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Abstract—Traditionally, disk failure prediction accuracy is
used to evaluate disk failure prediction model. However, accuracy
may not reflect their practical usage (protecting against failures,
rather than only predicting failures) in cloud storage systems.

In this paper, we propose two new metrics for disk failure
prediction models: migration rate, which measures how much at-
risk data is protected as a result of correct failure predictions, and
mismigration rate, which measures how much data is migrated
needlessly as a result of false failure predictions. To demonstrate
their effectiveness, we compare disk failure prediction methods:
(a) a classification tree (CT) model vs. a state-of-the-art recurrent
neural network (RNN) model, and (b) a proposed residual life
prediction model based on gradient boosted regression trees
(GBRTs) vs. RNN. While prediction accuracy experiments favor
the RNN model, migration rate experiments can favor the CT
and GBRT models (depending on transfer rates). We conclude
that prediction accuracy can be a misleading metric. Moreover,
the proposed GBRT model offers a practical improvement in
disk failure prediction in real-world data centers.

I. INTRODUCTION

Nowadays, large scale data centers can host hundreds of

thousands of servers, which often deploy hard disks as primary

data storage device. There are many challenges facing data

center management [1]–[4]. While a failure in a single disk

might be rare, a system with thousands of disks will often

experience failures and even simultaneous failures [5]–[7].

Disk failure can not only lead to service unavailability and

hurt the user experience, but also result in permanent data

loss. Therefore, high reliability is one of the biggest concerns

in such systems.

Predicting disk failures before they actually occur al-

lows us to handle them in advance, which can greatly

enhance the storage system reliability. Most modern disks

have Self-Monitoring, Analysis and Reporting Technology

(SMART) [8], which monitors and compares disk attributes

with preset thresholds, and issues warnings when attributes

exceed the thresholds. However, SMART attributes alone can

not reach a desirable prediction performance [9]. In order

to improve prediction accuracy, a number of statistical and

machine learning methods have been proposed to build disk

failure prediction models based on SMART attributes [9]–[21].

Previous work [9]–[19] almost uniformly treats disk failure

prediction simply as a yes/no problem, and are evaluated by

measuring the prediction accuracy in terms of the failure
detection rate (FDR) and false alarm rate (FAR). Later predic-

tion models [20], [21] aim to predict the residual life of a disk,

thereby enabling operators to allocate system resources more

effectively for pre-warning processes while maintaining the

quality of user services. The evaluation metrics used in these

works are based on the classification accuracy; the possible

disk residual life is partitioned into intervals, and the accuracy

is measured in terms of the number of predictions that fall into

the correct level. This is called an accuracy of residual life
level assessment (ACC), and can be made for all failed/good

samples [20] and for all failed/good disks [21].

Above all, the metrics used in previous work focus on the

prediction models themselves, and isolate them from their

application—storage systems, and especially cloud storage

systems, where migration might be a continuous resource

drain. With all else being equal, a higher prediction accuracy

will always be beneficial, but practically, improving prediction

accuracy incurs a trade-off in other ways, such as mean

warning time, i.e., time in advance (TIA). For example, a disk

failure prediction model may be improved to 100% prediction

accuracy at the cost of reducing TIA, such as by reducing to

one hour. In this case, the at-risk data could not be completely

protected, even if they have been detected. As such, prediction

accuracy does not give a complete picture.

In this paper, we introduce two performance metrics for

disk failure prediction model: migration rate (MR), defined

as the fraction of data on disks which go on to fail which

is migrated, and mismigration rate (MMR), defined as the

fraction of data on healthy disks that is migrated needlessly.

In distributed storage systems, even if partial data on a failed

disk is protected successfully, it is still valuable in practice,

so we use the fraction of data rather than the number of disks

that are migrated completely.

We also propose a residual life prediction model based

on Gradient Boosted Regression Trees (GBRTs), which can

result in more at-risk data being protected, less resources

being wasted, and is more applicable to cloud storage system.

On a dataset collected from two real-world data centers, we

show that the new metrics (describing migration accuracy) are

more meaningful than the previous ones (describing prediction

accuracy) and the GBRT model outperforms the state-of-

the-art disk residual life prediction model, Recurrent Neural

Networks (RNNs), in terms of migration accuracy. We also

offer improvements on the GBRT algorithm for this applica-

tion, which are proposed based on the characteristics of disk

residual life prediction.
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The rest of the paper is organized as follows: In Section II,

we survey related work of disk failure prediction and the

evaluation metrics. Section III introduces the new metrics and

models for disk residual life prediction. Section IV gives a

description of the datasets and their curation. Experimental

results are given in Section V, followed by conclusions in

Section VI.

II. RELATED WORK

In order to improve system reliability, researchers have

focused on SMART-based proactive fault tolerance. With

sufficient prediction accuracy, the technique can significantly

reduce the negative impacts on system reliability and avail-

ability in the presence of failures.

To avoid false alarms, manufacturers set the thresholds

conservatively to minimize FAR at the expense of FDR.

The threshold-based algorithm implemented in disks can only

obtain an FDR of around 3−10% with a low FAR on the order

of 0.1% [9]. So, to be useful, prediction accuracy has been

improved in various ways, including Bayesian approaches [9],

[10], using the Wilcoxon rank-sum test [11], [12], hidden

Markov models [13], using the Mahalanobis distance [15],

backpropagation artificial neural networks [14], and a clas-

sification tree method [17]. These works consider disk failure

prediction as a binary classification issue (whether or not a

disk is going to fail). Their goal is to detect as many at-risk

disks as possible, while avoiding false alarms, measured using

FDR, FAR, and TIA.

Realistically, disks do not deteriorate suddenly, but gradual-

ly. This is consistent with the long TIA observed in e.g. [14],

[17]. Therefore, in the present authors’ previous work, we

proposed a disk health degree prediction model based on

Regression Trees [17] where we defined a disk’s health degree

as its failure probability. A disk’s health degree can be utilized

to indicate trends in disk failure, allowing technicians to

respond to warnings raised by the failure prediction model

according to their health degrees. However, the health degree

was defined as a probability in [17], which is not intuitive for

pre-warning handling. Moreover, [17] did not use an explicit

metric to evaluate the health degree models.

Recently, Pang et al. [21] proposed a new definition of

health degree, which is defined as the remaining working

time, residual life, of a disk before actual failure occurs. They

implemented a Combined Bayesian Network (CBN) model,

which combined the learning results from four individual

classifiers using backpropagation artificial neural networks,

evolutionary neural networks, support vector machines, and

classification tree methods. They used classification precision,

defined as accuracy of the health degree prediction for all test

disks, to evaluate models. When adopting a division method,

the CBN model could obtain over 60% prediction accuracy on

failed disks.

Later, Xu et al. [20] considered the health status of disks

had long-range dependency, and introduced a method based on

Recurrent Neural Networks (RNN) to assess the health statuses

of disks based on gradually changing sequential SMART

attributes. They adopted a discrete classification method to

define the levels of health status, which could indicate the

residual life of disks. The evaluation metric used by them

was the sample’s prediction accuracy. Their ACC assessment

took each testing sample as an input instant, and ignored the

correlations among the samples from a single disk. On a large

real-world dataset, their method achieved about 40% ∼ 60%

ACC on failed samples.

Both [21] and [20] treated prediction models as multiple

classifiers, and the metrics used in them isolated the prediction

models from their industrial applications. The ultimate goal

of disk failure prediction is to avoid data loss, which not only

requires predicting which disks are at risk, but also completing

the pre-warning handling processes. To build more practical

disk failure prediction model, the evaluation metric should

consider the completion status for disk migration.

There have been some studies focusing on putting disk

failure prediction into practice. Wu et al. [22] designed a

proactive protection mechanism, IDO, which identifies at-risk

disks and proactively migrates at-risk data of hot zones to a

surrogate RAID set; RAIDSHIELD [18] was designed to use

the joint failure probability to replace at-risk disks before their

actual failures; and Fatman [23] migrated data from at-risk

disks to reduce reconstruction costs when RS-decoding cold

data. However, they simply migrated at-risk data raised by

prediction models, without carefully allocating resources for

migrations to reduce their impact on the quality of service.

Given this, Ji et al. [24] employed the SSM (self-scheduling

migration), the migration algorithm of which managed the

priority of pre-warning handling processes in a reasonable

way, to minimize the their impact on the performance.

In this paper, we propose new evaluation metrics for disk

failure prediction models, and then propose a matching disk

residual life prediction model by employing Gradient Boosted

Regression Trees (GBRT), motivated by [21] and [20].

III. THE PROPOSED METHOD

A. Motivation

In a proactive fault tolerance storage system, a disk failure

prediction model runs in the background and monitors the

disks in real time, periodically outputting their states (such as

once an hour). When an alarm is raised by the model, the data

on an at-risk disk is ordinarily migrated to other healthy disks

immediately.

In typical storage systems (such as small disk arrays), which

generally have small size, disk failures (and their correspond-

ing alarms) are relatively rare. In this setting, we can allocate

enough disks and bandwidth resources for all migration tasks

without significantly reducing system availability. However,

with the advent of cloud storage systems, hosting perhaps

hundreds of thousands of servers, failures and even simul-

taneous failures occur frequently. Moreover, in such cloud

storage systems, network and disk I/O have a great influence

on the quality of service. To maintain high quality, operators

should limit the system resources used for migration, but this

increases the possibility of failing to protect the at-risk data.
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The situation is worse with simultaneous failure predictions,

with system resources competing with multiple migrations.

To evaluate a prediction model in terms of its migration

accuracy, we consider the migration rate and mismigration

rate (as defined in the introduction). These measures have

the following properties: (a) They are meaningful and under-

standable, respectively describing the amount of at-risk data

which is protected, and the amount of data which is protected

needlessly, which affect the quality of service (reliability and

availability). (b) They enable us to compare the quality of

residual life prediction models in terms of migration accuracy.

In general, the higher the MR the better, and the lower

the MMR the better. Higher MR means more at-risk data are

protected successfully, thereby lesser data needs to be regen-

erated using other survived data, when failures occur. Since

reconstruction will affect the performance of service seriously,

the higher MR will improve more reliability and availability

of systems. Lower MMR means less resources are wasted by

incorrect failure predictions. For a given prediction model, we

may have different values of MR and MMR in systems using

different pre-warning handling strategies. In general, higher

pre-warning migration transfer rates may induce higher values

of MR and MMR. If all the migrations could be guaranteed to

complete, MR and MMR are respectively equal to FDR and

FAR.

B. Pre-warning Handling

When a failure is predicted, in order to minimize the impact

on the quality of service for users, we wish to use as few

resources as possible to protect the at-risk data. If the residual

life of the at-risk disk can be predicted, we can adjust the

transfer rate for migration accordingly.

Theoretically, if a disk containing exactly m TB of data

will fail in exactly h hours, then there will be sufficient time

to back up the data at m/h TBs per hour. This minimizes

the bandwidth used for migration, although it requires that

migration is completed just before the failure occurs. However,

in practice, we instead have a failure prediction time of ĥ
hours, so we can back up the data at m/ĥ TBs per hour, and,

at a later point in time, the failure prediction time might have

changed to ĥ′ hours and there will be m′ TB of unmigrated

data, so the transfer rate for migration can be updated to

m′/ĥ′ TBs per hour. To avoid issues where m′ or ĥ′ are

very small, when the prediction is inaccurate, and having

a continuously changing transfer rate as m′ varies, we use

predetermined transfer rates, as listed in Table I, and until

the failure prediction time changes to a different level, the

migration rate remains unchanged.

In Table I, we experiment with 3 different partitions, mo-

tivated by [24]. In each case, level 6 indicates that the disk

works properly and does not need to be handled (with no

migration). Levels 1 to 5 imply that the disk is predicted to

fail, and its contents needs to be migrated, which is performed

at the transfer rate specified in Table I. We choose shorter

interval lengths and higher migration rates for shorter predicted

residual life, as migrating data from these disks is more urgent.

The goal of SMART by disk manufacturers is to provide 24

hours warning-time before disk failure [25], so level 1 transfer

rates are set to complete within 24 hours. We just set the

transfer rates casually and did not compare them with any

other settings. It may be get better results with other carefully

selected settings.

In the systems using binary classifiers to predict disk

failure, all the warnings raised by prediction models could

only be equally handled with (being migrated at an uniform

transfer rate). Since a single detection can not give a confident

prediction of a disk fault due to detection error, it is not

appropriate to rashly predict that a disk is going to fail once

it is classified as failed by the prediction model, without

continuing to monitor it. When a warning raised by the model,

it may seem reasonable to migrate data from it just during a

prediction time interval, such as an hour, until all the data

has been migrated. The migration will be continued, unless

the disk is fluctuated to be predicted as a good one at the

next prediction. The migrations, which are interrupted due to

a contrary prediction, will continue to be processed, if the

disks are predicted as at-risk disks again.

C. Prediction Model

In this paper, we propose a disk residual life prediction mod-

el based on Gradient Boosted Regression Trees (GBRTs) [26],

which is more applicable to cloud storage systems. Each test

has a quantitative target value describing the residual life of

a disk rather than a class label indicating it as healthy or at-

risk. GBRT is a gradient descent boosting technique based

on tree averaging, and is an accurate and effective machine

learning technique that can be used for both regression and

classification problems. To avoid overfitting, the GBRT algo-

rithm trains many tree stumps as weak learners, rather than

full, high variance trees. Even the small trees have high bias.

So a tree depth d (set to a small value) is used to control the

size of trees.

We use regression trees as weak learners. Fig. 1 illustrates a

simplified regression tree for disk residual life prediction. The

SMART attributes are used as input vectors together with the

target values representing residual life of disks. We begin at

the root node (node 1), weighted as the mean (516.3 hours) of

all samples in it on the target variable. This node is split based

on the value of a SMART attribute “Power On Hours”. If the

value is ≤ 95, those samples move to node 2 (weighted 359.1
hours) and the other samples move to node 9 (weighted 910.2
hours). Nodes 2 and 9 split into two child nodes based on the

value of “Reallocated Sectors Count (raw value)” in different

ways. This process continues until the max depth of tree d is

reached (in this case d = 4). Each leaf node is weighted with

the mean of the residual life of its samples. The residual life

of a disk is predicted as the weight of the leaf node.

The important difference between a binary classifier, such as

the Classification Tree model [17], and the GBRT algorithms is

how to set initial target values of training samples. In a binary

classifier algorithm, the target value of every good sample is

set to an uniform value (such as 1) and that of every failed
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TABLE I: The three examples of migration transfer rate settings. The storage capacity of a disk is denoted by m.

Level Partition 1 Partition 2 Partition 3
Residual life (hours) Rate (per hour) Residual life (hours) Rate (per hour) Residual life (hours) Rate (per hour)

1 0−24 m/5 0−48 m/12 0−72 m/24
2 25−72 m/24 49−96 m/48 73−144 m/72
3 73−168 m/72 97−192 m/96 145−240 m/144
4 169−336 m/168 193−336 m/192 241−360 m/240
5 337−500 m/336 337−500 m/336 361−500 m/360
6 > 500 0 > 500 0 > 500 0
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Fig. 1: An example of a regression tree for disk residual life

prediction. Nodes are labeled 1 through 15, and the weights

of leaf nodes give the predicted residual life in hours. SMART

attributes: POH = Power On Hours, RSCr = Reallocated

Sectors Count (raw value), TC = Temperature Celsius, SUT

= Spin Up Time, ECC = Hardware ECC Recovered. The

maximum possible node weight is 1000 hours, set for healthy

disks.

sample is set to an another uniform value (such as −1). In the

GBRT algorithm, the healthy samples are assigned a residual

life of 1000 hours (but might actually remain healthy for much

longer than 1000 hours), i.e. their target values are set to 1000

hours. For each failed sample, we set its target value to the

disk’s residual life (or, how long in advance it is before the

disk fails). A higher value means better health condition. When

the sample is collected at the moment the disk fails, its health

degree is set to 0 hour.

To find the best split, the regression tree algorithm checks

all possible splits (all values of the input SMART attributes)

(a split could be e.g. whether POH ≤ 95). Determining the

best split is achieved using the minimum of squares of nodes

(instead of the usual greatest gain in information), namely

sq := ∑
j
(y j− y)2, (1)

where y j is the remaining life of a disk based on the j-th
sample, and y = ave j(y j). The sum (1) is over all disk samples

that satisfy the splitting conditions of the ancestor nodes (e.g.

at node 6 in the Fig. 1 example, the disks are precisely those

that satisfy POH≤ 95 and RSCr > 37).

For GBRTs, regression trees are introduced at each iteration

(we use c = 500 iterations) to adjust for prediction errors

(residuals) for each sample vs. the target value (the residual

life) from the previous regression trees. The eventual aim of

GBRTs is to fit the target value of each sample to its initial

one (the true residual life). The residuals for each new tree are

used to minimize the value of loss function, and then improve

the quality of fit of each base learner.

The residuals of the i-th tree (used to determine the (i+1)-
th tree) are given by

r(i+1)[ j] := r(i)[ j]−α T (i)[ j] (2)

where T (i)[ j] is the prediction for the j-th sample from the i-th
regression tree, α is a user-defined learning rate, and r(1)[ j] =
y j, and (1) is generalizes to

sq := ∑
j

(
r(i)[ j]− r(i)

)2
. (3)

We build GBRT models using SMART attributes and their

change rates as input vectors together with the target values

representing residual life of disks. Algorithm 1 gives the

details for training the GBRT prediction model. When testing,

a disk’s residual life is predicted as the combined predictions

by all the regression trees, or ∑c
i=1 α T (i)[ j].

As described in Section III-B, technicians only need to know

which residual life interval a disk may fall into, and then

they can appropriately handle with it (migrate data on it at

an specified rate).

Therefore, at each iteration, the samples which have been

predicted correctly (up to the intervals in Table I) by the

previous regression trees need not to be used to train the

following trees (i.e., the target residuals of which can be

adjusted to 0). In this way, the new trees focus on the samples

which have not been predicted into the correct interval by the

existing predictors (a significant advantage of GBRT method).

Specifically, for training, we change (2) such that

r(i+1)[ j] := 0 (4)

whenever the current residual life prediction for a disk

∑i
x=1 α T (x)[ j] falls within the correct interval (the same in-

terval that y j belongs to).

If a disk’s predicted residual life falls within a higher-level

interval, at-risk data will be migrated at a higher rate, so the

system reliability will be improved at cost of availability. We

do not anticipate this being a significant cost, so if y j falls
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Algorithm 1 Training the GBRT model

Input: Training data set (including actual SMART attributes

and residual life y j), learning rate α , number of regression

trees c, tree depth d
Output: GBRTs T (i) used for predicting disk residual life

1: initialize r(1)[ j]← y j for j = 1 to n
2: for regression tree i = 1 to c do � build regression tree

T (i) of depth d
3: weight root node of T (i) with r(i)

4: for k = 1 to d do
5: for each node V at depth k do
6: for each possible split at V do
7: calculate sqL + sqR from (3), where L and

R are its two proposed child nodes

8: end for
9: split V to minimize sqL + sqR

10: weight V ’s child nodes with aves(r(i)[s]), where

the average is over all disks s which satisfy the splitting

conditions of its ancestor nodes

11: end for
12: end for
13: update r(i+1)[ j]← r(i)[ j]−α T (i)[ j] for j = 1 to n
14: end for

within levels 2, 3, 4, or 5 (in Table I), and the current residual

life prediction for a disk ∑i
x=1 α T (x)[ j] is respectively within

levels 1, 2, 3, or 4, we also change (2) such that

r(i+1)[ j] := 0. (5)

IV. DATASET DESCRIPTION AND PREPROCESSING

A. Datasets

Hard disk failures are complex in reality and do not follow

a simple fail-stop model [27]. There are some types of

disk failure, such as permanent whole-disk failures, transient

performance problems and latent sector errors. However, in

our paper, we focus on the permanent whole-disk failures, and

regard the disks which are not connected permanently by the

system as failed.

To test our new metrics and our model, we use a real-

world dataset collected in two real-world data centers. Hourly

samples were taken from working disks using smartmontools.

Each sample contains all the SMART attribute values for a

single disk at an exact time.

The data collected from the first data center, represented by

“W”, used in our previous work [14], contains 23,395 disks

from an enterprise-class model, labeled “good” or “failed”1.

For good disks, the samples in a week-long time period are

recorded. Some samples may be missed because of sampling

or storing errors. For each failed disk, samples in a period of

20 days before its actual failure were recorded. Some failed

disks lost some samples if they did not survived 20 days of

operation since we began to collect data.

1The dataset is available at http://pan.baidu.com/share/link?
shareid=189977&uk=4278294944.

We collect two additional datasets from a second data center,

referred to as “S” and “M”, used in [20] . The disks in the

datasets are from two Seagate disk models (not the same

as “W”). Hourly samples were recorded for each disk: for

good disks, samples were taken over a week, and for failed

disks, samples were taken over a 25-day period before failure

occurred. Since some failed disks did not survive 25 days of

operation since we began to collect data, so they had fewer

samples. Table II lists the details of the three subsets of the

data.

TABLE II: Details of the datasets.

Dataset Class No. disks Period No. samples

“W”
Good 22,962 7 days 3,837,568
Failed 433 20 days 158,150

“S”
Good 38,819 7 days 5,822,850
Failed 170 25 days 97,236

“M”
Good 10,010 7 days 1,681,680
Failed 147 25 days 79,698

For every disk in the “W” dataset, there are 23 meaningful

attributes in its SMART record. However, the values of some

attributes are the same for good and failed disks and do not

change during operation. So we filter them out and use only

ten attributes to build our prediction models. In some cases, the

raw values of some attributes are more sensitive to the health

condition of disks. We select two raw values in addition to the

ten normalized values to build our prediction models, giving

the 12 basic features listed in Table III. For the disks in “S”

and “M” datasets, since some features are not recorded, we

only use the 7 attributes indicated in Table III.

TABLE III: Basic features (SMART attributes) used for the

“W”, “S”, and “M” datasets.

ID # Attribute Name Datasets
1 Raw Read Error Rate “W”, “S”, “M”
2 Spin Up Time “W”, “S”, “M”
3 Reallocated Sectors Count “W”, “S”, “M”
4 Seek Error Rate “W”, “S”, “M”
5 Power On Hours “W”, “S”, “M”
6 Reported Uncorrectable Errors “W”
7 High Fly Writes “W”
8 Temperature Celsius “W”, “S”, “M”
9 Hardware ECC Recovered “W”
10 Current Pending Sector Count “W”, “S”, “M”
11 Reallocated Sectors Count (raw value) “W”
12 Current Pending Sector Count (raw value) “W”

B. Data Preprocessing

In our previous work [17], we calculated the absolute

differences between the current values of the basic features

and their corresponding values six hours prior as new features

(called change features), and then applied three non-parametric

statistical methods—reverse arrangement test, rank-sum test,

and z-scores [9]—to both the basic and change features to

select the critical ones. In this paper, we follow [17] to create

and select critical features.
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For “W”, the critical features are basic features 1–9 and

11 in Table III, along with the 6-hour differences of features

1, 9 and 11. For “S” and “M”, the critical features are 1–

5, 8, and 10, and the 6-hour differences of features 1 and 3.

We divide the datasets into training and test sets with respect

to time. For each good disk, we take the earlier 70% of the

samples as training data, and the later 30% as test data. Since

the chronological order of disk failures was not recorded, we

divide them randomly into training and test sets in a 7 to

3 ratio. Since good disks are far more numerous than failed

disks, only some good samples are used to train the GBRT

models. We randomly choose 3 samples for “W” and 1 sample

for “S” and “M” per good disk in the training set as good

samples to train GBRT models.

V. EXPERIMENTAL RESULTS

A. Comparison of Metrics

In this section, we will illustrate how to evaluate disk failure

prediction models (including binary classifiers and residual life

predictions) using the new evaluation metrics (migration accu-

racy), vs.the previous evaluation metrics (prediction accuracy).

We use the “W” dataset in these experiments.

1) Binary Classifier: In this experiment, we illustrate how

we can evaluate binary classifiers using MR and MMR, along

with FDR, FAR, and TIA.

The experiments in [17] and [20] show an advantage of

the Classification Tree (CT) and Recurrent Neural Networks

(RNN) models in predicting whether or not a disk is going

to fail, over other binary classification models. We use these

models and evaluate their performance in terms of MR,

MMR, FDR, FAR, and TIA, adopting the practices in [17]

and [20] to preprocess data and build the CT and RNN models,

respectively.

For the CT model, we take the last 168 failed samples

before the failure actually occurs from each failed disk in

the training set (the time windows is set to 168 hours), to

train the model. To detect failures, we use a naive detection

algorithm: predicting a disk is going to fail if only one sample

is classified as failed by the model. The CT model has the

prediction performance of FDR = 95.49%, FAR = 0.09%, and

TIA = 354.6 hours [17, Table IV].

For the RNN model, we also use the same naive detection

algorithm to detect the test disks. The RNN model has the

prediction performance of FDR = 98.47%, FAR = 0.5134%,

and TIA = 294.0 hours.

When testing the models, we process the samples in the test

set sequentially for each disk. If a disk is predicted to fail, we

migrate the data from it at a certain rate for an hour, until

all the data has been migrated or the disk fails, measuring

the MR and MMR. For all failure predictions, the migration
transfer rate is fixed, and set to one of {m/2, m/7, m/24,

m/72, m/120, m/168, m/240, m/336} TB/h, for a m TB disk.

Table IV reports the migration accuracy of the CT and RNN

models as binary classifiers, in terms of MR and MMR, with

different migration transfer rates for pre-warning handling. We

also include the FDR or FAR which is what would occur if all

TABLE IV: Performance of the CT and RNN on “W” dataset,

in terms of MR and MMR, with different migration transfer

rates. The storage capacity of a disk is m TB.

Rate (TB/h) CT RNN
MR (%) MMR (%) MR (%) MMR (%)

FDR/FAR 95.49 0.09 98.47 0.5134

m/2 95.11 0.0900 98.47 0.4936
m/7 94.85 0.0634 98.36 0.4357

m/24 93.98 0.0302 96.31 0.3684
m/72 91.11 0.0126 92.49 0.177
m/120 89.83 0.0076 90.7 0.108
m/168 88.26 0.0054 88.1 0.0783
m/240 84.11 0.0038 81.57 0.0548
m/336 78.54 0.0027 73.79 0.0392

at-risk data were to be successfully migrated. With a migration

transfer rate of m/2 TB/h for the CT model and ≥m/7 TB/h

for the RNN model, MR is close to the FDR (i.e., data that

was on a disk that was predicted to fail was always completely

migrated). However, with such high migration transfer rates,

the quality of service for users would drop, especially when

simultaneous failure predictions are raised.

In practice, storage systems generally can not offer sufficient

resources for successful migration for all migrations, only

affording a relatively slow transfer rate. As such, there will

be some at-risk data not migrated before failures occur despite

being predicted by the models in advance, as in Table IV (MR

deteriorates as the migration transfer rate decreases).

In addition, the RNN model has a better FDR than the CT

model, which means the RNN method more accurately detects

at-risk disks. However, when the transfer rate is ≤ m/168

TB/h, the CT model has a higher MR, which means it protects

more at-risk data. Compared with the previous evaluation

metrics (FDR and FAR), the new metrics (MR and MMR)

give users a more realistic measure of how a binary classifier

will actually protect at-risk data.

When the voting-based detection algorithm in [17], [20] is

used to test the models, there are the similar results as in

Table IV.

2) Disk Residual Life Prediction: In this experiment, we

illustrate how to compare disk residual life prediction models

using the new evaluation metrics, MR and MMR, vs. the

previous evaluation metric ACC.

The experiments in Xu et al. [20] also show the advantage

of the RNN model in disk health status assessment over other

models. So, when we evaluate our GBRT model, we use the

RNN model (as disk residual life prediction model) as the

control group, adopting the practices in [20] to preprocess data

and build the RNN models.

When testing the models, we process the samples in the

test set sequentially for each disk. If a disk’s residual life (the

prediction result based on a sample) is mapped into level 6,

where the pre-warning migration rate is specified as 0, we do

nothing to the disk. If a disk’s residual life is mapped into

one of the levels 1–5, we migrate the data from the disk at the
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specified rate for an hour, until all the data has been migrated,

measuring the MR and MMR.

We also calculate the proportion ACCg of good samples that

are predicted at level 6, as the value of ACC for good disks,

and calculate the proportion ACCf of failed samples that are

predicted at the right level (levels 1–5), as the value of ACC

for failed disks.

Since the lengths of residual life intervals are unequal, each

interval has a different number of training samples, which may

have negative effects on the prediction performance of GBRT

models. So, for each failed disk in training set, we do not

use all the samples, but take out two samples evenly from

every interval, to train the GBRT models. When we build the

GBRT models, some important parameters are set as follows:

learning rate α = 0.1, number of iterations c = 500, and tree-

depth d = 4. Unless otherwise stated, we use the same method

for choosing failed training samples.

Table V reports the disk residual life prediction performance

of the GBRT and RNN models, in terms of MR, MMR, ACCg,

and ACCf.

For any of the three partitions, the RNN model has better

performance in terms of ACCf than the GBRT model, which

means the RNN method more frequently predicts the residual

life of failed samples in the right interval. However, the GBRT

model has a higher MR, which means it protects more at-

risk data. Crucially, prediction accuracy in terms of ACCf or

ACCg gives misleading results: RNN significantly outperforms

GBRT, despite successfully migrating (and thus protecting)

less data.

The proposed metrics (MR and MMR), by measuring the

amount of protected data, are more directly meaningful than

ACCf and ACCg. They thus offer a new means of evaluating

disk residual life prediction models, particularly in the case of

large systems with 10000+ disks.

Moreover, due to MR and MMR describe the actual target of

disk failure prediction models, they can be used to compare

the performance of binary classifiers and disk residual life

prediction models, which can not be done using the traditional

metrics.

B. Evaluating the Improved GBRT Algorithms

In Section III-C we suggest two improvements, (4) and

(5), to the target residual calculation which could improve the

disk residual life prediction. In this subsection, we test how

effective the adjustments are. We use GBRT∗ to denote when

the first modification is used (where target residuals are set

to 0 when samples are predicted in the correct intervals), and

GBRT∗∗ to denote when both modifications are used (where

target residuals are set to 0 when samples are predicted in the

tolerated intervals).

For this experiment, when training the GBRT models, we

also adjust the residual life interval of good disks from “> 500

hours” to “> 800 hours” to reduce mismigration. However,

when testing the models, we continue to use 500 hours as the

boundary between good and failed. We continue to use the

“W” dataset in this experiment.

The results are shown in Table VI. As expected, GBRT∗ has

better migration performance than the original GBRT model,

while GBRT∗∗ has the best performance. While these are

small improvements, due to the large scale of cloud storage

systems, even these small improvements in migration accuracy

can be worthwhile.

TABLE VI: Performance of GBRT models on “W” dataset.

The “GBRT∗” and “GBRT∗∗” respectively denote the im-

proved GBRT models.
.

Model MR (%) MMR (%)

Partition 1
GBRT 87.54 0.0028
GBRT∗ 88.44 0.0012
GBRT∗∗ 88.72 0.0010

Partition 2
GBRT 86.69 0.0017
GBRT∗ 86.76 0.0021
GBRT∗∗ 88.42 0.0009

Partition 3
GBRT 84.91 0.0021
GBRT∗ 86.09 0.0007
GBRT∗∗ 86.50 0.0006

In addition, when testing the models, we count the number

of migration operations in each residual life interval, to evalu-

ate the impact of pre-warning handling on system availability.

Fig. 2 and 3 plot the distribution of migration transfer rates

caused by the prediction results of GBRT∗∗ and RNN models,

using partition1, respectively.

For GBRT∗∗, most migration operations for correct failure

predictions are performed at relatively slow rates (no more

than m/72 TB an hour), which have a minor impact on

system availability. Almost all of the migrations for false

failure predictions are performed at a very slow rate (m/336

TB an hour), which will have a negligible impact on system

availability. This shows that the proposed GBRT∗∗ model can

protect almost 90% of at-risk data, while incurring only a

minor reduction in availability. The migration rate distributions

for GBRT and GBRT∗ are similar to those in Fig. 2.

For RNN, we observe that migrations and mismigrations are

performed at slower transfer rates (levels 3–5), which results

in high ACC, but low MR. The RNN model also results in a

large number of mismigrations vs. GBRT∗∗ (consistent with

Table V).

C. Simulating Practical Use

We evaluate the GBRT∗∗ model by simulating its applica-

tion in real-world data centers: being used with different disk

families, being used in small-scale data centers, and being used

with multiple disk models.

1) Performance with Different Disk Models: Different mod-

els of disks have different characteristics which may impact on

their reliability, even if they are made by the same manufac-

turers. Consequently, effectiveness over varying disk models is

an important factor in prediction models. To this end, we test

the proposed GBRT∗∗ model on the “S” and “M” datasets,

which are composed of different disk models from that of the

“W” dataset.
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TABLE V: Performance of the GBRT and RNN on “W” dataset, in terms of MR, MMR, ACCg, and ACCf.

Model Previous Metrics New Metrics
ACCf (%) ACCg (%) MR (%) MMR (%)

Partition 1
RNN 30.28 99.333 78.54 0.0809
GBRT 23.83 99.985 87.54 0.0028

Partition 2
RNN 27.02 99.846 77.85 0.056
GBRT 22.31 99.987 86.69 0.0017

Partition 3
RNN 39.90 99.715 77.56 0.0415
GBRT 19.90 99.984 84.91 0.0021

�

����


���

����

����

����


���� 
���	 
��
 
�
� 
��

�
��

�
�
��

��

� �������������� ���!����"�#�$%

��

����� !
"� �#

�

��


�

��

��

��

��

��

	�

��

���


���� 
���	 
��
 
�
� 
��

�
��

�
�
��

��

��������������� ���!����"�#�$%

� $% !
"� �#

Fig. 2: Distribution of the frequencies of transfer rates for

migration for the GBRT∗∗ model. The storage capacity of a

disk is m TB. There were no mismigrations at the m/72, m/24,

nor m/5 transfer rates.

From the failed disks in training sets, to train the GBRT

models, we take out three samples evenly from every residual

life interval.

The results are shown in Table VII. On the “S” and “M”

datasets, the GBRT∗∗ model maintains as good performance

in terms of MR and MMR, comparable with that on “W”,

which demonstrates the effectiveness of the proposed model

as disk models vary.

2) Evaluating with Fewer Disks: The datasets used in above

experiments, “W”, “S” and “M”, all involve a large number of

disks, which are collected from two big data centers. In the real

world, however, prediction models will often be used in small
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Fig. 3: Distribution of the frequencies of transfer rates for

migration for the RNN model. The storage capacity of a disk

is m TB. There were no migrations nor mismigrations at the

m/24 and m/5 transfer rates.

TABLE VII: Migration performance of GBRT∗∗ on the “S”

and “M” datasets.

Dataset MR (%) MMR (%)

Partition 1
“S” 95.58 0.0042
“M” 93.87 0.0060

Partition 2
“S” 94.05 0.0041
“M” 94.61 0.0084

Partition 3
“S” 92.56 0.0045
“M” 91.87 0.0127
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and medium-sized data centers. To evaluate the effectiveness

of prediction model applying to small and medium-size data

centers, we test it with synthesized datasets containing fewer

disks. We create four small datasets, denoted W1, W2, W3, and

W4, by randomly choosing 10%, 25%, 50%, and 75% of all

the good and failed disks respectively from the “W” dataset.

So the smallest dataset W1 contains only 2,296 good disks and

43 failed disks.

Table VIII shows the prediction performance of the

GBRT∗∗ model with datasets W1, . . . ,W4. With all four dataset-

s, GBRT∗∗ obtains acceptable performance.

TABLE VIII: Migration performance of GBRT∗∗ on small-

sized synthesized datasets.

Dataset MR (%) MMR (%)

Partition 1

W1 88.86 0.0208
W2 91.42 0.0038
W3 94.71 0.0052
W4 87.41 0.0041

Partition 2

W1 86.90 0.0150
W2 90.92 0.0043
W3 94.81 0.0034
W4 87.14 0.0038

Partition 3

W1 82.28 0.0100
W2 89.54 0.0067
W3 93.49 0.0015
W4 86.24 0.0019

3) Performance with multiple disk models: It is not unusual

for there to be multiple disk models in a real-world data center.

Although building a distinct prediction model for every disk

model is desirable, this would be an onerous task in practice

(involving sampling over a long time period). Therefore,

training prediction models using samples from different disk

models will be necessary.

In order to simulate a single data center containing different

disk models, we create a hybrid dataset (denoted “SM”) by

merging the “S” and “M” datasets, which were collected from

a single data center. To train the GBRT∗∗ model, for each

failed disk in the training set, we take out three samples evenly

from every residual life interval.

The migration performance of the GBRT∗∗ model on the

“SM” dataset is shown in Table IX, which is still acceptable

for practical use.

TABLE IX: Performance of the GBRT∗∗ on the “SM” dataset.

MR (%) MMR (%)
Partition 1 96.14 0.0079
Partition 2 96.45 0.0077
Partition 3 95.81 0.0066

4) Time cost: All the GBRT experiments are done on a

standard PC desktop. The training of each GBRT model can

be completed within 10 minutes, and the testing time is more

less. Our proposed method is suitable for on-line running in

large-scale storage systems.

VI. CONCLUSIONS

In this paper, we argue that the existing evaluation metrics

(FDR, FAR, and ACC) for disk failure prediction models are

insufficient for selecting and comparing models, particularly

for large storage systems (such as cloud storage systems).

We present two new metrics, MR and MMR, which directly

measure how much at-risk data is actually protected and how

much data is unncessarily protected, respectively.

In comparing two failure prediction models (the RNN model

and the proposed GBRT model), we encounter the undesirable

property where the RNN model makes better predictions

(better ACC) but protects less at-risk data (worse MR) and

unncessarily protects more data (worse MMR). Comparing

these models only using ACC would therefore be misleading.

The GBRT model proposed in this paper predicts disks’

residual life, allowing operators to migrate the at-risk da-

ta based on urgency, thereby ensuring both reliability and

availability. We also propose a method for choosing suitable

migration rates from the residual life predictions. Experimental

results indicate that the GBRT model is suitable for practical

use in real-world data centers.
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