Server Allocation for Multiplayer Cloud Gaming

Yunhua Deng* Yusen Li¢

Xueyan Tang#

Wentong Cait

*School of Computer Science and Engineering, Nanyang Technological University, Singapore
$Department of Computer Science and Information Security, Nankai University, China

{yhdeng, asxytang, aswtcai}@ntu.edu.sg

ABSTRACT

Advances in cloud computing and GPU virtualization are allowing
the game industry to move into a cloud gaming era. While shift-
ing standalone video games to the cloud gaming mode is straight-
forward, adapting multiplayer online games to the cloud gaming
paradigm faces unique challenges. In this paper, we consider mul-
tiplayer cloud gaming (MCG), which is the natural integration of
multiplayer online gaming and cloud gaming paradigms. We for-
mulate an MCG server allocation problem with the objective of
minimizing the total server rental and bandwidth cost charged by
the cloud to support an MCG session. We propose several efficient
heuristics to address the MCG server allocation problem which is
hard to solve optimally. We conduct extensive experiments using
real Internet latency and cloud pricing data to evaluate the effec-
tiveness of our proposed algorithms as well as several alternatives.
Experimental results show that our best algorithm can achieve near-
optimal cost under real-time latency constraints.

Keywords

Cloud gaming; multiplayer online games; server allocation

1. INTRODUCTION

Cloud computing has been undergoing rapid expansion in re-
cent years. Nowadays, many clouds such as Amazon EC2 [1]
provide abundant, elastic and geo-distributed computation, storage
and bandwidth resources for running various online services. Most
recently, the maturity of cloud computing and recent advances in
GPU virtualization have brought forth a new application — cloud
gaming [13,9, 19, 46]. In cloud gaming, a video game is hosted on
a cloud server and virtually all the graphics required for the game
are processed by the server. An end user’s machine only needs to
display/play the game screen/audio captured and streamed by the
server, as well as to relay the user’s game input commands (e.g.,
mouse clicks or keystrokes) to the server for game controls. With
cloud gaming, users can play resource-intensive video games on
less powerful devices anywhere and anytime over the Internet.

In this paper, we consider multiplayer cloud gaming (MCG), a
new form of multiplayer online gaming in the cloud gaming era.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MM 16, October 15-19, 2016, Amsterdam, Netherlands
© 2016 ACM. ISBN 978-1-4503-3603-1/16/10. .. $15.00
DOI: http://dx.doi.org/10.1145/2964284.2964301

918

liyusen@nbjl.nankai.edu.cn

Game server
(session host)

vorid/player state update/synchrogization

Rendering
server (proxy)

video stream

Rendering
server (proxy)

Rendering
server (proxy)

video stream video stream

Ul input

[[om
VA
==\

Ul input Ul input

Figure 1: An MCG architecture.

In conventional multiplayer online gaming, a game server, which
is the authoritative source of game events, disseminates state up-
dates about the game session to its connected clients, allowing them
to maintain their own versions of the game world. Meanwhile,
the games are also required to run on clients’ devices. Therefore,
clients not only need sufficient hardware resources to render the
games, but also require the games to be installed locally on their
devices. By contrast, in MCG, clients can enjoy multiplayer online
gaming without these hassles thanks to the advantages brought by
cloud gaming. Figure 1 depicts the architecture of MCG. The game
server is identical to that in traditional multiplayer online gaming.
The rendering servers, on the one hand, act as the “clients” that
are connected to the game server in traditional multiplayer online
gaming to receive/exchange state updates, and on the other hand,
function as the servers which host the game application instances
for their connected clients in cloud gaming. The rendering servers
process game graphics and logics and capture the game scenes for
the clients to display. The clients are known as “thin-clients” which
merely transit user interaction (UI) input to the rendering servers.
A number of cloud gaming systems supporting MCG have emerged
in recent years [24, 33, 29, 39, 10].

With MCG, a game server and a set of rendering servers for the
players need to be located and launched in the clouds for each game
session. In this paper, we focus on the provisioning and acquisition
of these servers from available data centers with the minimum cost.
Heterogeneous server and bandwidth prices from different datacen-
ters together with the real-time interaction requirements of gaming
applications present unique opportunities and challenges for MCG
server allocation. The main contributions of this paper are:

e We formulate an MCG server allocation problem, with the
objective of minimizing the total server rental and bandwidth

cost charged by the cloud to support an MCG session. This
problem can be viewed as a natural extension to the tradi-
tional game server selection problem, with several distinctive
characteristics related to the cloud gaming paradigm.

e We propose a set of efficient heuristic algorithms to address
the MCG server allocation problem, and conduct extensive
experiments using real-world data to evaluate the performance
of the proposed algorithms as well as several alternatives.
Our best algorithm can achieve near-optimal cost while sat-
isfying the latency constraints.

The rest of this paper is organized as follows. Section 2 presents
a summary of the related work. Section 3 discusses the require-
ments of MCG. Section 4 formulates the MCG server allocation
problem. Section 5 proposes a set of cost-aware client-to-datacenter
assignment algorithms to efficiently address the MCG server allo-
cation problem. The experimental setup and results are shown and
discussed in Section 6. Section 7 discusses some possible exten-
sions and future work. Finally, Section 8 concludes the paper.

2. RELATED WORK

Cloud computing provides a scalable and cost-effective way for
hosting and delivering large-scale services over the Internet to geo-
distributed end users. The problem of how to place services in
multiple data centers is a key challenge and has been extensively
studied. Existing work on this problem generally targeted at mini-
mizing energy consumption (or electricity cost) while guaranteeing
some performance requirement such as response time [34, 37]. In
more complicated scenarios, the demand and resource price fluctu-
ations were also considered [38, 49]. However, these service place-
ment models are quite different from our problem in which we aim
to minimize the total cost of cloud server rental and bandwidth us-
age while satisfying the real-time delay constraint among clients in
a multiplayer cloud gaming session.

Our work is also relevant to the game server selection problems
for online gaming or Distributed Interactive Applications (DIAs)
in general. In DIAs, given a set of clients and a set of candidate
server locations, the objective is to choose one or more servers to
minimize the interaction delay among the clients [22, 47, 48, 50,
51], or to place the minimum number of servers while satisfying
some QoS requirements [17, 18, 28, 40]. However, cloud gaming
is quite different from traditional online gaming. In addition to the
game servers, the rendering servers for the clients also need to be
deployed in cloud gaming, which makes the problem much more
challenging. There is also some work [45] focusing on exploiting
well-provisioned inter-datacenter connections to reduce the com-
munication latency from clients to servers. In contrast, the pur-
pose of cloud gaming is to leverage the rich computing resources
in the clouds for clients to play high-quality games without dedi-
cated hardware equipped.

Some server provisioning issues in cloud gaming have been stud-
ied recently. Hong er al. [23] considered the problem of how
to consolidate multiple rendering servers (virtual machines) on a
physical machine in order to provide high gaming Quality of Ex-
perience (QoE) in a cost-effective way. The request dispatching
and admission control issues were studied in [43] with the goal of
cutting down the provisioning cost while guaranteeing the queu-
ing delay requirement. However, all of the above work has fo-
cused on cloud gaming operators with their own private datacen-
ters, and monetary cost issues for hosting cloud gaming in public
clouds were not considered. A server rented from the public cloud
is normally charged at a fixed rate regardless of whether it is fully

919

or partially utilized. Many cloud gaming systems have acquired re-
sources (virtual machines) from public clouds to serve as rendering
and game servers [39, 29]. The problem of how to allocate cloud
resources to minimize the interaction delay among clients was stud-
ied in [42]. However, the rental cost of servers was not considered
either. Very recently, Tian ef al. [41] studied the cost for running
single-player games in cloud gaming where each player is assigned
to a separate and dedicated server. In contrast, we focus on multi-
player cloud gaming where server sharing among clients plays an
important role in optimizing the server cost.

3. REQUIREMENTS OF MCG

In an MCG session, each player connects to a cloud server that
captures and streams the game screen to the player. This cloud
server is called the rendering server or R-server for that player.
A single R-server may be shared by multiple players in the same
session, if the server has sufficient capacity to process all the ren-
dering and streaming workloads of these players. All the R-servers
communicate with a game server or G-server which manages and
updates the game state during the session.

In conventional multiplayer online gaming, matchmaking is the
process of setting up game sessions with the goal of finding a re-
quired number of players for each game session subject to some
constraint on the network latency between any player and the game
server [22, 35]. In MCG, matchmaking becomes more complicated
due to the presence of R-servers in-between the players and the G-
server. Consider the scenario where we are given a set of clients C'
that form the player group, a set of datacenters D, and the G-server
located at a network location g which may either be one of the dat-
acenters or outside all datacenters. An MCG session is called fea-
sible if we can find at least one datacenter to place an R-server for
each player such that, 1) the connection latency from each player
to the G-server through his R-server is below a threshold L¢, and
2) the connection latency from each player to his R-server is below
another threshold L r. That is, for each client ¢ € C, there exists at
least one datacenter d. € D to satisfy the following constraints:

Z(C, dC) + l(d67g) S LG al’ldl(C, dC) S LR7 (1)

where I(c, d.) is the network latency from c to d., and I(d., g) is
the network latency from d. to g, while L¢ and L g are the latency
thresholds.

The first latency threshold L¢ is related to the maximum toler-
able network latency for traditional online gaming. Note that, in
traditional online gaming, the actual game is stored, executed and
rendered on the player’s computer locally and the player’s global
in-game actions such as firing at the enemies are sent to the G-
server. The consequences of an in-game action such as an enemy
being killed are only seen by the player after the lag caused by the
time taken for the action to reach the G-server and the time taken for
the update to come back to the player’s computer over the Internet.
The second latency threshold L is related to the maximum tolera-
ble network latency for cloud gaming. Note that, in cloud gaming,
the actual game is stored, executed, and rendered on the R-server
remotely and the player’s raw input commands such as keystrokes
are sent to the R-server for controlling the game. The consequences
of an input command such as “moving forward”, can only be dis-
played on the player’s computer screen after a time lag. This lag
is caused by the time taken for the input command to reach the R-
server for rendering and the time taken for the game scene updates
to be streamed back to the player’s computer over the Internet. The
network latency is the major source of lag for traditional online
gaming [16]. The delay caused by video coding (i.e., server-side
encoding and client-side decoding) adds another source of lag for

cloud gaming [15]. In addition, in traditional online gaming, lag
can often be hidden to some extent using client-side compensation
techniques such as dead-reckoning [36, 14], but in cloud gaming,
lag is far more difficult to hide as the client does not maintain any
game state locally [27]. Moreover, the smoothness of live video
streaming in cloud gaming is heavily dependent on the network
quality which is likely to degrade as the network latency (distance)
increases. Therefore, L is often required to be smaller than L¢.
Several empirical studies [20, 25] have been conducted for tradi-
tional online gaming and cloud gaming, respectively. These studies
confirmed that the network latency requirement in cloud gaming is
generally more stringent than that in traditional online gaming.

Both latency thresholds Lg and Lr are dependent on the game
genre [20, 25]. In general, fast-paced games such as first-person
shooter or car racing games, have more stringent latency require-
ments (i.e., lower latency thresholds) than moderate-paced games
such as third-person role-playing or strategy/simulation games (e.g.,
La =150 ms and Lr = 100 ms for fast-paced games, and Lg =
300 ms and Lr =200 ms for moderate-paced games according to
[20, 25]). Once the connection latencies are below the correspond-
ing thresholds, any further reduction of them would not necessar-
ily bring along easily-noticeable improvement in the player’s per-
ceived playability [20, 25]. Thus, our objective of MCG server al-
location is not to minimize the above two connection latencies, but
to optimize the server allocation cost subject to the latency thresh-
olds. Specifically, our objective is to minimize the total monetary
cost of server and network resources charged by the cloud to sup-
port an MCG session, from the perspective of the game host that
can be either the player who initiates the session or a cloud gaming
service provider.

4. PROBLEM FORMULATION

Once a feasible MCG session is set up after matchmaking, we
need to allocate servers to ensure that each client can be served
by an R-server launched at one of the datacenters. For each client
¢ € C, all the datacenters that satisfy constraints (1) are called
the eligible datacenters for c. Let E. C D denote the set of el-
igible datacenters for each client c¢. For each datacenter d € D,
let s(d) denote the price for renting one server from d to act as
an R-server. Multiplayer online game sessions usually span some
tens of minutes [4, 26], which matches the billing interval of on-
demand servers offered by most public cloud providers. For sim-
plicity of billing and management, we assume that servers are not
shared across game sessions. That is, for each session, a set of ded-
icated servers are launched to support it and these servers can be
destroyed once the session ends. Since cloud gaming is bandwidth-
intensive due to the need of high-definition video streaming, we
also take bandwidth cost into account in the problem formulation.
Let b(d) denote the price for the expected outbound data transfer'
(i.e., video streaming) of a game session from each datacenter d.
To facilitate exposition, we assume that each client incurs the same
amount of outbound bandwidth from its assigned datacenter during
the MCG session. We formulate the MCG server allocation prob-
lem with the goal of finding the number of servers to be opened
at each datacenter such that each client can be assigned to one R-
server located at one of its eligible datacenters and the total server
and bandwidth cost is minimized.

For each client ¢ and each of its eligible datacenters d € E.,
we define a binary variable X¢ € {0,1} to describe whether ¢
is assigned to d. For each datacenter d € D, we further define

'In major public clouds, only the outbound data transfer is charged
while the inbound data transfer is for free [1, 7].

920

a variable Yy to indicate the total number of clients assigned to
d. For simplicity, we assume that the servers rented from different
datacenters have the same capacity k (¢ € Z"). That is, each
server rented can handle the rendering and streaming workloads of
up to k clients. Prevalent cloud billing schemes normally charge
each server rented at a fixed rate regardless of its utilization [1].
Thus, the MCG server allocation problem can be written as follows:

. Yqy
min Z (s(d) . [?-‘ + b(d) -Yd), 2
deD
subject to
Ya=> X!, VdeD 3)
ceC
ZXf:l, Vee C 4
dEE.
X¢e{0,1}, VeeC, dcE. ©)

The term [Yy/k] in objective (2) calculates the number of servers
opened at datacenter d to run games for all the clients assigned to
it. Constraint (3) derives the total number of clients assigned to
each datacenter. Constraint (4) ensures that each client is assigned
to exactly one of its eligible datacenters. It is easy to add extra
constraints such as the capacity of each datacenter, and to consider
heterogeneous clients with different requirements on aspects such
as the screen resolution and video streaming bitrate. We leave these
extensions to future work which will be discussed in Section 7.

In general, the server capacity k is dependent on the server’s re-
source volume and the rendering workload of the particular game.
In the special case where k£ = 1, objective (2) can be minimized by
simply opening a server to serve as the R-server for each client ¢
at its eligible datacenter in E. with the minimum value of (s(d) +
b(d)). When k£ > 2, this may not minimize the total cost, since it
does not consider server sharing among clients. If a datacenter is
assigned less than k clients, the server opened at the datacenter can-
not be fully utilized, leading to capacity wastage and unnecessary
cost. It is easy to see that the server allocation problem is tightly
coupled with the assignment of clients to datacenters.

The MCG server allocation problem defined so far assumes that
the G-server is given whose location is fixed prior to the alloca-
tion of R-servers. We call it the basic problem. A typical scenario
for the basic problem is that G-servers are offered and hosted by
some multiplayer game server providers [8, 5] and cloud gaming
providers only need to set up the R-servers in an on-demand manner
for game sessions. Besides the basic problem, we further consider
a more general problem where the G-server did not exist and needs
to be launched in one of the datacenters to support a game session
as well. Nowadays, public clouds such as Amazon EC2 have al-
ready offered a comprehensive suite of services and products for
game hosting [2], so that one can easily set up multiplayer game
servers similar to those offered by game server providers. This mo-
tivates us to study the above variation of the problem in which the
G-server location also needs to be determined along with R-servers.
We call it the general problem. In the general problem, changing
the G-server’s location may result in different sets of eligible data-
centers I, for each client ¢ € C. Thus, an MCG session is feasible
only if there exists at least one datacenter d, € D for running the
G-server such that for all clients ¢ € C, E. # (. We call such a
datacenter eligible for placing the G-server. Let Dg C D denote
the set of eligible datacenters for placing the G-server. Apparently,
choosing different G-server locations in D¢ may lead to different

assignments of clients to datacenters, which consequently may give
rise to different total costs of the server allocation solutions for the
same set of clients. Note that the basic problem can be viewed as a
special case of the general problem when there is only one eligible
datacenter for placing the G-server.

It is easy to establish polynomial reductions from the set cover
problem to show that both our basic and general problems are NP-
hard. Specifically, the basic MCG server allocation problem degen-
erates to the classic set cover problem when all datacenters have the
same server/bandwidth cost and the server capacity k is larger than
the number of clients in a session. In such a case, at most one server
is needed at each datacenter and the objective is equivalent to min-
imizing the number of datacenters chosen to cover all clients of a
session subject to the latency constraints.

In the next section, we propose a set of greedy heuristic algo-
rithms to efficiently address MCG server allocation problems.

5. GREEDY HEURISTICS

We first present the algorithms for the basic problem and then we
extend them for the general problem. All these algorithms assume
that a feasible MCG session is already set up by matchmaking.

5.1 Price-based Assignment

We begin with three simple algorithms that determine the as-
signed datacenter d. for each client ¢ € C' individually based on
different priorities of price consideration.

Lowest-Server-Price (LSP) Assignment: Every client is assigned
to the datacenter with the minimum server price among all of its el-
igible datacenters.

Lowest-Bandwidth-Price (LBP) Assignment: Every client is as-
signed to the datacenter with the minimum bandwidth price among
all of its eligible datacenters.

Lowest-Combined-Price (LCP) Assignment: Every client is as-
signed to the datacenter with the minimum combined price among
all of its eligible datacenters. The combined price associated with
each datacenter d is defined as s(d)/k + b(d), which assumes that
the servers can be “partially” rented to serve individual clients.

In the above three algorithms, if a client has more than one eligi-
ble datacenters offering the same lowest price, the client is assigned
to the nearest one in terms of network latency. The time complex-
ities of the three algorithms are all O(|C||D|). Once the client-
to-datacenter assignment is determined using any of the above al-
gorithms, the next procedure is to open servers at each datacenter
to serve as R-servers for clients. We call this procedure client-to-
server assignment which proceeds as follows:

1. At each datacenter d € D, open [Yqy/k] servers where Yy is
the number of clients assigned to d, and k is the capacity of
each server.

2. Assign each client ¢ € C' to a server opened at d. which has
spare capacity, that is, it has been assigned less than k clients
so far.

In the above client-to-server assignment procedure, there is at
most a capacity of £ — 1 wasted at each datacenter. It is intuitive
that the LCP algorithm would produce an optimal server allocation
for the case of k = 1, since there is no wasted capacity at any data-
center and each client incurs the lowest total server and bandwidth
cost. For the cases of k > 2, however, it is possible for the LSP,
LBP and LCP algorithms to result in significant capacity wastage
at some datacenters. For instance, if the clients’ eligible datacen-
ters with the lowest server prices are very diverse, most clients may
be assigned to distinct datacenters when using the LSP algorithm,

921

which loses the opportunity of server sharing, especially when the
number of clients are small or the number of datacenters available
are large. The next algorithm we present determines the client-to-
datacenter assignment on a datacenter or server basis instead of on
an individual client basis in order to promote server sharing among
clients.

5.2 Wastage-aware Assignment

For convenience of presentation, we give the following defini-
tions. Let Sy C C be the set of clients that can be covered by
datacenter d € D (i.e., d is an eligible datacenter for each of these
clients) and have not been assigned to any datacenter. Let p(d) be
the projected capacity wastage if all the clients in Sy are assigned
to d, which is given below based on the aforementioned client-to-
server assignment procedure:

if | Sq| mod k = 0,

(@=1"
P =Yk = (1S4 mod k) if |S4| mod & > 0.

Intuitively, the server cost, the bandwidth cost and the capac-
ity wastage are major factors to consider for minimizing the to-
tal cost of server allocation. While the LSP, LBP and LCP algo-
rithms consider one or both of the first two factors, the next heuris-
tic called Lowest-Capacity-Wastage attempts to improve the cost-
effectiveness of server allocation by explicitly avoiding the pro-
jected capacity wastage at each datacenter in the server allocation.

Lowest-Capacity-Wastage (LCW) Assignment:

1. For each datacenter d € D, initialize S4 as the set of all the
clients that can be covered by d.

2. Let d* = argmingep,g,-0 p(d) be the datacenter with the
lowest projected capacity wastage whose Sq is not empty.
If more than one datacenter is found with the same lowest
projected capacity wastage, let d* be the one with the lowest
server price. If there are still ties, break them arbitrarily.

3. Assign all clients in Sg= to d*. That is, for each client ¢ €
Sgr,setd. = d*.

4. For each datacenter d € D, set Sg < Sq \ Sa=.

5. If all the clients in C' have been assigned, the algorithm ter-
minates. Otherwise, loop back to Step 2.

The LCW algorithm explicitly considers minimizing the pro-
jected capacity wastage at each datacenter by trading off the chance
to assign each individual client to its cheapest datacenter in terms
of server, bandwidth or combined price.

In the LCW algorithm, the number of iterations is at most | D|.
In each iteration, finding d* can be done in O(|D|) time. For
each datacenter d, the set Sy can only shrink over iterations, and
therefore the time complexity for updating Sq over all iterations
is bounded by O(|C/|). Hence, the overall time complexity of the
LCW algorithm is O(|C||D| + |D|?). After determining d. for
each client ¢ € C, the aforementioned client-to-server assignment
procedure is executed to finalize the server allocation for an MCG
session.

5.3 Extension for the General Problem

For the general problem where there are a set of eligible datacen-
ters D¢ for placing the G-server, we extend each of the above al-
gorithms by examining every possible choice of the G-server loca-
tion dg in D¢ and choosing the one which results in the minimum
server allocation cost. For example, the extended LSP algorithm
works as follows:

1. For each choice of dy4 in Dg, find the set of eligible dat-
acenters E. for each client ¢, apply the LSP algorithm to
determine the client-to-datacenter assignment, and calculate
the total cost’ of all servers opened after the client-to-server
assignment procedure.

2. Find the lowest cost among all the costs calculated in Step 1
and then return the corresponding dg4 and client-to-datacenter
assignment solution.

Since we need to iterate through all the choices of dy in Dg and
D¢ C D, the time complexity of the extended LSP algorithm for
the general problem is O(|C||D|?), so are those of the extended
LBP and LCP algorithms. Likewise, the time complexity of the
extended LCW algorithm for the general problem is O (|C||D|* +
|D|*). In practice, the number of datacenters | D| offered by public
clouds is typically in the order of tens. For example, Amazon and
Microsoft currently operate 30 datacenters globally in total. Nor-
mally, the number of clients |C| is also in the order of tens in a mul-
tiplayer online game session [11, 3]. Therefore, all the above algo-
rithms should be efficient enough to instantly solve the MCG server
allocation problem so that players will not suffer from undesirable
waiting times. In fact, according to our experiments, the running
times of our algorithms are typically less than a few milliseconds
on a commodity computer, which are negligible compared to the
cloud server startup times.

6. EXPERIMENTAL EVALUATION

We evaluate the performance of our proposed algorithms by mak-
ing use of real-world Internet latency data [44, 21] and cloud pric-
ing models [1, 7] of two public clouds (Amazon EC2 and Microsoft
Azure).

6.1 Evaluation Methodology

Network latency datasets. We make use of two network la-
tency datasets to set up trace-driven experiments. The first dataset
collected by Wu et al. [44] contains latency (RTT) measurements
between PlanetLab nodes and datacenters from Amazon and Mi-
crosoft. The second dataset collected by Garcia-Dorado et al. [21]
contains latency (RTT) measurements between all pairs of data-
centers from Amazon and Microsoft. By integrating these two
datasets, we simulate a network that is formed by 253 PlanetLab
nodes and 13 datacenters with 7 from Amazon and 6 from Mi-
crosoft. Assuming that a client is located at each PlanetLab node,
we have a total number of 253 clients which is sufficiently large for
setting up MCG sessions.

Cloud pricing dataset. Since an R-server handles the game
rendering workload for its assigned clients, it is necessary to use
cloud servers equipped with GPUs to serve as the R-servers. GPU
servers are available in Amazon EC2 (we choose the g2.8xlarge
model as the GPU server [1]), but this is not the case in Microsoft
Azure. To deal with this, we derive the prices of GPU servers in
Microsoft’s datacenters (assuming that they will be available in the
future) based on the prices of GPU servers in Amazon’s datacen-
ters as follows. First, we find two non-GPU baseline server types
from Amazon and Microsoft respectively which are best-matched
in terms of CPU core count and memory size: the m3.2xlarge

“The total cost in the general problem also includes the cost for
renting the G-server which can be much cheaper than that for rent-
ing an R-server because the R-server requires GPU resources for
game rendering and video encoding.

*The startup times of cloud servers are normally within one minute
based on our measurements on Amazon EC2.

922

Table 1: Server rental and data tranfser prices (in dollars).

Datacenter ‘ Baseline server price ‘ GPU server price ‘ Data transfer price
EC2-Virginia 0.532 2.600 0.180
EC2-Oregon 0.532 2.600 0.180
EC2-California 0.616 2.808 0.180
EC2-Ireland 0.585 2.808 0.180
EC2-Singapore 0.784 4.000 0.240
EC2-Tokyo 0.770 3.592 0.280
EC2-Sao Paulo 0.761 3.720 0.500
Azure-Hong Kong 0.902 4.604 0.276
Azure-Virginia 0.616 3.012 0.174
Azure-Ireland 0.584 2.804 0.174
Azure-Singapore 0.784 4.000 0.276
Azure-Amsterdam 0.672 3.224 0.174
Azure-California 0.616 2.808 0.174

Table 2: L and L settings according to [20, 25].

(Lg, Lgr) | Game Genre | Game Pace
(150, 100) first-person shooter, etc. fast
(300, 200) | third-person role-playing, etc. | moderate

model from EC2 and the D4 model from Azure. Then, for each
Azure datacenter, we approximate its GPU server’s price via multi-
plying its non-GPU baseline server’s price by the ratio between the
GPU server’s price and the non-GPU baseline server’s price in the
nearest EC2 datacenter to this Azure datacenter. Table 1 shows the
rental price per server* used in our experimental evaluation. Also
shown in Table 1 is the data transfer price per client, which is es-
timated by assuming that each client will consume 2GB outbound
data transfer from its assigned datacenter in a game session.’

Latency thresholds. The thresholds for the latencies from the
clients to the G-server (L) and the R-servers (L g) are set accord-
ing to the empirical data provided by [20] and [25], respectively.
Table 2 summarizes the settings of Lg and L r for different game
genres (all are round-trip delay times in milliseconds). Having the
latencies below such thresholds offers satisfactory playability ac-
cording to the above studies.

Session size. In general, the number of clients |C| in a multi-
player game session is in the order of tens, thereby we let |C| €
{10, 20, 30,40, 50} in our experiments. For each setting of |C/|
and each setting of (L, Lr), we generate 100 feasible MCG ses-
sions where the clients are randomly chosen from the 253 Plan-
etLab nodes subject to the latency thresholds. Note that, for sim-
plicity, we use the median latency provided by the aforementioned
dataset in all the matchmaking processes that generate the feasi-
ble sessions. The latency between client-server pairs is expected to
be relatively stable during a game session period since each session
typically lasts for just a few tens of minutes [4, 26]. If this is not the
case, a higher percentile (e.g., 90th percentile) of network latency
can be compared against the latency thresholds in the matchmak-
ing process to cater for the latency variation. In the experimental
results, we compute and plot the average server allocation cost and
standard deviation of these 100 sessions resulting from each algo-
rithm for performance comparison.

Server capacity. The server capacity k is dependent on the R-
server’s resource volume and the game’s rendering workload. To

“The GPU servers are not available in the EC2 Sao Paulo datacen-
ter, thereby we derive the price for this datacenter according to its
non-GPU server’s price ratio to the EC2 Virginia datacenter.

5This is an estimated amount of data transfer for 1-hour HD (720p)
live video streaming at the bitrate of 4000 Kbps [6].

(o2}
o

_-Low rendering setting [__]High rendering setting

(o))
o
T

N
o
T

w
o
T

N
o
T

-
o
T

2 4 6 8
Number of clients served concurrently

Average frames per second
o

Figure 2: Heaven Benchmark’s average frame rate against the
number of clients served by an R-server concurrently.

emulate a range of workload intensities imposed on each R-server
(i.e., a g2.8xlarge instance), we set k € {2,4,6,8}. We have con-
ducted a set of measurements to verify the feasibility of these set-
tings of k, based on the Unigine Heaven Benchmark [12] and a
cloud gaming system prototype developed by ourselves [29]. With
this prototype, a single cloud server can serve as the R-servers for
multiple clients concurrently. Figure 2 shows the frame rate (i.e.,
frames per second) of the Unigine Heaven Benchmark running at
1280x720 resolution and different rendering quality levels for each
setting of k. From Figure 2 we can see that even for k = 8, the frame
rate of the Unigine Heaven Benchmark is still above 30 frames per
second (the threshold for an acceptable frame rate for most video
games). Since the Heaven Benchmark is a widely used tool for de-
termining the gaming performance of a computer under extremely
stressful conditions, we believe that our measurements are repre-
sentative and the settings of k are reasonable.

Theoretical lower bound. To benchmark the performance of
our algorithms, we calculate a theoretical lower bound on the total
server rental and bandwidth cost for an MCG session as follows:

> (o

deD

+0(d)) - Ya ©)

where Y (the number of clients assigned to each datacenter d) is
obtained via the LCP algorithm that assigns each client to the dat-
acenter with the minimum combined price. The above calculation
assumes that the number of servers to be opened at datacenter d is
Y4 /k which can be a fraction just enough to serve all of its clients.
Thus, this lower bound is a super-optimum and may not be achiev-
able by any real server allocation when & > 2. To quantify the
relative performance, we normalize the server allocation cost pro-
duced by each algorithm with respect to the above lower bound.

Alternative algorithms. We also evaluate the following alter-
natives which are neither aware of the server/bandwidth price nor
aware of the projected capacity wastage when assigning clients to
datacenters:

o Random Assignment: Every client is assigned to a random
datacenter from the set of its eligible datacenters. This algo-
rithm serves as a baseline.

o Nearest Assignment: Every client is assigned to the near-
est datacenter in terms of network latency among all of its
eligible datacenters. If a client has more than one eligible
datacenters with the same lowest network latency to it, the
client is assigned to the one with the minimum server price.

923

6.2 Results and Analysis

Figure 3 shows the normalized cost of each algorithm for the ba-
sic problem (we only show the results for |C| = 10 and |C| = 50 due
to the space limit). In all these experiments, the G-server location
for each session is randomly picked from the 13 datacenters. In
general, the LSP, LCP, and LCW algorithms consistently produce
significantly lower normalized costs than other algorithms, with the
LCW algorithm being closest to the super-optimum lower bound.
This reveals the importance of being aware of the server/bandwidth
price or the projected capacity wastage in assigning clients to dat-
acenters. The poorer performance of the LBP algorithm compared
with the LSP and LCP algorithms indicates that the bandwidth
cost is not as important as the server cost or the projected capac-
ity wastage in optimizing the total cost. The superior of the LCW
algorithm over the LSP and LCP algorithms reflects that it is ra-
tional to trade the chance of assigning each individual client to its
eligible datacenter with the minimum server or combined price for
the chance of reducing the capacity wastage.

Figure 3 also shows that, for the same session size |C/, as the la-
tency thresholds (L¢, Lr) get larger (i.e., from faster-paced games
to slower-paced games), the Random, Nearest, and LBP algorithms
deteriorate significantly, while the LSP, LCP, and LCW algorithms
remain stable. For instance, the normalized cost produced by the
Random algorithm is 2.6 for (Lg = 150, Lr = 100) with |C| =10
and k = 8, and it increases to 3.7 (nearly a 40% increase) for (L¢
=300, Lr = 200) with the same |C| and k. This can be explained
using Figure 5 which shows the cumulative distribution of the num-
ber of eligible datacenters per client of all the sessions. As seen
from Figure 5, the clients tend to have more eligible datacenters for
larger latency thresholds (L, Lr). For instance, for (Lg = 300,
Lr =200), over 50% of the clients have at least 6 eligible datacen-
ters which are almost half of all 13 datacenters. In this case, clients
are more likely to be scattered over different datacenters if we apply
the Random algorithm. This is also true for the Nearest algorithm,
since the nearest datacenters for clients may be more dispersed, so
is for the LBP algorithm which may act like the Nearest algorithm
as the bandwidth prices are likely identical across a large portion of
datacenters (e.g., Azure has the same bandwidth price for all data-
centers located at US and EU as shown in Table 1). Hence, these
three algorithms generate more capacity wastage for larger (L¢,
LRr) (as we can see from Figure 4) and produce higher total costs
eventually. This is confirmed by the capacity wastage ratios shown
in Figure 4, where the capacity wastage ratio is defined as the ex-
cessive capacity (i.e., the total allocated server capacity minus the
requested capacity) normalized by the requested capacity (i.e., the
session size |C|).

From Figure 3, we can also see that, as the server capacity k
gets larger (from 2 to 8), all algorithms produce increasingly higher
normalized costs. This is mainly due to the increasing capacity
wastage generated by every algorithm as k& gets larger, which can
be again observed from Figure 4. Apparently it would be more dif-
ficult to fill up a larger server with clients than fulling up a smaller
one. On the other hand, the theoretical lower bound assumes that
a server can be “partially” rented to perfectly fit to the number of
assigned clients with no capacity wastage at all. Thus, the normal-
ized cost increases with the server capacity. Moreover, we can see
from Figure 3 that, as the session size |C| gets larger (from 10 to
50), the normalized cost produced by every algorithm decreases.
This is mainly due to the decreasing capacity wastage generated by
every algorithm as |C| gets larger (see Figure 4).

In short, the LCW algorithm which considers the capacity wastage
rather than the server or bandwidth price as the dominating factor in

(Lg =150, L = 100); (IC|=10)

3 4 ||[__JRandom |
8 %Nearest
LSP
® 3+ [CJBP 1
N eer
g Cew
e Dt (TG (G
z
2 4 6 8
Server capacity: k
(L =150, L = 100); (IC| = 50)
2 : ; ; .
3 [JRandom
8 181 %Nearest b
LSP
E 1.6 I:lLBP T
S 14| = ,
Wi ke, [T
O 1.2f 1 ﬁm ﬂ:‘
b
| PHalas ﬁﬂﬁﬁﬁﬁ |
2 4

6 8
Server capacity: k

(L = 300, L =200); (IC| = 10)
% 4 ||[__JRandom |
8 %Nearest
LSP
§ 3t %LBP 1
= LCP
g Clew
£2f .
[9)
pzd
1 . ﬂﬁﬁﬁ | (ﬁ ! (ﬁ
2 4 6 8
Server capacity: k
(Lg =300, L =200); (IC| =50)
2 T T T T
5 [JRandom
3 1.8 [|[INearest 1
o || |
Bi=r
E 1.4+ ew A
S 12t]
b4
2

4 6 8
Server capacity: k

Figure 3: Normalized costs of different algorithms for the basic problem.

(Lg =150, L = 100); (IC| = 10)

Q5 ‘
© [_JRandom
%4 | C__INearest il
o] [JLspP
» 3r|Lep]
g ||Jep
2.2 dLew]
g i i b
%0 SEEEEE ﬁ‘&‘&‘&‘l‘ﬁ I &‘ I
O

2 4 6 8

Server capacity: k
(Lg =150, L =100); (IC|=50)

S K ; : ;
il [__JRandom
%0-8 | C_INearest 1
g | |sp
w 06 |JLeP]
g C_Jcp
3,04 CLow]
= e i L0
T L EEEEH (sl ‘ ‘
(@]

2 4 6 8

Server capacity: k

(L, =300, L =200); (|C|=10)

S5 . .
© [JRandom
g“ | __INearest 1
o] [Jisp
» 3r|LBP 1
g ||ee
3,2 r | Lew i
z.1 ﬁm ,
: it "Bl
P MG ot Il .
© 2 4 6 8
Server capacity: k
o | (Ly= 30?, L, = 200); ('|C| = 50) |
© [JRandom
%0-8 | C_INearest 1
© [Jisp
®» 06| LeP 1
g C_licp
30.4 | Lew b
£ i |10 |00
&, FhEdd IMNE ! !
© 2 4 6 8

Server capacity: k

Figure 4: Capacity wastage ratios of different algorithms for the basic problem.

assigning clients to datacenters, is the most cost-effective solution
for the basic problem of MCG server allocation.

The results for the general problem as shown in Figure 6 have
similar performance trends to the results for the basic problem, with
the LSP, LCP, and LCW algorithms significantly outperforming the
Random, Nearest, and LBP algorithms. The main difference is that
the advantage of the LCW algorithm over the LSP and LCP algo-
rithms becomes less substantial. This can be explained by com-
paring the results of capacity wastage ratios in Figure 7 and Fig-
ure 4. From the comparison we can see that the capacity wastages
generated by the LSP and LCP algorithms are much closer to that

924

generated by the LCW algorithm for the general problem. For in-
stance, the capacity wastage ratios of the LSP and LCP algorithms
are nearly 2x of that generated by the LCW algorithm when (Lg =
300, Lr = 200), |C| = 10 and k = 8 for the basic problem. These
capacity wastage ratios are just about 1.4x of that generated by the
LCW algorithm under the same experimental settings for the gen-
eral problem. This is mainly because having the chance to choose
the G-server location from a list of eligible datacenters indirectly
makes the LSP and LCP algorithms assign clients to datacenters
with relatively low capacity wastages as they compare the costs of
different G-server locations. This is even more likely to happen for

5 1 T T T T Feweeees ¥

2 B ;

So8f i 1
v [T S

B 06T 1
a greseesd

0 04r 1
%, g —(Lg = 150, L = 100)|
2 e (Lg =300, L =200)
=] L L L L L L L L

3 0

1 2 3 4 5 6 7 8 9
Number of eligible datacenters per client

10

0.8

0.6 : 1

0.4

—(Lg =150, L = 100)| |
(Lg = 300, L, = 200)

0 . . | | | ! L L
1 2 3 4 5 6 7 8 9

Number of eligible datacenters per client

0.2

Cumulative Dist. Function

10

Figure 5: CDF of the number of eligible datacenters per client in sessions of |C| = 10 (left) and |C| = 50 (right).

(Lg =150, L =100); (IC| = 10)

a4k |:]R‘andom ‘ ‘ I 1

8 [_INearest

S -

© 3-|[_]JLBP 4

S [eee

g Cew

femy 2r 7

o

b4

2 4 6 8
Server capacity: k
(Lg =150, L = 100); (IC| = 50)
2 : ‘ ;
3 [JRandom
8 1.8 | [INearest 1
5 [ILspP
@ 161 |JLBp]
o Clicp
g 1.4+ Cew A
S 12} |
zZ
" safie Ditia 1A | T
2 4

6 8
Server capacity: k

(L, =300, L =200); (IC|=10)
+3 4 ||[__JRandom 1
8 [INearest
S [LspP
©3r [ILBP |
= [Jep
g [Lew
=25 i
: e | il |
; FIT@&.J{LE; i b i é
2 4 6 8
Server capacity: k
(Lg =300, L =200); (IC| = 50)
2 . T ' ‘
3 [JRandom
8 1.8 | [INearest i
[Jsp
§ 16 %LBP |
N LCP
g 141 @iew |
S 12f 1
z
1o e | [|10
2 4 6 8

Server capacity: k

Figure 6: Normalized costs of different algorithms for the general problem.

larger latency thresholds since there are more eligible datacenters
for placing the G-server as shown in Figure 8.

7. DISCUSSIONS

In our current model, we assume that servers are not shared
across sessions for simplicity of billing and management. How-
ever, if an MCG session runs for a duration that is significantly
shorter than the minimum billing interval of the servers offered by
a public cloud provider, some revenue loss may occur in the MCG
service provider. Hence, it is beneficial to keep its servers alive
when the session finishes prior to the end of the charged period so
that they can be reused to support a new session. Another possi-
bility is to share servers across concurrently ongoing sessions. If
the sessions with very different ending times are assigned to share
the same servers, the servers may be left running at low utiliza-
tions after the sessions with early ending times finish [31]. Thus,
the server cost might not be guaranteed to be reduced compared
to allocating each session to dedicated servers in which all players
depart together. The server allocation and assignment of players to
servers here can be mapped to a dynamic bin packing problem [30,
32] which is a hard combinatorial optimization problem and hence
requires further investigation.

925

In addition, our model can be extended to consider more gen-
eral situations where clients belonging to the same session may en-
tail different rendering or streaming qualities, due to heterogeneous
thin-client devices or personal preferences. This can be achieved
through modifying the cost calculation in the objective function
(2). Specifically, we can consider the server capacity k£ and data
transfer price b(d) as variables of each individual client rather than
constants. Our algorithms can easily be applied to this scenario.

8. CONCLUSION

In this paper, we have investigated the server allocation problem
for MCG with the objective of reducing the total server and band-
width cost to support an MCG session. We have discussed two
versions of the problem and proposed several efficient algorithms
to address both of them. Extensive trace-driven experiments show
that simply assigning clients to some random, the nearest, or the
cheapest eligible datacenters can make the total cost far worse than
optimum. It is important to consider the server capacity wastage in
order to achieve cost-effective MCG server allocation.

Capacity wastage ratio
N

[$)]

IN

w

N

o

(Lg = 150, L =100); (IC| = 10)

[JrRandom
| [_INearest
[LspP
rC_ILBP
Cep
| CJLew

» [RaTESP==tEa e N (ﬁﬁﬁfﬁrﬁﬁw

mﬁﬁﬁﬁ&

Server capacity: k
(L =150, L = 100); (|C| = 50)

-

[JrRandom
[INearest 1
[LspP
rC_ILBP
Cep

™™ 1 |

6 8
Server capacity: k

o
™
T

o
o

o
(S
T

o

Capacity wastage ratio
o
~

A~ o

w

Capacity wastage ratio
- N

o

(L, =300, L =200); (IC|=10)

[JRandom
| C_INearest
[JLsP
[[CLBP
[Jicp
[|[CJLew

el

P
2 4

6 8

Server capacity: k
(L, =300, L =200); (IC|=50)

N

T T

[JRandom
[INearest 1
[LsP
[P 1
[Jiep
r|Lcw]

i, [0

6 8
Server capacity: k

°
o
T

o
o

o
[N}
T

EHEmE .
2

o

Capacity wastage ratio
o
S

Figure 7: Capacity wastage ratios of different algorithms for the general problem.

g ' ' T

‘G cnmmunnd

Sosf |
-

B 06 i
D .

0047 :]
B oo oo —(Lg =150, L = 100)]
20 e I (g =300, =200
3 Fiulalalleh L L L L L L L 0 T

o

1 2 3 4 5 6 7 8 9 10 11 12 13
Number of eligible datacenters for G-server placement

5 1 o

2 [7T T e

Sost]
2 :

306 i
o

0 04F 1
Eoz _______ — (L = 150, LR:100)_
2% (Lg =300, L = 200)
> 1 1 L 1 1 1 1 1 1 1 1

3 0

1 2 3 4 5 6 7 8 9 10 1 12 13
Number of eligible datacenters for G-server placement

Figure 8: CDF of the number of eligible datacenters for G-server placement in sessions of |C| = 10 (left) and |C| = 50 (right).

9. ACKNOWLEDGMENTS

This research is supported by the National Research Founda-
tion, Prime Minister’s Office, Singapore under its IDM Futures
Funding Initiative, and by Singapore Ministry of Education Aca-
demic Research Fund Tier 2 under Grant MOE2013-T2-2-067. We
would like to thank Ronald Seet for his help on the Unigine Heaven
Benchmark tests. Dr. Yusen Li is one of the corresponding authors.

10. REFERENCES

[1] Amazon EC2. https://aws.amazon.com/ec2/.

[2] AWS gaming. https://aws.amazon.com/gaming/.

[3] Counter-Strike servers. http://goo.gl/Cecrxk.

[4] Dota2 session length. http://goo.gl/FjKvqf.

[5] Game Servers. https://www.gameservers.com/.

[6] Live streaming bitrates. https://goo.gl/pmKd4ql.

[7] Microsoft Azure. https://azure.microsoft.com/.

[8] Multiplay. http://multiplay.com/.

[9] Nvidia Cloud Gaming. http://goo.gl/Edpwbd.
[10] Nvidia GeForce NOW. https://goo.gl/xZ6DOI.
[11] Star Wars: Battlefront has 40-player cap.

http://goo.gl/ThILAW.
[12] Unigine Heaven Benchmark. http://goo.gl/sWqG7k.

926

[13] Why cloud hosting is the future of online gaming.
http://goo.gl/9YHfCK.

[14] J. Brun, F. Safaei, and P. Boustead. Managing latency and
fairness in networked games. Communications of the ACM,
49(11):46-51, 2006.

[15] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang, and
C.-L. Lei. Measuring the latency of cloud gaming systems.
In Proc. ACM MM, pages 1269-1272, 2011.

[16] K.-T. Chen, P. Huang, and C.-L. Lei. How sensitive are

online gamers to network quality? Communications of the

ACM, 49(11):34-38, 2006.

Y.-R. Chen, S. Radhakrishnan, S. K. Dhall, and S. Karabuk.

Server selection with delay constraints for online games. In

Proc. IEEE GLOBECOM Workshops, pages 882-887, 2010.

Y.-R. Chen, S. Radhakrishnan, S. K. Dhall, and S. Karabuk.

On the game server network selection with delay and delay

variation constraints. In Proc. IEEE COMSNETS, pages

1-10, 2011.

S. Choy, B. Wong, G. Simon, and C. Rosenberg. The

brewing storm in cloud gaming: A measurement study on

cloud to end-user latency. In Proc. ACM NetGames, pages

2:1-2:6, 2012.

(17]

(18]

(19]

[20] M. Claypool and K. Claypool. Latency and player actions in
online games. Communications of the ACM, 49(11):40-45,
2006.

[21] J. Garcia-Dorado and S. Rao. Cost-aware multi data-center
bulk transfers in the cloud from a customer-side perspective.
IEEE Transactions on Cloud Computing, PP(99), 2015.

[22] S. Gargolinski, C. St Pierre, and M. Claypool. Game server
selection for multiple players. In Proc. ACM NetGames,
pages 1-6, 2005.

[23] H.-J. Hong, D.-Y. Chen, C.-Y. Huang, K.-T. Chen, and C.-H.
Hsu. Placing virtual machines to optimize cloud gaming
experience. IEEE Transactions on Cloud Computing,
3(1):42-53, 2015.

[24] C.-Y. Huang, K.-T. Chen, D.-Y. Chen, H.-J. Hsu, and C.-H.
Hsu. GamingAnywhere: the first open source cloud gaming
system. ACM Transactions on Multimedia Computing,
Communications, and Applications, 10(1s):10:1-10:25,
2014.

[25] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hof3feld.
Gaming in the clouds: QoE and the users’ perspective.
Mathematical and Computer Modelling, 57(11):2883-2894,
2013.

[26] A.L.Jia, S. Shen, R. V. D. Bovenkamp, A. Iosup, F. Kuipers,
and D. H. J. Epema. Socializing by gaming: Revealing social
relationships in multiplayer online games. ACM Transactions
on Knowledge Discovery from Data, 10(2):11:1-11:29, Oct.
2015.

[27] K. Lee, D. Chu, E. Cuervo, Y. Degtyarev, S. Grizan, J. Kopf,
A. Wolman, and J. Flinn. Outatime: Using speculation to
enable low-latency continuous interaction for mobile cloud
gaming. In Proc. ACM MobiSys, pages 151-165, 2015.

[28] K.-W. Lee, B.-J. Ko, and S. Calo. Adaptive server selection
for large scale interactive online games. Computer Networks,
49(1):84-102, 2005.

[29] Y. Li, Y. Deng, R. Seet, X. Tang, and W. Cai. MASTER:
Multi-platform Application Streaming Toolkits for Elastic
Resources. In Proc. ACM MM, pages 805-806, 2015.

[30] Y. Li, X. Tang, and W. Cai. On dynamic bin packing for
resource allocation in the cloud. In Proc. ACM SPAA, pages
2-11, 2014.

[31] Y. Li, X. Tang, and W. Cai. Play request dispatching for
efficient virtual machine usage in cloud gaming. /[EEE
Transactions on Circuits and Systems for Video Technology,
25(12):2052-2063, Dec 2015.

[32] Y. Li, X. Tang, and W. Cai. Dynamic bin packing for
on-demand cloud resource allocation. IEEE Transactions on
Parallel and Distributed Systems, 27(1):157-170, 2016.

[33] L. Lin, X. Liao, G. Tan, H. Jin, X. Yang, W. Zhang, and
B. Li. Liverender: A cloud gaming system based on
compressed graphics streaming. In Proc. ACM MM, pages
347-356, 2014.

[34] Z.Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew.
Greening geographical load balancing. In Proc. ACM
SIGMETRICS, pages 233-244, 2011.

[35] J. Manweiler, S. Agarwal, M. Zhang, R. Roy Choudhury, and
P. Bahl. Switchboard: a matchmaking system for multiplayer
mobile games. In Proc. ACM MobiSys, pages 71-84, 2011.

[36] L. Pantel and L. C. Wolf. On the suitability of dead
reckoning schemes for games. In Proc. ACM NetGames,
pages 79-84, 2002.

927

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

L. Rao, X. Liu, L. Xie, and W. Liu. Minimizing electricity
cost: optimization of distributed internet data centers in a
multi-electricity-market environment. In Proc. IEEE
INFOCOM, pages 1-9, 2010.

Y. Rochman, H. Levy, and E. Brosh. Efficient resource
placement in cloud computing and network applications.
ACM SIGMETRICS Performance Evaluation Review,
42(2):49-51, 2014.

R. Shea, D. Fu, and J. Liu. Rhizome: utilizing the public
cloud to provide 3d gaming infrastructure. In Proc. ACM
MMSys, pages 97-100, 2015.

D.-N.-B. Ta, T. Nguyen, S. Zhou, X. Tang, W. Cai, and

R. Ayani. Interactivity-constrained server provisioning in
large-scale distributed virtual environments. /EEE
Transactions on Parallel and Distributed Systems,
23(2):304-312, 2012.

H. Tian, D. Wu, J. He, Y. Xu, and M. Chen. On achieving
cost-effective adaptive cloud gaming in geo-distributed data
centers. [EEE Transactions on Circuits and Systems for
Video Technology, 25(12):2064-2077, Dec 2015.

H. Wang, R. Shea, X. Ma, F. Wang, and J. Liu. On design
and performance of cloud-based distributed interactive
applications. In Proc. IEEE ICNP, pages 3746, 2014.

D. Wu, Z. Xue, and J. He. iCloudaccess: Cost-effective
streaming of video games from the cloud with low latency.
IEEE Transactions on Circuits and Systems for Video
Technology, 24(8):1405-1416, 2014.

Z. Wu and H. V. Madhyastha. Understanding the latency
benefits of multi-cloud webservice deployments. ACM
SIGCOMM Computer Communication Review, 43(2):13-20,
Apr 2013.

S. Yaw, E. Howard, B. Mumey, and M. P. Wittie. Cooperative
group provisioning with latency guarantees in multi-cloud
deployments. ACM SIGCOMM Computer Communication
Review, 45(3):4-11, Jul 2015.

M. Yu, C. Zhang, Z. Qi, J. Yao, Y. Wang, and H. Guan.
Vgris: virtualized gpu resource isolation and scheduling in
cloud gaming. In Proc. ACM HPDC, pages 203-214, 2013.
L. Zhang and X. Tang. Optimizing client assignment for
enhancing interactivity in distributed interactive applications.
IEEE/ACM Transactions on Networking, 20(6):1707-1720,
2012.

L. Zhang and X. Tang. The client assignment problem for
continuous distributed interactive applications: analysis,
algorithms, and evaluation. /IEEE Transactions on Parallel
and Distributed Systems, 25(3):785-795, 2014.

Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, and J. L.
Hellerstein. Dynamic service placement in geographically
distributed clouds. /IEEE Journal on Selected Areas in
Communications,, 31(12):762-772, 2013.

H. Zheng and X. Tang. Analysis of server provisioning for
distributed interactive applications. IEEE Transactions on
Computers, 64(10):2752-2766, Oct 2015.

H. Zheng and X. Tang. The server provisioning problem for
continuous distributed interactive applications. [EEE
Transactions on Parallel and Distributed Systems,

27(1):271-285, Jan 2016.

