
Leveraging Page-Level Compression in MySQL
—a Practice at Baidu

Jingwei Ma†§, Boxue Yin§, Zhi Kong§, Yuxiang Ma†§, Chang Chen†§,
Long Wang§*, Gang Wang†�, Xiaoguang Liu†�

§Baidu Inc., Beijing, China
†College of Computer and Control Engineering, Nankai University, Tianjin, China

Abstract—Facing large scale of data sets, disk I/O seems still
one of the bottlenecks in DBMS. In the mean time, the CPU
resource is not fully utilized. So compression is introduced to take
use of the computing resource and largely reduces the storage
overhead. Also, the commonly used compression algorithm can
improve the performance when the database runs on HDD.
With SSD, however, the performance for both read and write
could be negatively affected by the slow process of compression
and decompression. By quantitatively analyzing the impact of
compression, we proposed a balanced compression solution on
SSD, in which the read performance is accelerated by using
a compression algorithm (lz4hc) with an extreme high decom-
pression speed and an asynchronous compression mechanism is
introduced to reduce the write latency by moving compression
to the background. We test the performance on the real data
set collected from the online database systems in Baidu. The
results show the read performance on SSD is improved by 25%
compared to the uncompressed database and 36% compared
with commonly used zlib compression. Meanwhile, the write
performance is up to 20% and 33% better than the synchronous
compression on lz4hc and zlib.

I. INTRODUCTION

Relational databases are widely used in internet applications

and play a key role in the infrastructure for transaction com-

puting and data storing. With the increasingly rapid growth of

data and active transactions, disk I/O becomes the bottleneck

in current large-scale database systems while the utilization of

CPU is usually very low. This is a waste of ever-increasing

computing power of modern CPUs. Compression can make

use of those idle CPU cycles and bring benefits to DBMS in

several aspects so that it is widely used in modern database

systems [1], [2], [3], [4], [5], [6], [7]. It could considerably

reduce the cost of storage, especially for systems that use

SSD as the secondary storage medium. Besides, as the data is

compressed, the main memory can hold a larger proportion of

the entire data. This will result in a higher cache hit rate and

improve the performance of databases running on slow storage

medium. The performance improvement is mainly reflected on

read latency.

Various compression techniques have been applied to differ-

ent domains of databases. Dictionary-based compression [8] is

perhaps the most prevalent compression technique in databases

nowadays and can be used for any data type. Lots of com-

mercial systems apply this technique at the page level [9]

and a distinct dictionary is maintained for every page, which

ensures that decompression does not need additional I/Os.

Also, many studies have been concentrated on compressing

column-oriented databases. Storing data in a column-major

fashion presents a number of opportunities for improving

performance from compression perspective compared to row-

oriented architectures. In a column-oriented database, encod-

ing multiple values together is easy because they are of the

same attribute and are often quite similar to each other. As a

consequence, compression ratio is generally higher in column-

stores.

Besides the compression ratio, performance is also a very

important metric for DBMS. Page-level compression is intro-

duced to MySQL to improve the performance on HDD and

reduce the consumption of costly SSD [10]. Since a compres-

sion failure can result in split of the page, which requires

exclusive lock and will seriously impact the performance.

Facebook introduces the Adaptive Padding technique to reduce
the compression failure rate to only 5% and remarkably

improve the write performance.

However, it is still a challenge to design a balanced solution

that achieves both high read performance and high write

throughput. Also, the compression algorithm zlib used in

MySQL has never been proved to be the best one. Typically,

compression algorithms are evaluated in terms of compression

ratio, compression speed and decompression speed. Actually,

there is no compression algorithm superior to others in all of

these metrics. Algorithms with higher compression ratio (such

as zlib [11] and lib7zip [12]) often have slow compression

and decompression speed which is detrimental to the write

and read performance. Meanwhile, algorithms with a higher

compression speed (such as lzo [13] and snappy [14]) usually

have a worse compression ratio which reduces the cache hit

rate. Furthermore, the performance of compressed databases is

not simply determined by these isolated compression metrics.

The database performance itself is not even one-dimensional.

These compression performance indicators and other factors

together determine the overall database performance.

This study does not focus on compression performance

indicators in isolation. Instead, we try to build an analytical

model to reveal how these indicators and other factors together

impact the performance of compressed database. Inspired by

the analysis, we replace zlib algorithm commonly used in

MySQL by lz4hc [15], whose decompression speed is 9 times
faster than zlib on the test data set. So we can obtain a better

read performance than non-compression even with fast storage

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.177

1086

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.177

1086

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.177

1086

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.177

1086

2016 IEEE TrustCom/BigDataSE/ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom/BigDataSE/ISPA.2016.177

1085

2016 IEEE TrustCom-BigDataSE-ISPA

2324-9013/16 $31.00 © 2016 IEEE

DOI 10.1109/TrustCom.2016.177

1085

devices like SSDs. For write, by adopting an asynchronous

compression mechanism, we effectively alleviate the impact

of multiple compression on write performance.

We evaluate our compression scheme on real world database

workload from Baidu, the largest Chinese search engine. The

read performance on SSD can be improved by up to 36%
compared with zlib. The write performance is improved by

20% when there is one insert thread.

The remainder of the paper is organized as follows. We

describe the related studies in this area in Section II. Sec-

tion III gives a description of compression in MySQL. The

quantitative analytical model is presented in Section IV. We

detail the optimization methods in Section V and evaluate them

on real world workload in Section VI. Section VII summarizes

the paper at last.

II. RELATED WORK

The idea of compression in database [16], [17] is as old

as the concept of database. Many of the early works con-

centrated on reducing the size of stored data. Most of the

major traditional database vendors have offered compression

technique in their product. Westmann et al. [2] have shown
how compression can be integrated into a RDBMS. Poess and

Potapov [1] presented Oracle’s compression schema, which

can enable a data warehouse to store several times more raw

data without increasing the total disk storage or impacting

query performance. Bhattacharjee et, al. [6] presented the

design of index compression in DB2 LUW. The technique is

able to compress index data efficiently with no performance

penalty for query processing even with performance promotion

for certain operations. These researches concentrate on the

implementation of compression in database to reduce the

storage space, while reasonable use of compression could

bring performance improvement.

The efficiency of compression and decompression has also

been considered in recent years. Super-scalar RAM-CPU

cache compression [4] takes advantage of the characteristics of

hardware to reduce the I/O bandwidth required in compressed

database and information retrieval systems. Decompression is

applied between RAM and CPU cache rather than between

RAM and I/O, which allows database to store more com-

pressed data in the main memory and gains high decompres-

sion speeds. Page-level compression is introduced to MySQL

to improve the query performance and reduce the footprint of

the storage resource. Facebook proposed the Adaptive Padding

technique to reduce the compression failure rate [10]. With

the failure rate reduced to only 5%, the write performance is
dramatically improved. We find compression itself also affect

the write performance seriously, so we design an asynchronous

compression mechanism to move compression to the back-

ground.

Stonebraker et al. [3] designed C-Store which is a read-

optimized compressed relational DBMS. Data is organized by

column after being encoded. It can simultaneously achieve

very high performance on warehouse-style queries and rea-

sonable speed on OLTP-style transactions. Abadi et al. [5] ex-

tended C-Store with a compression sub-system. They showed

that a significant performance improvement can be gained

by implementing light-weight compression, and focusing on

column-oriented compression allows the DBAs to operate

directly on the compressed data. However, the performance

of column-oriented compression relies heavily on the design

of database. Databases, especially those created for analytic

purposes, often show an extremely large degree of correlation

among columns. Pararies et al. [18] developed an algorithm for

detecting functional dependencies based on entropy measures

which makes it possible to compress multiple logical columns

together. Their experiments proved their algorithm performs

well in scale with the number of columns and produces reliable

dependence structure information. Muller et al. [19] proposed
a compression manager automatically selecting the most ap-

propriate dictionary format for every column in database. The

adaptive compression can improve the overall performance by

10% using the same space or reduce the space consumption to

60% while maintaining the performance of the single format.

Since MySQL InnoDB is row-based storage engine, we try

to improve the performance of row-based page compression,

which is more widely applicable.

Sushiula et al. [20] concluded various compression tech-

niques for data stored in both row-oriented and column-

oriented databases. Different techniques are applicable for dif-

ferent databases, while quantitative analysis is more difficult.

Idreos et al. [9] introduced a method to estimate the size of an
index if it is to be compressed. They analyzed the estimation

accuracy for null suppression and dictionary compression. The

estimator SampleCF draws an uniform random sample and

returns the compression fraction on the sample. To our best

knowledge, it is the first work to analyze the effectiveness of

compression quantificationally.

III. COMPRESSION IN MYSQL INNODB

Before presenting our analytical model and optimizing

strategies, we introduce compression in MySQL InnoDB [10].

It is a row-oriented storage engine, in which the tables are

structured as a clustered B+ tree. The leaf page contains all

columns of the table including the primary key and the internal

node contains the index information only. Data is stored in the

pages which are organized with the fixed size of 16KB.
With transparent compression, the page can be compressed

into different fixed size page (1KB, 2KB, 4KB or 8KB) ac-
cording to the configuration. As Figure 1 shows, the compres-

sion logic is embedded into the cache (buffer pool) module.

When a query needs to acquire a data page, the system fetches

the compressed page from disk to the buffer pool and decodes

it before delivering it to user for processing. Since MySQL

does not drop the compressed page after decompression, once

accessed, both the compressed page and the corresponding

uncompressed page reside in the buffer pool. So every un-

compressed page has a corresponding compressed page in the

buffer pool but a compressed page does not have to have a

corresponding uncompressed page. The uncompressed pages

take 10% of the total buffer pool size by default.

108710871087108710861086

������ ������
��� ���

�����	
���
�
����������
�

�����
��

�

����
������

�����

��

����
������
�������

��

����
������

�
�����

�����

 �
���

���!�!"
�

###

 �
���

�����
�

$%
���!���

$�	!�

###

Fig. 1. Overview of Compression in MySQL

Figure 2 shows the compressed and uncompressed page

structures. The compressed user records take a part of the

compressed page. The rest is used to store the uncompressed

information (such as page header, index and dense directory)

and modification log (mlog) which is used to temporally store
the modifications.

Page Header

User Records

Free Space

Page Directory

Uncompressed Page
Header

Compressed Index
Information

Compressed User
Records

Modified Log

Uncompressed Page Compressed Page

Free Space

Dense Page Directory

Fig. 2. Uncompressed page vs. Compressed page

A modification to the data table space, in fact operated

on certain uncompressed page, needs to be reflected on the

corresponding compressed page as well. When a new record

comes, InnoDB attempts to insert the record into the uncom-

pressed page at first. Once this operation has been successfully

established, the record is inserted into the mlog area of the

compressed page.

When the space for the mlog runs out, the system will do

the compression. It takes the uncompressed page as the source

instead of the mlog. As the records are continuously inserted

into the compressed page, compression interval gets shorter,

and eventually compression could fail due to the lack of space.

When a failure occurs, the page will be split into two. A page

split happens when lacking free space in the uncompressed

page as well, which also happens in the configurations without

compression. Split requires exclusive lock on the B+ tree so

that it may block other processes.

IV. ANALYSIS

The performance of a database system is usually measured

in terms of qps (queries per second) and ips (inserts per

second) which closely relate to read and write latency in the

storage engine. We quantitatively analyze relationship between

system parameters and read and write performance.

A. Notations

We first define the notations used in our analytical model:

• PSu: size of uncompressed page.

• PSc: size of compressed page.

• T r
page: page access time for read operation.

• BS: buffer pool size.
• D: size of data to be accessed.
• Hu: cache hit rate of uncompressed pages.

• Hc: cache hit rate of compressed pages.

• R: percentage of compressed pages in buffer pool.
• T r

disk: disk access time for one read from disk.

• Td: decompression time for one page.

• Fn: the size of free space after the n-th compression.
• r: compression ratio of the data.
• rec: the average record size.
• an: the data size needing to be compressed in the nth

compression.

B. Read Latency

Without compression, a page is directly accessed in the

buffer pool or read from the disk. We ignore memory access

time because the main memory access is several orders of

magnitude faster than the disk access. Thus, the page access

time for an uncompressed page can be expressed as the

following equation.

T r
page = T r

disk × (1−Hu) (1)

With compression on, the page access time can be regarded as

the decompression time for the page if the compressed version

of a page is hit in the buffer pool. If neither the uncompressed

version nor the compressed version is found in the buffer pool,

the compressed page must be read from the disk first then be

decompressed. So the average page access time becomes:

T r
page =(T r

disk + Td)× (1−Hu −Hc) + Td ×Hc

=T r
disk × (1−Hu −Hc) + Td × (1−Hu)

(2)

C. Cache Hit Rate for Leaf Nodes

The cache hit rate ascends in scale with the performance

improvement. Though the data is constructed based on B+

tree, we ignore the effect of internal nodes. This is because the

internal nodes usually occupy small storage space and reside in

buffer pool as they are frequently accessed. So internal nodes

have little impact on the read performance.

108810881088108810871087

The cache hit rate is determined by multiple factors includ-

ing the cache size, the caching algorithm used and data access

pattern. The latter two are various and their impact on cache

hit rate is too complicated to be depicted accurately. However,

the cache hit rate is positively correlated with the buffer pool

size (in terms of the ratio of it to the total volume of accessed

data). Thus, without compression we discuss the cache hit rate

of leaf nodes by the following formula.

Hu ∝ BS

D
(3)

With compression on, the size of memory taken by the

uncompressed pages is BS × (1 − R). Hence the cache hit
rate of leaf nodes in uncompressed area of buffer pool can be

described by:

Hu ∝ BS × (1−R)

D
(4)

Since every uncompressed page also has a corresponding

compressed version in the buffer pool, these compressed pages

take (1 − R) × r of the entire buffer pool. The compressed

pages without uncompressed buddies take R− (1−R)× r of
the entire buffer pool. They contribute “compressed hits” and

their original size is
(R−(1−R)×r)×BS

r . So we have:

Hc ∝ BS × ((1 + r)×R− r)

D × r
(5)

D. Write Latency

Here we regard the compression ratio as a constant for a

certain workload. During the (i+1)-th compression, the space
taken by the i-th compressed data will not change. So the free
space released by the (i + 1)-th compression is produced by
the compression of mlog which is equal to Fi. Then we can

get Fi+1 from Fi as the following formula.

Fi+1 = Fi × (1− r)

Initially, all the space in the compressed page is used as mlog.
So F0 = PSc. Therefore, we can get any Fi.

Fi = (1− r)i × PSc

When the free space produced by compression cannot hold one

compressed record, that is, Fn
r < rec, the page will be split.

Thus, we can determine the number of compression operations

for one page. Though the last compression will fail, it is also

issued. So we take the ceiling.

n = �log1−r

rec× r

PSc
�

During the (i + 1)-th compression, besides the data that

has been compressed in the first n steps, the data stored in

the mlog area also needs to be compressed. Actually, the

free space can be represented by Fi. However, we want to

reveal the relationship of the amount of data needing to be

compressed between two adjacent compression operations. So

besides representing it by using Fi, we represent it using ai,
that is (PSc − r × ai). So we have the following formula

to determine the data to be compressed in the (i + 1)-th
compression.

ai+1 = ai + (PSc − r × ai) = PSc + (1− r)ai

Assuming a notation t where:

ai+1 + t = (1− r)(ai + t)

We can solve t:

t = −PSc

r

So:

an − PSc

r
= (1− r)n(a0 − PSc

r
)

Thus:

an = (1− r)n(a0 − PSc

r
) +

PSc

r

The first compression happens when the compressed page is

filled up for the first time. Thus a0 = PSc, so

an = (1− r)n(PSc − PSc

r
) +

PSc

r

That is

an = (1− r)n
(r − 1)PSc

r
+

PSc

r

The total volume of data compressed in n steps is:

n∑

i=0

ai =
1− (1− r)n

r
× PSc + n× PSc

r
(6)

V. OPTIMIZATION METHODS

Based on the above analyses, we describe the problems and

give our optimization methods in this section.

A. Read

According to Equation 2, there are following several ways

to improve the read performance.

• Reduce disk access time.

• Improve the cache hit rate on the uncompressed pages.

• Reduce the decompression time.

• Pre-decompression.

For the first approach, the disk access time is an attribute that

determined by the disk itself. A direct way is to change the

disk to some kind of much more faster nonvalatile media.

However, this raises the cost for the database. Taking the

second way into consideration, the cache hit rate highly relies

on the data size, the compression ratio and the data access

pattern. Unfortunately, the database cannot determine the data

users store in it and also cannot change the access pattern

in which the user will access the data. We also consider

asynchronous decompression in read, which is to decompress

the page before it is really accessed. However, this method

needs to know which page will be accessed in a short period

of time. Without knowing the queries in advance, that seems

impossible. Therefore, the most pratical way is to improve the

decompression performance so that a compressed page can be

quikly accessed. The compression algorithm used plays the

key role in decompression speed.

108910891089108910881088

B. Faster Decompression

Zlib is used in InnoDB by default. It gives a good com-

pression ratio, which can benefit the cache hit rate. However,

it also has a very low decompression speed. We use lz4hc

compression algorithm to get a good read performance.

Some compression algorithms have a faster speed on both

compression and decompression (lzo etc). However, they
usually sacrifice some space saving to achieve this. On the

contrary, lz4hc could achieve a very fast decompression speed

while maintain a reasonable compression ratio. Though its

compression speed is not fast enough to improve the write

performance, we can put the compression tasks on background

which will be presented in the next subsection.

To reveal how the decompression speed affect the read

latency, we analyze the page access speed with different data-

size/buffer-pool-size rate. If we refer the decompression speed

in Table III and the random read throughput in Table II, get the

cache hit rate by Formula 3 and 4, then we can get the average

page access rate as data-size/buffer-pool-size rate varies from

4 to 32, which is shown in Figure 3.
When the rate is small, both zlib and lz4hc configurations

can achieve much higher page access rate than that of the

uncompressed configuration. However, as the rate grows, the

gap among them gets narrow. Uncompressed configuration

exceeds zlib configuration in an early stage. This is because

the decompression speed of zlib is low compared with the

read performance of SSD. On the contrary, configuration with

lz4hc still keeps a higher performance. Overall, configuration

with lz4hc always achieves the best performance, since its

decompression speed is much faster compared with zlib de-

compression and the read performance of SSD.

Fig. 3. Read Analysis

C. Write

Also, there are three ways to reduce the cost of writes.

• Improve the write performance of disk.

• Reduce the compression time.

• Pre-compression

As it is in read, the write performance of the disk relies on

the attributes of the disk itself. Synchronous compression in

database means some insert statements triggering compression

must wait for the compression to be completed. This can cause

a high latency for such write operations. There are compres-

sion algorithms with fast compression speed. However, the

compression rate is not good.

So we try to bring the compression algorithms into the

equations and find how they impact the write performance.

If we use the lz4hc compression ratio and compression speed

as in Table III, the time taken by compression and disk access

is shown in Figure 4. When the size of record is small,

compression can take a very long time due to many com-

pression operations. As the size grows, the time of compres-

sion decreases since less compression operations are needed.

However, even the record size equals to the compressed page

size, the compression still takes much more time than the disk

write.

Fig. 4. Compression time as the record size varies using lz4hc

D. Proactive Asynchronous Compression

Compression only happens in the pages having recent

inserts/updates. That indicates unlike decompression, the page

needs to be compressed can be predicted. So we add a detec-

tion operation in the end of inserts/updates. Figure 5 shows the

basic operations of the process. The system first builds several

(16 by default) compression threads waiting in the thread-pool.
When a page is almost full, the system wakes up a thread

in the pool and arranges the page to that thread so that the

page can be compressed in background. The waked up thread

then tries to compress the page. In this way, the system can

move the time-consuming compression to the background and

reduce its overhead. To trigger the asynchronous compression,

the system records the largest record size. After a successful

insert, if the left space is less than the largest record size, the

system will start an asynchronous compression.

Besides the asynchronous compression, we also propose

advance split. When an insert operation needs to compress the

page, the system will check if the page is just compressed. If

so, the system just splits the page without trying to compress

the page. Although this takes more space, it avoids a portion

of compression failures.

109010901090109010891089

Lock the page

Insert the
record

Unlock the page

Insert

Need
compress?

Insert done

No

Lock the page

Compress the
page

Unlock the page

Sleep

Wake up

Wake up an asynchronous
compression thread

Yes

Insert process Asynchronous compression
thread

Enough space?

Yes

Compress the
page

No
New

compressed?

No

Yes

Split

Fig. 5. Asynchronous Compression

TABLE I
PLATFORM

CPU 2 × INTEL Xeon E5-2620 6C 2.0GHZ
Memory 6 × 8G
HDD 2 × IBM SATA 500G 7200rpm
SSD 3 × IBM 600G MLC
OS Centos4.3 2.6.32 1-15-0-0

VI. EVALUATION

The experiments are run on MySQL 5.6 with modified

InnoDB. We focus on evaluating the selection and insertion

performance, which represent the read and write efficiency,

respectively. During the tests, we also collect the I/O utilization

information in the above described operations.

“Zlib” indicates the system uses zlib as the compression

algorithm and “lz4hc” represents the lz4hc compression algo-

rithm is used in the system. During the insert tests, “async”

means the asynchronous compression method and advance

split are used and “sync” shows the system just uses the

original synchronous compression process.

A. Experiment Setup

Table I lists the platform used in the tests. The operation

system is installed on the HDD and the data is stored on the

SSD. The data is collected from the on-line service in Baidu.

It contains integers and texts, where the texts take most of the

space (over 99%).
As the performance is seriously affected by the disk I/O, we

first explore the data access features of the SSD with sysbench

[21]. As the size of uncompressed page is 16KB and the target

compressed page is 8KB, we set the block sizes to 16KB and

8KB. Table II illustrates the results. The SSD shows good

performance on random read and sequential operations.

Table III shows the compression and decompression perfor-

mance when the compression algorithms are directly used on

TABLE II
DATA ACCESS PATTERNS OF SSD

Block Size 8K 16K
Random Read (MB/s) 25.73 31.30
Random Write (MB/s) 40.08 55.82
Sequential Read (MB/s) 58.22 53.60
Sequential Write (MB/s) 51.52 78.90

TABLE III
COMPRESSION & DECOMPRESSION ON RAW DATA

com. (MB/s) decom. (MB/s) com. rate
zlib 14.85 67.04 0.24
lz4hc 17.57 586.45 0.30

the raw data. Although zlib can achieve a good compression

rate, its speeds are slow both on compression and decom-

pression. On the contrary, lz4hc can achieve a decompression

speed of 586.45MB/s, which is 8.75 times faster than zlib.

They have similar compression rate and compression speed.

We set the target page size as 8KB. Table IV shows the

compression ratio using different configurations after inserting

all the records. Compression leads to 50% space saving using

zlib and lz4hc uses 55% of the original space to store the total

data.

B. Read Performance

We first explore the read performance when replacing the

original zlib compression algorithm with lz4hc. During the

test, we set the buffer pool size to 36GB. The system selects

20% of all the data using the primary key.

Table V gives the average decompression time for a page

using different zlib and lz4hc. As lz4hc has a faster decom-

pression speed, the page decompression speed is 4.17 times

faster than that of zlib.

We collect the cache hit ratio, which is shown in table VI.

As zlib has a better compression ratio, it has a better cache

hit ratio on compressed pages. The uncompressed pages take

the same percentage of the entire pool and they have the same

TABLE IV
COMPRESSION RATIO IN DATABASE

size(GB) compression ratio
uncompressed 404 100%

zlib 202 50%
lz4hc 224 55%

TABLE V
AVERAGE PAGE DECOMPRESSION TIME

Algorithm Time (us)
zlib 208.06
lz4hc 49.88

109110911091109110901090

TABLE VI
CACHE HIT RATE

Algorithm cache hit uncom cache hit com
uncom 81.50% −
lz4hc 72.54% 11.46%
zlib 72.46% 12.70%

TABLE VII
EXPECTED PAGE ACCESS TIME

Algorithm page access time (us)
uncom 94.85
lz4hc 62.28
zlib 102.36

uncompressed page size. So they have the same cache hit rate

on the uncompressed pages.

The page access time is established at the above cache hit

rate according to Equation 1 and 2 in Table VII. Using zlib

can results a longer page access time than the uncompressed

one due to the slow decompression process. On the contrary,

lz4hc can reduce the page access time as the decompression

is extreme fast.

Figure 6 shows the qps (queries per second) when the

number of connections varies from 1 to 16. In all the cases,
lz4hc achieves the best performance as expected. And zlib

gets the worst qps since it has a slow decompression process.

As the number of connections grows, the qps increases almost

linearly. The performance of lz4hc configuration is 20% better

than that of the uncompressed configuration and 36% better

than that of the zlib configuration with 1 connection. This

improvement is not so large as in Table VII because other

parts of the system also take a large portion of the entire time.

We also explore the disk access during the test. The results

are illustrated in Figure 7. Since the page size is twice larger in

the uncompressed configuration, it has the highest disk I/O. As

lz4hc is faster than zlib, it deals with more pages from the disk.

So the read I/O is higher than that of the zlib configuration.

Fig. 6. QPS

Fig. 7. Disk read throughput

C. Write Performance

During the write test, we use the records from the log files to

test the ips (inserts per second) of the data base. The average

record size is 612. The buffer pool size is set to 8GB. We
insert 4 × 107 records for each test. Like read, we also test

the performance with different threads. Since usually there are

multiple tables in a database, each thread inserts records to 6
tables.

Figure 8 shows the ips when asynchronous compression

is used in compression. As expected, moving compression

to the background threads can reduce the waiting time for

the insert process. Also, using compression can get a higher

ips because compressed data pages take less disk I/O. The

asynchronous compression performance is 20% and 33%
better than the synchronous compression using lz4hc and zlib

on one connection.

Also, lz4hc can get a higher ips than that of zlib. This is

because it has a faster compression speed.

As the number of the threads increases, the ips grows until

it reaches 8. The reason is that more threads issue more insert
requests. However, after 8, more conflicts appear among those
threads. The database system needs exclusive-locks to solve

the conflicts, which affect the performance.

Figure 9 gives the information of the disk write through-

put. Though uncompressed configuration consumes more disk

bandwidth, it has less data pages written because its page size

is twice the size of the compressed one. With asynchronous

compression, more pages are written onto the disk. This

is because the asynchronous compression compresses pages

faster than the original synchronous compression.

Table VIII gives the results of the compression opera-

tions fraction for asynchronous compression and synchronous

compression in the optimized system when the inserts are

performed in one thread. Over 60% of the compression

operations are done by the asynchronous compression threads.

So the asynchronous compression can improve the write per-

formance. Also, the advance split reduce the total compression

operations by 2.4% for lz4hc and 3.8% for zlib (not shown in

the table).

109210921092109210911091

Fig. 8. IPS

Fig. 9. Disk write throughput

VII. CONCLUSIONS

In this paper, we deeply analyze the page-level compression

in DBMS. Based on these analyses, we use compression

algorithm with fast decompression speed to accelerate the read

performance of MySQL and employ asynchronous compres-

sion to improve the write performance. We evaluate our com-

pression scheme on real world database workload from Baidu,

the largest Chinese search engine. The read performance on

SSD can be improved by up to 36% compared to zlib-based

compression scheme. Meanwhile, the write performance can

be improved by 33%.

ACKNOWLEDGMENTS

This work is partially supported by NSF of China (grant

numbers: 61373018, 11301288, 11550110491), Program for

New Century Excellent Talents in University (grant num-

ber: NCET130301), the Fundamental Research Funds for the

Central Universities (grant number: 65141021) and the Ph.D.

Candidate Research Innovation Fund of Nankai University.

REFERENCES

[1] M. Poess and D. Potapov, “Data compression in oracle,” in Proceedings
of the 29th international conference on Very large data bases-Volume
29. VLDB Endowment, 2003, pp. 937–947.

TABLE VIII
COMPRESSION OPERATION FRACTION (ASYNC. VS. SYNC.).

async. sync.
lz4hc 61.52% 38.48%
zlib 63.55% 36.45%

[2] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte, “The im-
plementation and performance of compressed databases,” ACM Sigmod
Record, vol. 29, no. 3, pp. 55–67, 2000.

[3] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil et al., “C-store:
a column-oriented dbms,” in Proceedings of the 31st international
conference on Very large data bases. VLDB Endowment, 2005, pp.
553–564.

[4] M. Zukowski, S. Heman, N. Nes, and P. Boncz, “Super-scalar ram-cpu
cache compression,” in Data Engineering, 2006. ICDE’06. Proceedings
of the 22nd International Conference on. IEEE, 2006, pp. 59–59.

[5] D. Abadi, S. Madden, and M. Ferreira, “Integrating compression and
execution in column-oriented database systems,” in Proceedings of the
2006 ACM SIGMOD international conference on Management of data.
ACM, 2006, pp. 671–682.

[6] B. Bhattacharjee, L. Lim, T. Malkemus, G. Mihaila, K. Ross, S. Lau,
C. McArthur, Z. Toth, and R. Sherkat, “Efficient index compression
in db2 luw,” Proceedings of the VLDB Endowment, vol. 2, no. 2, pp.
1462–1473, 2009.

[7] L. Ki-Hoon, “Performance improvement of database compression for
oltp workloads,” IEICE TRANSACTIONS on Information and Systems,
vol. 97, no. 4, pp. 976–980, 2014.

[8] D. J. Abadi, “Query execution in column-oriented database systems,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2008.

[9] S. Idreos, R. Kaushik, V. Narasayya, and R. Ramamurthy, “Estimating
the compression fraction of an index using sampling,” in Data Engi-
neering (ICDE), 2010 IEEE 26th International Conference on. IEEE,
2010, pp. 441–444.

[10] N.Ordulu and J.Tolmer, “Innodb compressiom: Present and future,” in
Percona Live MySQL Conference, 2013.

[11] zlib, http://zlib.net/.
[12] lib7zip, https://code.google.com/p/lib7zip/.
[13] lzo, http://www.oberhumer.com/opensource/lzo/.
[14] snappy, https://code.google.com/p/snappy/.
[15] lz4, https://code.google.com/p/lz4/.
[16] G. V. Cormack, “Data compression on a database system,” Communi-

cations of the ACM, vol. 28, no. 12, pp. 1336–1342, 1985.
[17] B. R. Iyer and D. Wilhite, “Data compression support in databases,” in

VLDB, vol. 94, 1994, pp. 695–704.
[18] M. Paradies, C. Lemke, H. Plattner, W. Lehner, K.-U. Sattler, A. Zeier,

and J. Krueger, “How to juggle columns: an entropy-based approach
for table compression,” in Proceedings of the Fourteenth International
Database Engineering & Applications Symposium. ACM, 2010, pp.
205–215.

[19] I. Müller, C. Ratsch, and F. Faerber, “Adaptive string dictionary com-
pression in in-memory column-store database systems.” in EDBT, 2014,
pp. 283–294.

[20] S. Aghav, “Database compression techniques for performance optimiza-
tion,” in Computer Engineering and Technology (ICCET), 2010 2nd
International Conference on, vol. 6. IEEE, 2010, pp. V6–714.

[21] sysbench, https://launchpad.net/sysbench/.

109310931093109310921092

