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Abstract. To improve reactive hard-drive fault-tolerance techniques,
many statistical and machine learning methods have been proposed for
failure prediction based on SMART attributes. However, disparate datasets
and metrics have been used to experimentally evaluate these models, so
a direct comparison between them cannot readily be made.

In this paper, we provide an improvement to the Recurrent Neural Net-
work model, which experimentally achieves a 98.06% migration rate and
a 0.0% mismigration rate, outperforming the state-of-the-art Gradient-
Boosted Regression Tree model, and achieves 100.0% failure detection
rate at a 0.02% false alarm rate, outperforming the unmodified Recur-
rent Neural Network model in terms of prediction accuracy. We also
experimentally compare five families of prediction models (nine models
in total), and simulate the practical use.

1 Introduction

Modern cloud storage systems and other large-scale data centers often host hun-
dreds of thousands of hard drives as their primary data storage device. While the
theoretical annual failure rate of a single hard drive is low, in such large num-
bers they are a primary source of failure in today’s cloud storage systems [22,23].
Hard-drive failure leads to service unavailability, which negatively impacts the
user experience, and can cause permanent data loss.

Modern hard drives incorporate Self-Monitoring, Analysis and Reporting
Technology (SMART) [1], but SMART attributes cannot directly provide satis-
factory hard-drive failure prediction performance [15]. As a result, many statis-
tical and machine learning methods utilize SMART attributes to substantially
improve upon hard-drive failure prediction performance [2, 4–16, 18–21, 24–31].
However, differences in experimental setups make it hard to compare their re-
spective performances and determine which model is most effective.

Difficulties comparing model performance hinder the realistic application in
cloud storage systems. Two major differences are the choice of experimental
dataset and the choice of experimental metric. A wide variety of datasets have
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been used; we tabulate them in Table 1 below1. Basic statistics of the datasets
in this paper are listed in Table 3.

Table 1. Datasets Used in Previous Work

Dataset
Reference(s)

no. drives no. failed drives

1,936 9 [8]
3,744 36 [9]

369 191 [14,15,20,24–26,30]
23,395 433 [10–12,16,28,31]
38,989 170

[11,12,28]
10,157 147

Backblaze data center datasets [3, 4, 13]

Most prior work [2, 4, 5, 7–10, 12–15, 18–21, 24–26, 30, 31] uniformly treated
hard-drive failure prediction as a binary classification problem, and evaluated
the model performance in terms of failure detection rate (FDR), defined as the
proportion of failed drives that are correctly classified as failed, and false alarm
rate (FAR), defined as the proportion of good drives that are incorrectly classified
as failed. Some previous work [10,12,20,24,25] also incorporate time in advance
(TIA), which is defined as the mean time between predicted failure and actual
failure.

Instead of binary classification, some prediction models [16, 28] predict the
residual life of hard drives, described by a drive’s health degree. In this context,
a drive’s residual life is ordinarily predicted to fall into an interval, and predic-
tion accuracy is measured by the number of predictions falling into the correct
interval.

Li et al. [11] recently proposed two new performance metrics for hard drive
failure prediction models: the migration rate (MR), defined as the proportion of
data that is successfully migrated before its disk failed, and the mismigration
rate (MMR), defined as the proportion of data on healthy disks that is migrated
needlessly. Along with the traditional metrics (FDR, FAR, and TIA), we make
use of these stricter metrics in this paper.

Four other significant issues that hinder model comparison are the following:
(a) small datasets may be insufficient for adequately training the models, poten-
tially leading to under-evaluated prediction performance results [8, 9, 14, 15, 24–
26,30] and contain too few failed drives, which negatively impacts both training
and experimentation:

1 Here and throughout the paper, despite the grammatical mismatch between “good”
vs. “failed”, for brevity we use “failed” as an adjective to describe hard drives which
fail during data collection; all other hard drives are “good”. This awkward nomen-
clature is consistent with many papers on this topic.
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... detailed studies of very large populations are the only way to collect
enough failure statistics to enable meaningful conclusions — Pinheiro et
al., 2007 [17];

(b) different authors have chosen varying sets of SMART attributes to include
and exclude in their experimental evaluations; (c) partitioning drives into test,
training, and (possibly) validation sets has been done in various ways; and (d)
some datasets [14, 15, 20, 24–26, 30] can be regarded as obsolete: their SMART
information is inconsistent with the current SMART standard.

The main contributions of this paper are as follows:

– Recurrent Neural Network model improvements. We optimize the Recurrent
Neural Network (RNN) model in terms of MR and MMR. We define a four-
layer network model in which the output layer contains two additional nodes
(MR and MMR). Further, during training, samples are instead considered
over the entire life of a typical hard drive.

– Nine models from five families. We experimentally compare the performance
of nine hard-drive failure prediction models on the same datasets collected
from a real-world data center, using metrics MR and MMR, along with the
traditional metrics FDR, FAR, and TIA.

– Data center simulations. We continue experimentation on six reasonable
models by simulating their use on various drive families, in small-scale data
centers and data centers with a mixture of drive models.

The paper is organized as follows: In Section 2, we survey related work on
hard-drive failure prediction using SMART attributes. Section 3 presents the
modified RNN model. Section 4 first gives a description of the datasets and how
they are preprocessed, then presents the experimental results. We summarize
the impact of this work in Section 5.

2 Related Work

SMART is a monitoring system which is widely used in modern hard drives.
However, a simple SMART threshold-based method for hard-drive failure pre-
diction results in an impractically poor FDR of around 3–10% when achieving
a suitably low FAR around 0.1% [15]. Here we survey the methods used to
overcome this problem.

The majority of prior work considered hard-drive failure prediction as a bi-
nary classification problem, including Bayesian approaches [4, 8], the Wilcoxon
rank-sum test [9,14,15], a support vector machine method [15,31], hidden Markov
models [30], a method involving Mahalanobis distance [24–26], backpropaga-
tion artificial neural networks [31], a classification tree model [10], a regularized
greedy forest model [2], a Gaussian mixture model [20], an online random forest
model [27], and a method using the FastTree algorithm [29].

Realistically, hard drives deteriorate gradually, so some previous work instead
studied “health degree” prediction. Li et al. [10] proposed a Regression Tree
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model and defined a hard drive’s health degree as its failure probability. Pang
et al. [16] and Xu et al. [28] treated health degrees as the remaining working
time of a hard drive before an actual failure occurs. The accuracy of health
degree prediction was used to test a combined Bayesian network model [16] and
a recurrent neural network model [28]. Li et al. [11, 12] improved the gradient-
boosted regression tree (GBRT) method for hard-drive failure prediction.

From among these various methods, we select the most competitive to com-
pare with our modified RNN model experimentally, which we describe in detail
in the next section. Except for [11], all prior experimental evaluations did not
incorporate data migration, which is a more critical factor for large-scale storage
systems, such as cloud storage systems. One of the major motivations of this
paper is thus to reevaluate these methods in an identical and up-to-date setting.

3 Extended RNN Model

We modify the network structure as depicted in Figure 1. In [28], the previous
time step’s hidden layer is fed into the current hidden layer, whereas we feed in
not only the previous time step’s hidden layer but also the previous time step’s
output layer; this is a main distinction between the two methods.

?

hidden layer health degree

output layer

1

2

3

4

5

6

MR

MMR

SMART attributes

hidden layer
(previous time step)

MR and MMR
(previous time step)

d− o(t)

(only last
sample)

Fig. 1. The modified RNN model at time t; the SMART attributes at time t, hidden
layer and output from time t−1 is fed into the hidden layer. It has four layers: an input
layer, a hidden layer, a health-degree layer, and an output layer. We proceed drive by
drive, then SMART-attribute sample by sample. MR is calculated from failed drives,
and MMR is calculated from good drives.

When training RNN models, we incorporate the entire life of hard drives in
the training set. The health-degree layer uses the softmax function to ensure the
values of the six nodes form a valid probability distribution (i.e., all values are
greater than 0 and their sum is 1). Each node’s label represents the residual-life
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level a sample maps into. In the training process, for each sample we choose the
node with the maximum value (i.e., the residual-life level a sample most likely
maps into) in the health-degree layer. Then we calculate MR or MMR at this
time step assuming the migration rate in the corresponding level as in [11], and
update the MR or MMR value until the last sample of a hard drive.

Algorithm 1 Modified RNN model training procedure

Input: samples for all hard drives, a four-layer RNN model with initial weight matrices
Output: network weight matrices
1: for hard drive D do
2: for each SMART sample for hard drive D do
3: compute the hidden layer and health degree probabilities (health-degree layer)

as per an unmodified three-layer RNN as per [28], subjoining the previous time
step’s output layer as input

4: find the node in the health-degree layer with the maximum value (i.e., prob-
ability), and calculate MR or MMR of the current SMART sample

5: if not the last sample of a hard drive then
6: update the MR and MMR output o(t) at the current time step t
7: feed back as unmodified three-layer RNN as per [28] (i.e., excluding d−o(t)),

subjoining the previous time step’s output layer
8: else
9: feed back using the four-layer RNN and reset MR and MMR (i.e., including

d− o(t))
10: end if
11: end for
12: end for
13: return network weight matrices

When feeding back into the network, for each sample, we feed back the net-
work excluding the output layer as in [28], subjoining the previous time step’s
output layer. If it is the last sample of a hard drive, we also feed back the gradi-
ent of the output layer and then reset MR and MMR to 0. The gradient of the
output layer is d − o(t) where o(t) is the assessed MR or MMR value at time
t, and d is the target values of MR and MMR, namely 1 and 0, respectively.
Algorithm 1 gives the details for training the modified RNN prediction model.

When testing, for each SMART record, we feed forward the network using
weight matrices obtained from the training process. If the node with the max-
imum value in the health-degree layer falls into a level 1 through 5, the record
is labeled as failed, otherwise good. Then we calculate FDR, FAR, and TIA like
other binary classifiers. Metrics MR and MMR are calculated as in the training
process.

4 Experimental Results

We test the modified RNN model and eight other hard-drive failure prediction
methods, which divide into five categories, tabulated in Table 2. We evaluate
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the various hard-drive failure prediction methods in terms of FDR, FAR, TIA,
MR, and MMR, on the datasets described in Section 4.1. When measuring FDR,
FAR, and TIA, we apply a voting-based failure detection algorithm [31]. When
measuring MR and MMR, we process the samples sequentially for each hard
drive, like in [11].

Table 2. Models we evaluate in this paper

Model family Name Year Reference(s)

Probabilistic
Naive Bayes classifier 2001 [8]
Bayesian network 2016 [4]

Support Vector Machine (SVM) 2005+ [15,31]

Decision Tree
CT

(part of CART) 2014 [10]
RT

Boosting
GBRT 2016+ [11,12]
XGBoost new

Time series
HMM 2010 [30]
RNN 2016 [28]

4.1 Dataset Description and Preprocessing

Datasets and Preprocessing Our datasets are from two real-world data cen-
ters. The data from the first data center, called dataset W, was released in [31].
The data from the second data center, called datasets M and S, were first used
in [28]. The details of the three datasets are listed in Table 3.

Table 3. Dataset Statistics

Dataset Class No. disks No. samples

W
good 22,962 3,837,568

failed 433 158,150

S
good 38,819 5,822,850

failed 170 97,236

M
good 10,010 1,681,680

failed 147 79,698

We use three non-parametric statistical methods—reverse arrangement test,
rank-sum test, and z-scores [15] to select features as the SMART attributes in
our datasets are non-parametrically distributed (which is consistent with the
observations in [9, 15]). We list the selected features for dataset W in Table 4
and for datasets M and S in Table 5. The differences between SMART attributes
selected in Table 4 and Table 5 are because drives of data sets W and M, S are
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from different data centers and drive models, with different collected SMART
attributes. We divide the three datasets, taking 70% of data as training set, 15%
as validation set, and 15% as test set.

When using the RNN model, we map all input data to [0, 1], which we do by
replacing the original value x of a feature by

x 7→ x− xmin

xmax − xmin

where xmax and xmin are the maximum and minimum values of this feature in the
training set, respectively. To leverage the relatively long sequence of historical
information of SMART attributes, we sample one SMART record in each 24-hour
period, consistent with [28].

Table 4. SMART features for dataset W

ID Attribute name Type

1 Raw Read Error Rate basic, change rate
2 Spin Up Time basic
3 Reallocate Sectors Count basic
4 Seek Error Rate basic
5 Power On Hours basic
6 Reported Uncorrectable Errors basic
7 High Fly Writes basic
8 Temperature Celsius basic
9 Hardware ECC Recovered basic, change rate
11 Reallocated Sectors Count (raw value) basic, change rate

Table 5. SMART features for datasets M and S

ID Attribute name Type

1 Raw Read Error Rate basic, change rate
2 Spin Up Time basic
3 Reallocate Sectors Count basic, change rate
4 Seek Error Rate basic
5 Power On Hours basic
8 Temperature Celsius basic
10 Current Pending Sector Count (raw value) basic

4.2 Dataset W

For dataset W, Figure 2 plots the FDR and FAR using voting-based failure de-
tection of each of the 9 methods. We see that increasing the number of voters
generally reduces the FAR. Based on this experiment, in the subsequent exper-
iments, we set the number of voters N = 7; there does not appear to be any
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significant benefit to choosing a greater N value. Not included in the figure are
the TIA measurements; for N = 7, they ranged from 217 hours (HMM) to 264
hours (SVM), none of which would be problematic in practice. Excluding the
naive Bayes classifier and the HMM model, all of the models give 24+ hours
warning for 90%+ of the drives and 72+ hours warning for 84%+ of the drives.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

False alarm rate (%)

F
a
il
u
re

d
et

ec
ti

o
n

ra
te

(%
)

Naive Bayes classifier

Bayesian network

Support vector machine

Classification tree

Regression tree

Gradient-boosted regression tree

eXtreme gradient boosting

Hidden Markov model

Recurrent neural network

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

False alarm rate (%)

F
a
il
u
re

d
et

ec
ti

o
n

ra
te

(%
)

Naive Bayes classifier

Bayesian network

Support vector machine

Classification tree

Regression tree

Gradient-boosted regression tree

eXtreme gradient boosting

Hidden Markov model

Recurrent neural network

Fig. 2. Impact of the voting-based method on prediction accuracy (FDR vs. FAR) of
the various prediction models, as the number of voters N varies in {1, 3, 5, 7, 11, 17, 27}
as in [10]; dataset W. The FAR generally decreases as N increases, so the plots are
from right (small N) to left (large N). Some plots appear to have fewer than seven
points because the FDR and FAR does not always vary with N in these experiments.

In Figure 2, we see that the results of the Bayesian network model outper-
forms the naive Bayes classifier, indicating that SMART attributes not following
Gaussian distributions, which agrees with the observations in [9, 15].

Comparing the decision-tree and boosting models (CT, RT, GBRT, and XG-
Boost) using Figure 2, we observe that all four consistently achieve high FDR
(93%+ when N = 7). Moreover, CT, RT, and GBRT achieve a small false alarm
rate (when N = 7, the maximum observed is in the CT model at 0.11%).

In Figure 2, the SVM model achieves 97.22% FDR with 0.66% FAR (when
N = 7), which is significantly better than the results observed in [15, 31]. We
attribute this discrepancy primarily to two factors: a different choice of SMART
attributes than in [31], and a much larger dataset than in [15] (369 hard drives;
191 failed). These results highlight the importance of re-testing the various meth-
ods on an “equal playing field”.

The results for the HMM are the worst among those in Figure 2; this level of
prediction accuracy would render it impractical for use in a real-world setting.
Curiously, if we only use the SMART attribute “Raw Read Error Rate” to build
the HMM, the model achieves 90.27% FDR at 0% FAR, outstripping its results



Predicting Hard Drive Failures for Cloud Storage Systems 9

in Figure 2. This result indicates that the HMM is better suited to a small set of
attributes and performs poorly when using multi-dimensional attributes. When
we use the SMART attribute “Reallocate Sectors Count”, HMM only achieves
36.11% FDR at 0.02% FAR, which illustrates HMM does not always achieve
high FDR when using a single SMART attribute, so its prediction accuracy
varies according to different choice of SMART attributes.

The modified RNN model consistently achieves both a high FDR of 100.0%
and a low FAR of 0.02% (when N = 7), and Figure 2 indicates it outperforms all
models except the Bayesian network and RT models, which achieve a fractionally
better FAR of 0.00%, but a fractionally worse FDR of 96% (when N = 7).

We further compare the modified RNN model with the unmodified model
in Table 6. The modified RNN model outperforms the unmodified RNN model
in terms of both prediction accuracy and data migration. The MR increases by
more than 18 percentage points. When data fails to migrate, there is a heightened
risk of data loss: it takes fewer additional failures to lose data permanently.
Furthermore, in erasure-coded cloud storage systems, if migration is incomplete
before a hard drive fails, we trigger reconstruction, consuming system resources.

Table 6. The unmodified vs. modified RNN model, along with the RT, GBRT and
XGBoost models

Model FDR (%) FAR (%) TIA (h) MR (%) MMR (%)

unmodified RNN 95.83 0.03 255 79.92 0.01
modified RNN 100.0 0.02 263 98.06 0.00

RT 95.83 0.00 262 91.31 0.15
GBRT 93.06 0.05 259 94.62 0.07

XGBoost 95.83 0.11 262 94.65 0.03

Experimental results for the RT, GBRT, XGBoost, and RNN models are
included in Table 6. The GBRT and XGBoost models outperforms the RT model
using the data migration metrics (MR and MMR), but the opposite is true for
prediction accuracy metrics (FDR, FAR, and TIA). We also observe that the
modified RNN model outperforms the RT, GBRT, and XGBoost models in terms
of MR and MMR.

The motivation behind introducing MR and MMR in [11] was that FDR,
FAR, and TIA are sometimes misleading in practice, and these observations
further support this claim. High prediction accuracy does not necessarily imply
more appropriate data migration is taking place, and thus does not necessarily
imply a more reliable system.

4.3 Simulating Practical Use

We evaluate model performance by simulating their practical use in real-world
data centers: (a) being used with different hard drive families, (b) being used
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in small-scale datasets, and (c) being used with a mixture of drive models. We
exclude the naive Bayes classifier and the HMM, due to their poor performance.
We also abandon the SVM model due to its higher FAR on dataset W compared
with the remaining six models.

Table 7. Prediction and migration accuracy on datasets M and S

Model
M S

FDR(%) FAR(%) FDR(%) FAR(%)

Bayesian network 95.56 0.69 92.16 0.36
CT 95.45 0.57 96.15 0.52
RT 93.33 0.74 94.11 0.13
GBRT 86.36 0.15 84.62 0.06
XGBoost 95.45 0.55 96.15 0.14
RNN 100.0 0.02 100.0 0.01

Model
M S

MR(%) MMR(%) MR(%) MMR(%)

RT 95.45 0.23 91.00 0.04
GBRT 91.76 0.09 93.08 0.02
XGBoost 95.45 0.12 93.33 0.07
RNN 98.75 0.03 98.58 0.02

Datasets M and S Hard drive models, manufacturers, and other environmental
factors influence the statistical behavior of failures [22]. Even if made by the
same manufacturers, different hard drive models have different characteristics,
which may influence their reliability. Therefore, effectiveness on various hard
drive models is an important factor in prediction models. With this motivation,
we evaluate the six remaining models on datasets M and S, whose hard drive
models are different to dataset W. Experimental results are tabulated in Table 7.

Comparing Table 7 to Figure 2, we observe changes in the FAR for the
Bayesian network model (from 0.00% to 0.36%+), the CT model (from 0.11%
to 0.52%+), and the RT model (from 0.00% to 0.13%+). We also observe that
the GBRT model has an FDR of around 93% for the W dataset (FAR 0.05%),
whereas it is around 86% for the M dataset (FAR 0.15%) and around 85% for
the S dataset (FAR 0.06%). On the M and S datasets, the modified RNN model
outperforms other models according to the metrics FDR, FAR, MR, and MMR.

Small-scale Datasets The datasets W, S, and M all contain a large number of
hard drives. However, in real-world data centers, prediction models may be used
on small or medium-sized datasets. We compare the remaining models on three
“synthetic” datasets, like in [10,11], named A, B, C, by randomly choosing 10%,
25%, and 50% of all the good and failed hard drives respectively from dataset
W. Table 8 tabulates the experimental results on these small-scale datasets.
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Table 8. Prediction and migration accuracy on synthetic small-scale datasets

Model
A B C

FDR(%) FAR(%) FDR(%) FAR(%) FDR(%) FAR(%)

Bayesian network 98.61 0.76 98.61 0.08 98.61 0.82
CT 98.61 0.38 97.22 0.20 98.61 0.13
RT 97.22 0.31 95.83 0.04 95.83 0.00
GBRT 76.39 0.01 84.72 0.02 90.28 0.04
XGBoost 100.0 0.08 97.22 0.08 95.83 0.12
RNN 100.0 0.02 100.0 0.04 100.0 0.03

Model
A B C

MR(%) MMR(%) MR(%) MMR(%) MR(%) MMR(%)

RT 84.82 0.79 91.74 0.04 92.70 0.09
GBRT 93.18 0.66 92.99 0.07 94.31 0.06
XGBoost 89.37 0.12 90.40 0.01 91.14 0.01
RNN 98.06 0.40 97.89 0.24 98.06 0.30

In Table 8, we observe only minor performance degradation as the size of
the dataset decreases, although the FDR for GBRT drops from around 90% to
around 76%. The modified RNN model outperforms the others in terms of FDR
and MR, while the metrics FAR and MMR do not strongly favor a method.

Non-ideal Datasets A real-world data center often has many engine rooms
containing multiple hard-drive models. Though building a distinct prediction
model for each hard drive model would achieve better results, this is impractical
due to the time spent on data collection. To experimentally evaluate a non-ideal
setup, we simulate two situations that might arise in a data center:

1. we have a large number of drives in the same drive family, together with
different drive families whose data are insufficient for building models; and

2. we have multiple drive families with individually insufficient data, but to-
gether provide sufficient data.

For the first case, we build models using the dataset M and test model per-
formance using dataset S (denoted M→S) or vice versa (denoted S→M). For
the second case, we create a mixed dataset (denoted MS) by merging 25% of
hard drives from the M and S datasets. We build models using the dataset MS
and test model performance using datasets M, S, and MS. The results are de-
noted MS→S, MS→M, and MS→MS. We do not use dataset W here because
the number of SMART attributes is inconsistent with the datasets M and S.

Table 9 tabulates the experimental results for M→S and S→M, and Table 10
tabulates the experimental results for MS→M, MS→S, and MS→MS.
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Table 9. Prediction and migration accuracy for M→S and S→M

Model
S→M M→S

FDR(%) FAR(%) FDR(%) FAR(%)

Bayesian network 100.0 99.63 100.0 99.25
CT 77.27 92.79 69.23 67.99
RT 77.27 92.56 50.00 8.61
GBRT 77.27 76.55 61.54 23.72
XGBoost 77.27 92.78 73.08 92.03
RNN 100.0 0.20 100.0 0.00

Model
S→M M→S

MR(%) MMR(%) MR(%) MMR(%)

RT 77.29 19.13 56.01 5.94
GBRT 77.27 29.17 69.56 7.12
XGBoost 77.29 19.08 60.08 6.44
RNN 98.75 0.16 99.78 0.00

In Table 9, the proposed RNN model is the only model which consistently
achieves practicable performance for all metrics, other models all have imprac-
tically high FAR and high MMR. This may because RNN utilizes the long-term
dependencies among SMART attributes and builds models according to the his-
torical fluctuations of data, whereas the other five models are all based on nu-
merical values. Though the data in datasets M and S have numerical differences,
they may have similar historical fluctuations.

Since HMM also utilizes historical fluctuations of data, we perform an addi-
tional test for this model: we observe that HMM achieves 34.62% FDR at 6.31%
FAR for M→S and 68.18% FDR at 0.00% FAR for S→M. We likewise test the
unmodified RNN model, which achieves 76.47% FDR at 0.06% FAR for M→S
and 37.78% FDR at 53.27% FAR for S→M. These observations are somewhat
consistent with the hypothesis that long-term dependencies are responsible for
the observations in Table 9, but there may be additional reasons for these results.

Importantly, the results in Table 9 strongly indicate how a hard-drive failure
model trained for one drive model may be unusable for predicting failures in
another model, and how an idealized experimental environment may exaggerate
the effectiveness of hard-drive failure prediction. In these results, the difference
is extreme: going from nearly 0% FAR to nearly 100% FAR.

The results of all six models for the experiments MS→S and MS→M in Ta-
ble 10 are similar to or slightly worse than the corresponding results in Table 7
(where we use training and test data from the same dataset). These results indi-
cate simply creating a mixed training set is a practical method to overcome the
problem arising in Table 9. All six models have practicable results for MS→MS,
yet again we see the proposed RNN model outperforming the others.
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Table 10. Prediction and migration accuracy for dataset MS

Model
MS→M MS→S MS→MS

FDR(%) FAR(%) FDR(%) FAR(%) FDR(%) FAR(%)

Bayesian network 95.56 0.77 92.16 0.34 94.79 0.45
CT 86.36 0.65 92.31 0.42 89.58 0.49
RT 90.91 1.09 92.31 0.77 91.67 0.80
GBRT 86.36 0.16 84.62 0.21 83.33 0.16
XGBoost 86.36 0.43 92.31 0.20 89.58 0.22
RNN 100.0 0.44 100.0 0.00 100.0 0.01

Model
MS→M MS→S MS→MS

MR(%) MMR(%) MR(%) MMR(%) MR(%) MMR(%)

RT 90.93 0.26 88.20 0.04 89.48 0.14
GBRT 88.91 0.16 88.33 0.09 88.60 0.11
XGBoost 90.92 0.24 92.92 0.05 91.39 0.13
RNN 100.0 0.44 100.0 0.00 99.22 0.00

5 Conclusion

In this paper, we implement a modified RNN model, and evaluate eight other
models from five families on real-world datasets using various metrics experi-
mentally. As a result, we give a fairer comparison between the models, which
shows that the modified RNN model consistently achieves the best or nearly the
best experimental results among the methods studied.

While experiments mostly give rise to comparable results to their original
authors, for the support vector machine method, we observe a far higher predic-
tion accuracy than presented by their authors in [15, 31], which we attribute to
their small-size dataset and a different choice in SMART attributes.

The traditional metrics (FDR, FAR, and TIA) can sometimes suggest that
one method outperforms another, while after incorporating migration (MR and
MMR), the opposite is true. An example of this is the surprising observation that
the RT method outperforms the GBRT and XGBoost methods on the traditional
metrics, but in Table 6, we see that GBRT and XGBoost methods outperform
the RT method in terms of MR and MMR.

In Section 4.2, we make the curious observation about how, for the hidden
Markov model, prediction accuracy changes wildly depending on the selection
of SMART attributes. In most work on this topic (including this paper), the
authors make a selection of SMART attributes they consider most suitable. It
would be interesting to expand this work to include the impact of the choice of
SMART attributes, which we observe is significant in the example above.

We put forward the following advice when evaluating hard-drive failure pre-
diction in cloud storage system:
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– Evaluation metric selection. We observe that a high FDR does not necessarily
imply a high MR. In a cloud storage system and other large-scale storage
systems, we need to continuously migrate at-risk data, thereby consuming
system resources. Thus migration-based metrics, such as MR and MMR, are
better suited for evaluating model performance for cloud storage systems,
than the less sophisticated metrics FDR and FAR.

– Mixed drive models. In Table 9, we make an observation that a model trained
using data from one drive model may be useless at predicting hard-drive
failure for a different drive model. An storage system operator should bear
this in mind when training models for experimental evaluation. Further, in
Table 10 we observe that this problem can be alleviated by using a training
set that includes drives from both models. This is particularly relevant for
cloud storage systems, which are likely to have multiple drive models.
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