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SUMMARY With the increase of data quantity, people have begun to
attach importance to cloud storage. However, numerous security accidents
occurred to cloud servers recently, thus triggering the thought about the se-
curity of traditional single cloud. In other words, traditional single cloud
can’t ensure the privacy of users’ data to a certain extent. To solve the se-
curity issues, multi-cloud systems which spread data over multiple cloud
storage servers emerged. They employ a series of erasure codes and oth-
er keyless dispersal algorithms to achieve high-level security. But non-
systematic codes like RS require relatively complex arithmetic, and sys-
tematic codes have relatively weaker security. In terms of keyless dis-
persal algorithms, they avoid key management issues but not suit to com-
plete parallel optimization or deduplication which is important to the lim-
ited cloud storage resource. So in this paper, we design a new kind of
XOR-based non-systematic erasure codes - Privacy Protecting Codes (P-
PC) and a SIMD encoding algorithm for better performance. To achieve
higher-level security, we put forward a novel deduplication-friendly disper-
sal algorithm called Hash Cyclic Encryption−PPC (HCE-PPC) which can
achieve complete parallelization. With these new technologies, we present
a multi-cloud storage system called CloudS. For better user experiences
and tradeoffs between security and performance, CloudS provides multiple
levels of security by a variety of combinations of compression, encryption
and coding schemes. We implement CloudS as a web application which
doesn’t require users to perform complicated operations on local.
key words: multi-cloud, multi-level security, erasure code, data dispersal,
key management

1. Introduction

Cloud storage has become the focus of public attention in
recent years. Due to the ever-growing amount of data and
local storage limits, more and more individual and enter-
prise users have begun to put data in cloud servers. Ac-
cording to iiMedia Research Group’s report [1], only in Chi-
na, the amount of individual cloud storage users will reach
450 million in 2015. With the popularity of cloud storage,
many Internet companies have launched their own cloud ser-
vices such as Microsoft OneDrive, Amazon S3 and Google
Drive. However, cloud storage security issues are gradual-
ly exposed. In 2014, photo leakage occurs to icloud which
is another security incident after Google Docs and Ama-
zon S3 [2] [3]. We summarize potential security hazards
of cloud storage as the damage to data integrity and priva-
cy. For data integrity, network transmission errors, hack-
er attacks and faulty operations from server administrators
will cause data tampering and loss. For data privacy, both
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untrusted cloud providers and hacker attacks will leak out
users’ data. Besides, the availability of cloud services and
vendor lock-in should be worth attention.

To solve the above problems, many multi-cloud sys-
tems whose main idea is data dispersal to multiple cloud
servers have appeared such as DepSky [4], RACS [5],
HAIL [3]. Existing multi-cloud systems typically use era-
sure codes (e.g. RAID-5 [6] and RS codes [7] [8]) and oth-
er keyless dispersal algorithms for data security. Howev-
er, traditional erasure codes are generally systematic codes
whose security is relatively weak, and non-systematic codes
like multi-erasure RS require relatively complex finite field
arithmetic, besides, multi-erasure seems unnecessarily ex-
pensive for only a few cloud services. In the field of key-
less dispersal algorithms, traditional algorithms adopt ran-
dom keys to ensure data security, which doesn’t suit to d-
eduplication. Although CAONT−RS [9] has been proposed,
CAONT relies on the hash value of entire data file which is
difficult for complete parallelization. So in this paper, we
propose a new kind of XOR-based non-systematic erasure
codes called PPC (Privacy Protecting Code) and design a
SIMD encoding algorithm for better performance. In the
meantime, we put forward a novel keyless dispersal algo-
rithm called Hash Cyclic Encryption−PPC (HCE−PPC).

With various types of data uploaded to cloud servers,
users’ security demands for cloud systems have gradually
diversified. Processing a less-confidential file with an over-
ly complex security mechanism will lead to resource waste
and bad user experiences, especially for those devices with
a relatively weak computing capability. Therefore, multi-
level security, which means that users can choose differen-
t security levels for their different data according to their
needs, is needed to achieve trade-offs between security and
performance. Unfortunately, existing multi-cloud systems
don’t involve this trade-off. In this paper, we design and im-
plement a multi-cloud system called CloudS which employs
different combinations of compression, encryption and cod-
ing algorithms to achieve multi-level security. As a third
party agent, CloudS is allowed to temporarily access user
data only when it has got tokens. For better performance and
user experiences, we adopt a security authorization mecha-
nism proposed in [10]. In addition, we implement CloudS
as a web application, therefore not requiring any complicat-
ed operation even installing a software on local, reducing
troubles due to changing a computer.

In summary, these are the major contributions of our
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work:

• Design a family of XOR-based non-systematic coding
schemes called Privacy Protecting Code (PPC) and im-
plement its SIMD encoding algorithm for better perfor-
mance.

• Design and implement a novel keyless dispersal algo-
rithm called HCE−PPC.

• Design and implement a variety of combinations of
compression, encryption and coding schemes which
provide multiple levels of trade-offs between security
and performance.

• Implement the secure web-based multi-cloud storage
system CloudS with the integration of the above meth-
ods.

The rest of this paper is organized as follows. In Section 2
we will discuss relevant work about multi-cloud systems and
related techniques. Section 3 will introduce the framework
of CloudS. Section 4 describes PPC codes in detail. Section
5 includes the design of HCE−PPC. Section 6 focuses on the
security levels. In Section 7 we evaluate the performance
of PPC, different security combination schemes and CloudS
system. And Section 8 concludes this paper and the future
work is proposed.

2. Related Work

With the prevalence of cloud storage services and broadband
Internet access, data confidentiality, integrity and avail-
ability problems in traditional cloud storage raise concern
gradually. To address these problems, duplication, erasure
codes like MDS [11], Rabin’s information dispersal [12] and
Shamir’s secret sharing [13] are widely used in multi-cloud
storage systems which spread data over multiple cloud sites.

In the field of multi-cloud systems, RACS is a prox-
y that transparently spreads the storage load over many
providers with RAID-like techniques to provide high data
availability and avoid the costs of vendor lock-in [5]. Aimed
at guaranteeing data integrity and availability, HAIL is a dis-
tributed cryptographic multi-cloud system [3] which com-
bines proofs of retrievability (PORs) [14] and proofs of data
possession (PDPs) [15]. ICStore [16] addresses CIRC (con-
fidentiality, integrity, reliability and consistency) by using
replication and Shamir’s secret sharing. Depsky, a virtual
storage cloud system, addresses availability and confiden-
tiality of data by the combination of encryption, encoding
and data replication [4]. Nevertheless, the above systems
don’t consider about various security requirements for dif-
ferent data and/or different users.

This paper fills that gap by presenting the systematic
description of a multi-level security system called CloudS.
Meanwhile, aimed at the problems of existing erasure codes
and dispersal algorithms, we design a new kind of XOR-
based non-systematic erasure codes called PPC which en-
sures data security even if one cloud server have been at-
tacked, thus ensuring data confidentiality, integrity and fault
tolerance with low storage and computational cost. We also
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Fig. 1: CloudS architecture

come up with a novel dispersal algorithm named HCE−PPC
which is suitable for complete parallelization and deduplica-
tion.

3. The Framework Design

CloudS consists of four layers as presented by Fig.1. The us-
er layer is used to accept user’s requests and forward these
requests to the system layer. The interface layer is designed
to implements a unified interface for various cloud service
providers. The network layer is responsible for sending and
receiving http/https packets. The system layer is the core of
CloudS which undertakes all computing tasks. It’s mainly
composed of the request processing unit, the authorization
unit and the token manager. The authorization unit and to-
ken manager are designed to get the user’s authorization to-
kens and hold them securely. The operation processing unit
is composed of three submodules: the directorytree manager
is designed for directory operation; the metadata for direc-
tories and files are manged by the metadata manager; the
filesystem manager is designed to process user data and it
ensures data security through a series of mechanisms. D-
ifferent security levels which take full account of the user
experience and achieve the trade-offs between performance
and security are provided in the filesystem manager. In ad-
dition, PPC and HCE−PPC are implmented in this module
as one of the coding and security schemes.

4. PPC Design and Implementation

As presented, we propose PPC to meet the tradeoffs between
security and performance. In this section, we explain PPC
in detail.

4.1 Nomenclature

Before introducing PPC, we first define the terms used in
this section.

Chunk [17]: A basic unit of storage holding data
and/or coding (‘parity’) information. This is also referred
to as a stripe unit or a strip [18] in traditional storage sys-
tems.



SHEN et al.: CLOUDS: A MULTI-CLOUD STORAGE SYSTEM WITH MULTI-LEVEL SECURITY
3

Stripe: In our cloud storage model, the user file is split
into k chunks and then are encoded into a stripe composed
of n(= k + m) chunks. These chunks are spread across n
nodes to provide high reliability and availability. From the
theoretical view, a stripe is a codeword which is the mini-
mum (and complete) collection of (data and parity) bits that
encode and decode together [19].

Node: An independent storage container that stores da-
ta and parity chunks. This can be a cloud storage service, a
node in peer-to-peer system, and so on.

For convenience, we employ Di to present the (i + 1)-th
original data chunk and Pi for the (i + 1)-th coding chunk in
a stripe in the following parts.

4.2 Metrics of Privacy Protecting

Privacy degree. PPC code has a privacy degree of t, if it
can resist any t breaches. That is, given any t out of n pari-
ty chunks, we cannot reconstruct any data chunk, and there
exists (t + 1) parity chunks that can reconstruct some (not
necessarily all) data chunks.

As described before, PPC code is a kind of non-
systematic erasure code, so no original data is retained. In
other words, we cannot reconstruct any data if we only get a
single coding chunk. Hence, the privacy degree of PPC must
be greater than 1. In this paper, we define PPC(k, n, t) as
the code in which k original data chunks generating n cod-
ing chunks and all original chunks can be recovered when
holding at least k coding chunks, achieving (n − k)-erasure
correcting and t presents privacy degree.

Safe and unsafe group. Let S be a subset of chunks
in a stripe. If we cannot reconstruct any data chunk from
subset S, we call S a safe group, otherwise an unsafe group.

We define the best case privacy degree of a PPC code
as the size of its biggest safe group. Taking the PPC code
in Fig. 2 as an example, we can see the chunk D4 can be re-
constructed by the XOR-sum of P0, P2 and P6 and any data
chunk cannot be computed by any pair of parity chunks, so
the privacy degree is 2. However, not any three out of those
seven parity chunks can reconstruct an original chunk. We
can see that the first 5 chunks form a safe group, and any
bigger group is unsafe, so its best case privacy degree is 5.

S-safe partible and s-safe partition. A PPC code is
s-safe partible if its stripe can be split into s safe groups.
These groups form an s-safe partition of this PPC code.

For a distributed storage system, attackers may breach
relevant multiple sites simultaneously. In the multi-cloud
environment, cloud services which come from the same
country may be regarded as relevant nodes if data securi-
ty involves the issue of government intervention. In oth-
er cases, natural disasters will cause all nodes within a re-
gion unavailable. The concept of safe partition offers a so-

‘_’

‘ENQ’

‘LF’

‘ACK’

‘D’
‘’’’

‘B’

‘A’

‘l’

‘i’

‘c’

‘e’

‘!’

Fig. 2: PPC conversion

lution to these. For example, if we have four providers from
one country and three from another country, we can em-
ploy the 2-safe partition {{P0, P2, P4, P6},{P1, P3, P5}} of
PPC(6, 7, 2) shown in Fig. 2, so attackers cannot reconstruct
original data even if he breaks all the cloud severs belonged
to one country.

4.3 Structural Properties of PPC(k, k + 1, t)

As described before, PPC is a kind of XOR-based (binary)
codes, so its encoding and decoding can be achieved by mul-
tiplying the generator matrix with the vector of original data
chunks. Hence, for a PPC(k, k + 1, t), we need a (k + 1) × k
generator matrix G. To tolerate any single node fault, G
must have the following properties [20]:

1. Any k of G’s row vectors are linearly independent.
In other words, every k × k square sub-matrix of G is invert-
ible.

2. Casually choose a row v in G, then ONES(v)≥ 2 .

The second property ensures data privacy. We define
the function ONES (v) as the weight of the vector v, that
is, the number of ‘1’ entries in v. As discussed before, the
privacy degree of PPC is greater than 1, so we only take use
of those generator matrices which are purely composed of
row vectors whose weights are greater than or equal to 2.

4.4 A Family of PPC(k, k + 1, b k
2 c − 1)

We construct an infinite family of PPC(k, k + 1, b k
2 c − 1)

which is named as ShrPPC. We start with constructing the
first (k − 1) row vectors of generator matrices by shifting
two consecutive set bits as shown in Formula 1. Then, we
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construct the k-th row vector. If k is even, it is constructed
as −−−−→01k−1, otherwise, we set rk as −−−−−→001k−2. Finally, we set the
last row vector as the XOR-sum of the first k row vectors.
When k is even, it is −−−−→1k−10. When k is odd, it is −−−−−−→101k−30.
Formula 3 and 4 describe the generator matrices of ShrPPC
with even and odd k respectively.

We can see that both matrices (when k is even or odd)
satisfy the second property of generator matrix and we will
prove they also satisfy property 1. First, we transform the
first k rows into an upper triangular matrix (as shown in
Formula 2) by performing some elementary matrix trans-
formations. If k is even, we add the 2i-th row to rk for all
i ∈ {1, 2, ..., k−2

2 }. And if k is odd, add the (2i + 1)-th row to
rk for all i ∈ {1, 2, ..., k−3

2 }. Since the upper triangular matrix
is full rank, the first k rows are linearly independent. The
(k + 1)-th row is the XOR-sum of first k rows, so any k × k
sub-matrix of ShrPPC generator matrix is invertible.

ShrPPC provides a good privacy degree of t = b k
2 c − 1,

which is very close to the optimal privacy degree of t = b k
2 c,

a XOR-based PPC(k, k + 1, t) can achieve. For the lack of
space, we omit the proof.

4.5 Searching Other Good PPC(k, k + 1, t)

The minimum row-weight of ShrPPC’s generator matrices is
2, that is, each parity chunk is generated by at least two da-
ta chunks. It provides high-level performance, but original
data chunks may be stolen after the chosen-plaintext attack,
if they are encoded with row vectors whose row-weight e-
quals to 2. For example, suppose an attacker has two parity
chunks, one of which is D0 + D1 and the other of which is
D1 + D2. Then he knows the value of D0 + D2 as well, and
it’s not complex to guess unencrypted D0, D1, and D2 from
these information. Assuming another extreme case that D0
is a full-zero chunk because of a special file format, it’s ob-
vious that D1 is exactly the first parity chunk.

In view of those cases, we design a backtracking algo-
rithm to search other good PPC by enumerating valid gener-
ator matrices with a larger minimum row-weight. The pro-
cess of enumerating is time-consuming, so we use the struc-
tural properties of generator matrix to prune the search space
effectively.

In the backtracking algorithm, we construct the row
vectors of the generator matrix G one by one by enumerating
all valid binary vectors with a weight greater than 2. Here
we use “valid” means that the i-th row is linearly indepen-
dent with the first i−1 rows. Once we successfully construct
k valid row vectors for G, , we construct the last row vector
as the XOR-sum of the first k row vectors and calculate the
privacy degree of the new matrix. We update the optimal
code if the new matrix is a better one. After that (or after
an unsuccessful linear independence check), we continue to
try other valid vectors and backtracking will be used if we
exhausted all of the valid vectors for the current row.

Using the backtracking algorithm, we have found opti-
mal generator matrices whose minimum row-weight is larg-
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Fig. 3: An example of generator matrix with a minimum
row-weight of 3

er than (or equals to) 3 when k < 9 (an example is shown
in Fig. 3). In addition, we can resist the chosen-plaintext at-
tack by means of the combination of PPC and compression
and/or encryption.

4.6 Optimal Schedule of PPC Encoding

PPC is a kind of XOR-based code that each coding chunk
P is decided by the corresponding row v in the generator
matrix G. The more ‘1’ v has, the more XOR operations
performed in computing P. Suppose G has two vectors of
vi=
−−−−−→001k−2 and v j=

−−−−−−→0001k−3 and therefore it takes (2k − 7) X-
OR operations to calculate the two parity chunks Pi and P j.
However, if we calculate P j first, and then calculate Pi by X-
ORing P j and D2, only (k − 3) XOR operations are needed.
Since this paper focuses on small-scale multi-cloud systems,
we adopt a breadth-first search algorithm [21] to determine
the optimal schedule for PPC encoding.

5. HCE−PPC Dispersal Algorithm

In the study of multi-cloud, keyless dispersal algorithms are
widely used to ensure data security and fault-tolerant. They
avoid key management issues but not suit to complete par-
allel optimization or deduplication. So in this section, we
propose the HCE−PPC dispersal algorithm which is easy to
be parallelized and is deduplication-friendly as well. We al-
so analyze the security of HCE−PPC and its application in
multi-cloud environment.

5.1 The Algorithm of HCE−PPC

In HCE−PPC, we perform PPC after a Hash Cyclic Encryp-
tion (HCE). We first divide the original data into several
chunks and encrypt these chunks with their own hash values,
therefore bringing high concurrency. Due to the “chunk-
level hash key”, HCE can be also convenient for deduplica-
tion in cloud environment, which can remit the vital storage
space. For separating cipher and secret keys, hash values
(secret keys) are stored circularly, and that method of key-
storage can help HCE−PPC to achieve nearly the same se-
curity as AONT−RS.

As presented, PPC is a family of single-fault-tolerance
codes, so if we divide the original data into n chunks, (n+1)
chunks are generated after HCE−PPC. Hereinafter, we take
S hrPPC(6, 7, 2)(shown in Fig.2) for example. Fig.4 shows
the idea of HCE−PPC. Here we use Di to denote the (i + 1)-
th original data chunk, Ci means the (i + 1)-th cipher chunk



SHEN et al.: CLOUDS: A MULTI-CLOUD STORAGE SYSTEM WITH MULTI-LEVEL SECURITY
5

D0

D1

D2

D3

D4

D5

C0
C1
C2
C3
C4
C5

H3

H4

H5

H0

H1

H2

P0
P1
P2
P3
P4
P5
P6

Fig. 4: HCE−PPC

and Pi signifies the (i + 1)-th coding chunk after PPC. In
addition, Keyi presents the key used in encrypting Di and
Hi is the hash value of Di. The steps of HCE−PPC are as
follow:
Step1: Calculate the hash value Hi of Di by

Hi = H(Di), f or i = 0, 1, · · · , 5. (5)

Here, H is a common hash function (e.g. MD5, SHA-256).

Step2: Encrypt Di into Ci by

Ci = E(Hi,Di), f or i = 0, 1, · · · , 5. (6)

E is an encryption function (e.g. AES-256). In this step, we
encrypt each original data chunk using its own hash value.
We know that only the same data chunk will obtain the same
hash value via the same hash function. Due to the unique-
ness of different hash value, the same original chunk leads
to the same cipher chunk in HCE, which is benefit for dedu-
plication. Besides, HCE no longer depends on the whole
cipher’s hash value, which is better for parallelization.

Step3: Append Hi at the end of C(i+3)mod6.
This circular key placement enhances the security of
HCE−PPC, we will detailedly analyze it in the following
part. In this step, we gain the cipher mode as {Ci,H(i−3)mod6}.

Step4: Perform PPC on those {Ci,H(i−3)mod6}.

5.2 The Security of HCE−PPC

We mainly owe the security of HCE−PPC to the confiden-
tiality of encryption (e.g.AES-256) and hash functions, key
storage and the characteristics of PPC arithmetic. As de-
scribed, PPC is a family of non-systematic codes, there’re
no original data retaining in coding data. So in HCE−PPC,
PPC itself can play a protective role for data to some extent.
For PPC(k, k + 1, t), any m (m ≤ k − 1) chunks cannot re-
trieve the whole uncoded data, any p (p ≤ t) chunks cannot
break out any original data.

It’s no doubt that decrypting a message requires both
key and encrypted data, that is, to decrypt arbitrary Di, we
need obtain both Ci and Hi which are stored in the (i+1)− th
and the ((i + 4)mod6) − th uncoded chunks. From the gen-
erator matrix of PPC (as Fig.2), we can discover that decod-
ing the first orignal chunk needs P1, P3 and P6, the second
chunk needs P2, P4 and P5, the third needs P0, P3 and P6,
the fourth needs P1, P4 and P5, the fifth needs P0, P2 and P6

and P1, P3, P5 for the last chunk. It’s obvious that retriev-
ing both the (i + 1) − th and the ((i + 4)mod6) − th chunks
needs 5 different coding chunks, therefore realizing the ap-
proximate security compared by AONT−RS. As presented,
PPC code has the property of 2-safe partition, we can divide
the encoded chunk in two safe groups: {P0, P2, P4, P6} ,
{P1, P3, P5}, that’s to say, decoding Ci and Hi needs chunks
from both two safe groups, achieving the cross protection of
secret key which also solves the government intervention.

Besides, as intrdoduced, PPC may come under the
chosen-plaintext attack, HCE−PPC is a better precept to
avoid it. We perform PPC after HCE, so HCE−PPC avoid-
s the possible chosen-plaintext attack because we perform
PPC on cipher instead of plaintext.

5.3 HCE−PPC in Multi-cloud Environment

From the above analysis, it’s not difficult to conclude that
HCE−PPC realizes its security by the separation of data
storage. That is, when different data chunks are stored
in isolated physical region, HCE−PPC can really play the
role. Besides, PPC is binary codes and support single-fault-
tolerance, therefore, HCE−PPC indeed fits the reliability
and availability requirements of multi-cloud environment.
With HCE−PPC, coding chunks are randomly spread to d-
ifferent cloud sites. As described, 5 coding chunks are re-
quired for an original plaintext chunk, in other words, at-
tackers needs to break 5 cloud servers in s short time (it’s
nearly impossible). On account of the high-level security of
HCE−PPC, we employ it as one of the security schemes in
CloudS to provide users with multi-level security.

6. Multi-Level Security

For better user experiences, CloudS provides some security
levels with different characteristics. From the system per-
spective, each level logically corresponds to a specific com-
bination scheme of compression, encryption and coding. In
CloudS, we implement not only combinations of some exist-
ing technologies such as RS, RAID-5, AES [22] and AONT,
but some new technologies such as PPC and HCE−PPC. In
this section, we list three new combination schemes to in-
troduce different security levels in the system view.

6.1 HCE−PPC

HCE−PPC is regarded as one of the security levels. Due to
the detailed presentation in the above section, we only focus
on the applicable scenario of HCE−PPC in this part. Com-
pared with the following schemes containing compression,
HCE−PPC provides stable performance without the influ-
ence of the compression ratio but more data will be trans-
ferred on Internet, thereby satisfying the small-size files
with higher compression ratio and high security require-
ments.
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6.2 Compression−PPC and Compression−HCE−PPC

Considering the time-consuming network transmission pro-
cess, GZip [23] compression is joint in these two schemes.
Compared with AONT−RS, these two schemes have an
overwhelming advantage in network transmission. As for
security, non-systematic PPC(k, k + 1, t) itself has an effect
of data protection, t (greater than 1) coding chunks (mean-
s at least two cloud servers) are needed for retrieving only
one original chunk, which is very difficult. Meanwhile, the
chosen-plaintext attack will be remitted since original data
patterns will be destroyed after compression. Nonetheless,
decompression doesn’t need any key, so Compression−PPC
has relatively weak security but high speed. We suggest
users to adopt Compression−PPC for less-important data.
Compression−HCE−PPC is the synthesis of HCE−PPC and
Compression−PPC which meets the demands for large con-
fidential data.

7. Evaluation

In this paper, we designed a family of non-systematic era-
sure codes named PPC and proposed a novel dispersal al-
gorithm called HCE−PPC. Meanwhile, on the basis of the
above technologies, we implemented a multi-level multi-
cloud system, CloudS, to ensure data security in cloud s-
torage environment. In this section, we will test their per-
formance. Our prototype is implemented in C++, the ex-
periments are conducted on Ubuntu 13.04 with Intel i3-
350M@2.26GHz.

7.1 PPC Performance

There’re two important indicators to measure PPC, the en-
coding and decoding speed. To measure those metrics, we
implement encoders and decoders for PPC whose generator
matrix is shown in Fig. 3. As the control group we imple-
ment RS (we only consider about the capability of recon-
struction in multi-cloud environments). For better perfor-
mance, we also realize SIMD (SSE) optimization on PPC
and optimized PPC (mentioned in §4.6). Fig. 5 and 6 present
their encoding and decoding speeds. For PPC, all the oper-
ations are over GF(2), it’s obvious that XOR operation has
a higher-speed than operations over GF(28) used by RS. In
the same time, it’s worth attention that SSE optimization has
indeed a great performance improvement (around 6X∼7X).
In the following part, all experiments are conducted using
PPC−SSE. Besides, we compare encoding time between the
original PPC scheme and the optimized PPC schedule. The
former needs 15 XOR operations to encode a stripe while
the latter needs only 11 XOR operations. It’s clear that the
optimization becomes more obvious when encoding larger
data.

PPC enables cloud storage customers to explore trade-
offs between a little extra storage cost, data confidentiali-
ty and integrity. Meanwhile, SSE optimization leads to a
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prominent performance improvement. Therefore, we be-
lieve that PPC is practical choice in the multiple clouds en-
vironment.

7.2 Performance of Different Security Schemes

In this part, we report scheme performance without net-
work transmission process. We use C−PPC to rep-
resent Compression−PPC and C−E−PPC to symbolize
the Compression−HCE−PPC. Fig.7 presents the encoding
speed, two schemes without compression do better be-
cause the compression speed is much lower than encryp-
tion. HCE−PPC has the highest performance due to PPC’s
better capability. Fig.8 distinguishes the decoding speed of
different schemes. Unlike slow compression, decompres-
sion is much faster, therefore, schemes with compression
perform better. We can clearly figure that the performance
gap of schemes is widening when the data amount increases.
Above all, whether for encoding or decoding performance,
HCE−PPC indeed excels AONT−RS.

7.3 System Performance

In CloudS, there’re three steps in uploading and download-
ing process: the transmission between client and CloudS a-
gent, operations on CloudS and the transmission between
CloudS and cloud servers. The performance of the first
step is up to network condition which is out of our research
range, so we only evaluate the last two steps. It’s notable
that some uncontrolled exterior factors such as network con-
dition and the compression ratio of files will also influence
our results. We create accounts on Vdisk to simulate mul-
tiple clouds environment and adopt randomly generated test
files. We run Apache on PC for test which means a real web
server will do better. Table1 and 2 respectively illustrate the
uploading and downloading performance. We can see that
the schemes containing compression do much better due to
less data being delivered. C−PPC does the best on account
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Table 1: System Uploading Performance(s)
File Size(MB) 1 8 16 64 128

C−PPC 0.87 3.90 7.29 21.01 46.28
HCE−PPC 1.16 5.59 13.63 51.02 98.95
C−E−PPC 1.07 4.86 8.12 23.41 50.03

AONT−RS 1.46 8.06 17.37 56.55 108.98

Table 2: System Downloading Performance(s)
File Size(MB) 1 8 16 64 128

C−PPC 0.98 4.25 9.40 27.38 52.37
HCE−PPC 1.66 7.44 15.39 51.09 103.94
C−E−PPC 1.21 5.42 10.35 29.98 56.63

AONT−RS 1.81 8.78 18.94 57.13 114.02

of less data to be transferred and less mechanism being used.
HCE−PPC indeed has better performance than AONT−RS.
Certainly, all those schemes are in the range users can ac-
cept.

8. Conclusion and Future Work

With the development of cloud storage, the security issues
become more and more serious, data integrity and availabil-
ity is being threatened. We design a new family of erasure
codes called PPC to guarantee data security. PPC is XOR-
based codes that results in a low storage computational cost,
especially after parallel optimization. Simultaneously, as a
single-fault-tolerance code, PPC(k, k + 1, t) only need (k+1)

k
times extra storage overhead to achieve the trade-offs be-
tween storage and fault tolerance. It is important to note that
PPC, as a kind of non-systematic code, has a better function
of data confusion. In the field of dispersal algorithm, we
propose a novel deduplication-friendly HCE−PPC dispersal
algorithm which can achieve complete parallelization.

With PPC and HCE−PPC algorithm, we put forward
a multi-cloud system called CloudS. Though many multi-
cloud systems have appeared in recent years such as RACS
and Depsky, they cannot fully adapt to users’ different re-
quirements for different files in cloud environment. The
single-level security scheme will give rise to a worse user
experience and system performance. Redundant and com-
plex security mechanisms will become the bottleneck of the
system, particularly for the devices with a weak computing
ability and limited computing resources. In CloudS, we pro-
vide several different combination schemes of compression,
encryption and coding to achieve multi-level security for
better performance and user experiences. At the same time,
we implement CloudS as a web application which doesn’t
require users to do more operation locally.

In our future work, we would like to extend our PPC
codes to resist double fault. In addition, we can still opti-
mize CloudS in terms of performance.
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