, OR, WAND, and BMW); and (c)
Merging : Going from the local top-k results to the final top-k results. Figure 5

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

AND OR WAND BMW

A
ve

ra
ge

 q
u

e
ry

 p
ro

ce
ss

in
g

ti
m

e

Initialization Scoring Merging

Fig. 5. The proportion of the average query processing time for the three stages in
GPU-based query processing. We include measurements for P ∈ {32, 64, 128, 256}
threads per thread block, and for AND, OR, WAND, and BMW queries.

plots the proportion of the average query processing time of these three stages,
computed using 1000 random user queries. We see (a) the top-k scoring takes
up most of the GPU query processing time and (b) the proportion of time spent
on scoring decreases as P increases, while the proportion of initialization and

GPU-Accelerated Block-Max Query Processing 11

merging time increases as P increases. This can explain the unimodal behavior
seen in Table 1.

4.3 CPU-GPU cooperative version

We compare the performance of the proposed LBD method (introduced in Sec-
tion 3.2) with the GPU and CPU-only methods, and with a simple distribution
(SD) method, which randomly allocates half of the queries to CPU and the
other half to GPU. In order to achieve the best query processing throughput
with our LBD method, we carry out the experiments by varying the threshold
S . Figure 6 shows the average query processing time with different threshold S
for AND, OR, WAND, and BMW queries. We see that (a) threshold S = 30000
results in the best performance among those tested in every case, and (b) P = 64
threads per thread block is almost always the best P -value among those tested.

0

1

2

3

4

5

6

7

25000 30000 35000 40000 45000 50000

A
ve

ra
ge

 q
u

e
ry

 p
ro

ce
ss

in
g

ti
m

e
(m

s)

Queries' block number(S)

AND
32

64

128

256

0

5

10

15

20

25

30

35

40

45

25000 30000 35000 40000 45000 50000A
ve

ra
ge

 q
u

e
ry

 p
ro

ce
ss

in
g

ti
m

e
(m

s)

Posting Length (S)

OR
32

64

128

256

0

5

10

15

20

25

30

35

40

45

25000 30000 35000 40000 45000 50000

A
ve

ra
ge

 q
u

e
ry

 p
ro

ce
ss

in
g

ti
m

e
(m

s)

Queries' block number(S)

OR
32

64

128

256

1

2

3

4

5

6

7

25000 30000 35000 40000 45000 50000

A
ve

ra
ge

 q
u

e
ry

 p
ro

ce
ss

in
g

ti
m

e
(m

s)

Queries' block number(S)

WAND 32

64

128

256

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

25000 30000 35000 40000 45000 50000

A
ve

ra
ge

 q
u

e
ry

 p
ro

ce
ss

in
g

ti
m

e
(m

s)

Queries' block number(S)

BMW 32

64

128

256

Fig. 6. The average query processing time for different threshold S (horizontal axis)
in LBD. We include measurements for P ∈ {32, 64, 128, 256} threads per thread block,
and for AND, OR, WAND, and BMW queries.

Table 2 tabulates the average query processing time of SD and LBD, with
a varying number of threads per thread block P (all when top-K = 10), and
for AND, OR, WAND, and BMW queries. We list the best results among the

12 Haibing Huang et al.

tested threshold value (S) as the LDB results. We see (a) that LBD outperforms
SD in every case, and (b) LBD algorithm shows a greater improvement in query
processing time, particularly in the case of BMW queries.

Table 2. Average query processing time (ms) for LBD and SD, and the difference ∆ as
a percentage of the SD time. Values in bold highlight the best observed average query
processing time.

Method
32 64 128 256

SD LBD ∆ SD LBD ∆ SD LBD ∆ SD LBD ∆

AND 5.36 2.61 51.31% 4.2 2.11 49.76% 4.03 2.12 47.39% 5.22 2.78 46.74%

OR 23.2 10.6 54.31% 17.54 8.76 50.06% 16.87 9.19 45.52% 20.8 12.71 38.89%

WAND 6.32 3.33 47.31% 4.85 2.69 44.54% 4.84 2.77 42.77% 6.15 3.6 41.46%

BMW 3.79 1.74 54.09% 3.82 1.44 62.30% 3.85 1.55 59.74% 4.19 1.77 57.76%

4.4 Extensions

In this section we give some extensions of our GPU-based algorithm. we will test
our algorithm on multi-GPUs cluster. In the experiment setting, we distribute
query batches across four GPUs. Table 3 tabulates the average query processing
time of the one GPU and four GPUs algorithm as the number of threads GPU
thread block (all top-K = 10). Interestingly, P = 128 threads per thread block
is the best P -value among those tested.

Table 3. Average query processing time(ms) of the GPU-based algorithm on four
GPUs and one GPU as the number of threads per GPU thread block, and the difference
∆ as a percentage on one GPU time, and for the AND, OR, WAND and BMW queries.
Values in bold highlight the best observed average query processing time.

Method
64 128 256

1 GPU 4 GPU ∆ 1 GPU 4 GPU ∆ 1 GPU 4 GPU ∆

AND 5.81 1.51 74.01% 6.08 1.38 77.30% 7.56 1.65 78.17%

OR 30.32 5.67 81.30% 29.53 5.38 81.78% 34.42 6.50 81.12%

WAND 7.45 1.75 76.51% 7.86 1.63 79.26% 8.97 1.98 77.93%

BMW 4.47 0.94 78.97% 4.47 0.93 79.19% 6.51 1.12 82.80%

GPU-Accelerated Block-Max Query Processing 13

0

10

20

30

40

50

60

70

AND OR WAND BMW

A
ve

ra
ge

 q
u

e
ry

 p
ro

ce
ss

in
g

ti
m

e
(m

s)

4GPU

LBD

SD

GPU

CPU

Fig. 7. The comparison between average query processing time (ms) for GPU-only,
CPU-GPU cooperative (LBD and SD) and multi-GPUs(4 GPUs) (P = 64 and top-K
= 10) with the CPU time. and for AND, OR, WAND, and BMW queries.

Figure 7 compares the average query processing time for the two CPU-GPU
cooperative query processing methods (LBD and SD, both with P = 64 threads
per thread block) along with the GPU non-cooperative , 4 GPUs(all when P=64)
and CPU-only query processing methods. We see that utilizing a GPU and multi-
GPUs for query processing can result in performance improvements for AND,
OR, WAND, and BMW queries. Of the inspected methods, the LBD CPU-GPU
cooperative method minimized query processing time, particularly in the case of
BMW queries.

5 Conclusion and Future Work

In this paper, we propose two GPU-based query processing methods: one where
the GPU performs parallel query processing for queries, and a CPU-GPU co-
operative version where queries are simultaneously processed by both the CPU
and GPU. We further develop a method for deciding which queries are pro-
cessed by the CPU and GPU based on the lengths of the posting lists relevant
to a query. In addition, we also evaluate the parallel query processing algorithm
on mult-GPUs. Experiments indicate the CPU-GPU cooperative version results
in around a 84% drop in average query processing time on one GPU and the
multi-GPUs results can achieve 89% drop in average processing time.

We make the following suggestions on how to build upon this work:

– The GPU list cache policy could be optimized for the LBD method, e.g., by
designing a dynamic caching algorithm which determines which posting lists
are more likely to be needed by the GPU.

– We have not incorporated early termination in this work, which would reduce
the time spent on top-k ranking. We have also not incorporated CPU-side

14 Haibing Huang et al.

parallelism in this work, which could allow the CPU to process a heavier
workload.

Acknowledgment

This work is partially supported by NSF of China (grant numbers: 61373018,
61602266 11550110491), Science and Technology Development Plan of Tianjin
(17JCYBJC15300,16JCYBJC41900) and the Fundamental Research Funds for
the Central Universities (Grant number: 65141020).

References

1. Agrawal, S.R., Pistol, V., Pang, V., Tran, J., Tarjan, D., Lebeck, A.R.: Rhythm:
Harnessing data parallel hardware for server workloads. In: Proc. ASPLOS. pp.
19–84 (2014)

2. Ao, N., Zhang, F., Wu, D., Stones, D.S., Wang, G., Liu, X., Liu, J., Lin, S.:
Efficient parallel lists intersection and index compression algorithms using graphics
processing units. Proc. VLDB Endowment 4, 470–481 (2011)

3. Broder, A.Z., Carmel, D., Herscovici, M., Soffer, A., Zien, J.Y.: Efficient query
evaluation using a two-level retrieval process. In: Proc. CIKM. pp. 426–434 (2003)

4. Ding, S., Attenberg, J., Baeza-Yates, R., Suel, T.: Batch query processing for web
search engines. In: Proc. WSDM. pp. 137–146 (2011)

5. Ding, S., He, J., Yan, H., Suel, T.: Using graphics processors for high performance
IR query processing. In: Proc. WWW. pp. 421–430 (2009)

6. Ding, S., Suel, T.: Faster top-k document retrieval using block-max indexes. In:
Proc. SIGIR. pp. 993–1002 (2011)

7. Fang, R., He, B., Lu, M., Yang, K., Govindaraju, N.K., Luo, Q., Sander, P.V.:
GPUQP: query co-processing using graphics processors. In: Proc. SIGMOD. pp.
1061–1063 (2007)

8. NVIDIA: NVIDIA CUDA C programming guide (2015)
9. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M.:

Okapi at TREC-3. NIST special publication p. 109 (1995)
10. Rojas, O., Costa, V.G., Maŕın, M.: Efficient parallel block-max WAND algorithm.

In: Euro-Par 2013 Parallel Processing - 19th International Conference, Aachen,
Germany, August 26-30, 2013. Proceedings. pp. 394–405 (2013)

11. Silvestri, F.: Sorting out the document identifier assignment problem. In: Advances
in Information Retrieval, 29th European Conference on IR Research, ECIR 2007,
Rome, Italy, April 2-5, 2007, Proceedings. pp. 101–112 (2007)

12. Tatikonda, S., Cambazoglu, B.B., Junqueira, F.P.: Posting list intersection on mul-
ticore architectures. In: Proceeding of the 34th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, SIGIR 2011, Beijing,
China, July 25-29, 2011. pp. 963–972 (2011)

13. Voorhees, E.M.: Overview of TREC 2003. In: Proc. TREC. pp. 1–13 (2003)
14. Wu, D., Zhang, F., Ao, N., Wang, G., Liu, X., Liu, J.: Efficient lists intersection

by CPU-GPU cooperative computing. In: Proc. IPDPSW. pp. 1–8 (2010)
15. Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with

optimized document ordering. In: Proc. WWW. pp. 401–410 (2009)

GPU-Accelerated Block-Max Query Processing 15

16. Zhang, F., Wu, D., Ao, N., Wang, G., Liu, X., Liu, J.: Fast lists intersection with
Bloom filter using graphics processing units. In: Proc. SAC. pp. 825–826 (2011)

17. Zhang, J., Long, X., Suel, T.: Performance of compressed inverted list caching in
search engines. In: Proc. WWW. pp. 387–396 (2008)

18. Zhang, S., Zhang, C., You, Z., Zheng, R., Xu, B.: Asynchronous stochastic gradient
descent for DNN training. In: IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, May 26-31, 2013.
pp. 6660–6663 (2013)

	GPU-Accelerated Block-Max Query Processing

