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ABSTRACT

Search engines encounter a time vs. space trade-off: search respon-
siveness (i.e., a short query response time) comes at the cost of
increased index storage. We propose a hybrid method which uses
both (a) the recently published mapping-matrix-style index BitFun-
nel (BF) for search efficiency, and (b) the state-of-the-art Partitioned
Elias-Fano (PEF) inverted-index compression method. We use this
proposed hybrid method to minimize time while satisfying a fixed
space constraint, and to minimize space while satisfying a fixed
time constraint. Each document is stored using either BF or PEF,
and we use a local search strategy to find an approximately optimal
BF-PEF partition. Since performing full experiments on each can-
didate BF-PEF partition is impractically slow, we use a regression
model to predict the time and space costs resulting from candidate
partitions (space accuracy 97.6%; time accuracy 95.2%). Compared
with a hybrid mathematical index (Ottaviano et al., 2015), the time
cost is reduced by up to 47% without significantly exceeding its
size. Compared with three mathematical encoding methods, the
hybrid BF-PEF index allows performing list intersection between
around 16% to 76% faster (without significantly increasing the index
size). Compared with BF, the index size is reduced by 45% while
maintaining an intersection time comparable to that of BF.
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1 INTRODUCTION

Search engines face a trade-off between space and time [1, 7, 24]: if
we compress the underlying index, we reduce the system’s query
responsiveness. The most common search-engine index structure
is the inverted index where for each term, we store a posting list
containing the docIDs of documents containing that term [6, 18].

The Partitioned Elias-Fano (PEF) [23] inverted-index compres-
sion method is a state-of-the-art method, which uses a shortest-path
algorithm [8] to dynamically partition the posting list into variable-
length blocks with clustered docIDs within each block; Elias-Fano
encoding [12, 13] is used blockwise for random access.

Microsoft’s Bing search engine uses a newly described index
structure BitFunnel (BF) [15], which is a bitmap-like data struc-
ture: terms map to one or a few rows, while columns correspond
to individual documents. If a term appears in the document, the
corresponding bit positions are set to 1. In this way, intersection is
performed using simple bitwise AND operations. However, the Bit-
Funnel is much larger than the corresponding compressed inverted
index.

In this paper, we combine the advantages of BF (intersection
efficiency) and PEF (space efficiency), and propose a hybrid index.
We partition the document corpus into two parts, with one part
allocated to BF and the other allocated to PEF. The choice of parti-
tion affects the time-space trade-off, and can be chosen to suit the
search engine’s requirements. We envisage choosing this partition
so that either a time threshold or a size threshold is not exceeded.

The major contributions of this paper are as follows:

(1) We use the local search method to find an approximate op-
timal partition of the document corpus while satisfying a
pre-specified threshold condition.

(2) For a large dataset, it is impractical to repeatedly estimate
the index’s size and intersection time experimentally, so we
develop and utilize a machine learning approach to estimate
the index size and intersection time of the hybrid index with
a given partition.

(3) We implement and conduct experiments on the proposed
hybrid index. More specifically:
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e we assess three machine learning methods (GBRT [14],
SVR [11], and RF [5]) for predicting the space and time
costs of the resulting BF-PEF hybrid index (given an as-
signment of the documents to BF and PEF), and ultimately
select support vector regression (SVR) which consistently
outperforms the other two methods in terms of error rate;

e we investigate the convergence of the local search process
on the size and average intersection time of proposed
hybrid index under various thresholds; and

e we compare the space-time trade-off of the proposed hy-
brid index against several mathematical encoders, along
with a hybrid mathematical index.

This paper is structured as follows. In Section 2 we describe pilot
experiments which motivate the design decisions throughout the
paper. Section 3 gives a minimalistic background to the relevant
material. Section 4 reviews alternative hybrid index methods, and
their relevance to the proposed hybrid BF-PEF method. A detailed
description of the method used to generate an approximately opti-
mal BF-PEF partition is given in Section 5. Experimental results are
given in Section 6. We conclude with some future research ideas in
Section 7.

2 PILOT EXPERIMENTS

In this section, we describe some preliminary experiments for some
seemingly natural approaches to choosing a BF-PEF partition, i.e., a
partition of the documents into two parts, one stored using BF and
the other stored using PEF. These results motivate the subsequent
use of machine learning and local search in optimizing the parti-
tion. These pilot experiments use the GOV2 document corpus and
MillionQuery set, described in Section 6.1. We also describe some
alternative methods.

With N documents there are 2 possible BF-PEF partitions (and
N is large in most search engines, e.g., billions of documents). Ex-
haustive inspection of all 2NV partitions is unrealistic, and thus the
goal is to find an approximately optimal partition. Further, it is
practically far too time-consuming to generate a hybrid index and
perform experiments on it (like in Table 1) for each partition we
wish to test. Moreover, there is no single “best” partition, rather we
seek a partition which is optimized according to criteria determined
by the search engine. For example, if the search engine has X TB of
memory available for index, we cannot violate this hard restriction.
Similarly, a search-engine operator may have their own constraints
regarding the system’s responsiveness.

To summarize, we have three major design constraints:

(1) we cannot find an optimal BF-PEF partition, but only an
approximation,

(2) it is impractical to perform fully fledged experiments for a
large number of candidate BF-PEF partitions, and

(3) we anticipate hard restrictions on the index size and inter-
section time imposed e.g. by hardware or the operator.

An alternative straightforward approach is to randomly assign
documents to either BF or PEF; we randomly choose a proportion,
and randomly assign that proportion of documents to BF and the
remainder are assigned to PEF, and we tabulate experimental results
of partition in Table 1. While this randomized hybrid method com-
bines the advantages of BF and PEF, the trade-off is unimpressive:
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we incur around 75% of the large space cost of BF while being al-
most 1.6 times as slow as BF. Thus, we need to use a more intelligent
way of partitioning the documents.

Table 1: The index size (space) and average intersection time
(time) on BF, PEF, and a BF-PEF hybrid method with docu-
ments randomly assigned to BF and PEF.

BF  BF-PEF (rand) PEF

space (GB) 13.40 9.76 3.25
time (ms) 1.45 2.29 3.19

We also consider incorporating a bitmap compression method,
such as EWAH [17]; we tested this approach and observed a minor
space reduction of less than 5% when compressing the BitFunnel
index of GOV2. We attribute this behavior to BitFunnel’s high
density of 1s (usually 0.1 to 0.2), which results in short all-0 and
all-1 subsequences, leading to poor compression.

Recently, Liu et al. [19] proposed a dictionary-based compression
method for BitFunnel with additional false positives. On the GOV2
dataset, we found that the compression rate of this method is around
30%, but its intersection time increases by about 50%, and its false
positive rate is doubled which is consistent with the results in that
paper. We thus abandon BF compression approaches.

A possible way to compress an inverted index is via mathematical
encoding [2, 3, 25, 30]. However, PEF achieves a higher compression
rate while simultaneously allowing efficient list intersection.

We investigate how the BF-PEF partition is influenced by some
basic features:

e URL, the lexicographic order of the document URLs;
e DL, the length of the documents without duplicate terms
(i-e., the number of unique terms in document);
e DF, the mean document frequency of terms in the document;
o dispersivity, which measures the lack of clustering of a docu-
ment in the inverted index, as per f3 in Section 5.1.1; and
e TF-IDF, a mean TF-IDF calculated as per fi1 in Section 5.1.1.
We perform some toy experiments involving these basic factors
from which we glean insights into how we might design a fully
fledged hybrid BF-PEF index.

For each basic feature f, we create the set S¢ of documents in
GOV2 which have the highest 10% of that f’s possible values. We
create an artificial document corpus Dy for each f by randomly
selecting 100 000 documents in S¢. For each Dy, we generate the BF
and PEF indexes, and compare their size and average intersection
time. In order to compare features with each other, we measure the
size according to

size of index generated from Dy

*f = Yotal number of docIDs in posting lists in D¢

and the time according to

average intersection time on index generated from D¢

tr =
f total number of docIDs in posting lists in Dy

We also perform the same computations for the lowest 10% of the
possible f values, and distinguish between the two cases as “high”
and “low”. We plot the results in Figure 1.
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Figure 1: The size sy and time ¢; of the BF index and PEF
index constructed for the toy document corpus Dy for the
basic feature f € {URL, DL, DF, disp., TF-IDF}.

To investigate the sensitivity to the random document corpus
Dy, we also repeat this computation 5 times, and observe negligible
difference between trials.

We make the following observations:

OBSERVATION 1. Multiple basic features significantly influence
the size and intersection time of the BF and PEF indexes.

For example, for BF we observe that a greater DF leads to a
greater spp, which we attribute posting list density: a dense posting
list maps to unshared rows in the BitFunnel. We also see that for
PEF, a low dispersivity results in a small index size and intersection
time, indicating that docID clustering benefits PEF.

OBSERVATION 2. For either the BF or PEF component of a hybrid
BF-PEF index, a high (or low) value of a single feature may be simul-
taneously advantageous for size (resp. time) while disadvantageous
for time (resp. size).

For example, for PEF a greater DF leads to a smaller index, but
a greater intersection time. We expect this is because a high DF
implies that most of the PEF-compressed documents contain high-
frequency terms in the corpus, resulting in longer posting lists
being compressed (and decompressed during list intersection).

OBSERVATION 3. A high (or low) value of a single feature may be
simultaneously advantageous for size and time for both the BF and
PEF components of a hybrid BF-PEF index.

For example, a lower dispersivity results in a smaller sg;5p and
tdisp. for both BF and PEF. Since PEF is designed to utilize clustering,
it is apparent why a low dispersivity results in reduced sq;sp. and
tdisp. for the PEF index. For BF, a lower dispersivity also results in
a smaller sgjs, and Zgisp , although it is not apparent why.

Some of these observations are predictable, while others are not;
and some of these observations result in a quandary, where there
is not an apparent best way to assign documents to BF or PEF. In
the subsequent experiments (Section 6; see in particular Section 6.5
for feature-based experiments), we incorporate additional features,
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and anticipate varying and unpredictable effects on BF-PEF indexes.
Thus, we expect it is not straightforward to find a near-optimal
BF-PEF partition using simple threshold methods.

This unpredictable feature behavior motivates the use of a ma-
chine learning regression approach, which predicts the index size
and intersection time of hybrid BF-PEF indexes based on multiple
document features. In particular, this is the motivation behind the
feature vectors in Section 5.1.2.

3 BACKGROUND

In search engines, the most common index structure is the inverted
index [6, 18], a database where each term t has a corresponding
posting list €, which stores an ordered list of the docIDs that the
term ¢ appears in, namely

£[t] = (docIDq, docIDy, . ..,docIDy).

For conjunctive queries, the relevant documents for a query {t;}
are given by the list intersection N;{[t;], which is computed after
a query is made (i.e., “online”) and thus needs to be performed
efficiently.

Ordinarily we use some form of compression to reduce the size
of the inverted index. To avoid decompressing entire posting lists
during query processing, we typically divide the posting lists into
blocks which are individually compressed and decompressed (to
facilitate random access).

Differing from the traditional fixed-length block encoding, Parti-
tioned Elias-Fano (PEF) [23] encoding uses dynamic block sizes in
order to make use of clustering in the inverted index. The authors of
[23] also described a method for obtaining an approximate optimal
block partition, where each block uses Elias-Fano encoding [12, 13].

BitFunnel [15] is a bitmap-like mapping matrix which is based
on a Bloom filter [4, 28]. In a BitFunnel, each term is mapped to one
or a few rows, with each column representing a document. If a term
appears in a document, the corresponding entry (or entries) is set to
“1” (otherwise “0”). For conjunctive queries, to obtain the documents
containing all the query terms, we perform an AND operation on
the rows that the query terms map to. A “1” in the result usually
indicates a document which contains all the query terms, although
the Bloom filter admits the possibility of false positives.

There are some properties of BitFunnel which affect its opera-
tion, but only indirectly affect the results in this paper. Specifically:
(a) given a density, BitFunnel generates an index with a low false
positive rate while approximately achieving that density; (b) BitFun-
nel usually has a false positive rate of less than 5%. False positives
are not hugely problematic in practice, since e.g. they might be
automatically eliminated during top-K ranking; (c) documents are
divided into shards according to their length, and BitFunnel use
“frequency-conscious” signatures (i.e., multiplexing) to reduce the
storage space; and (d) to speed up the intersection process, rows
are ascribed a rank, whereby high-ranked rows are shorter and are
expanded (self-concatenated) before being intersected with low-
ranked rows. In experiments in Section 6, we use BitFunnel’s default
settings, including setting the density to 0.15 and the number of
shards to 11.

Compared with the list intersection approach, a BitFunnel index
is much larger (e.g. 4.1 times larger in Table 1) but also much faster
to query (2.2 times faster in Table 1). This results in an “all your



eggs (documents) in one basket (index)” trade-off, and this paper is
about finding an in-between, hybrid approach.

Motivated by both hardware limits and operator-set limits, we
consider two setups:

(1) minimizing the average intersection time subject to a fixed
maximum index size, and

(2) minimizing the index size subject to a fixed maximum aver-
age intersection time.

4 RELATED WORK

To reduce the storage overhead, prior research proposed a variety
of mathematical encoding methods for inverted indexes, such as
PForDelta (PFD) [30], binary interpolative coding [21], Vbyte [25]
(Varint-G8IU [27] exploiting SIMD operations), Simple9 and Sim-
plel6 [2, 3], and so on. We use OptPFD [29] (an improved version
of PFD), binary interpolative coding, and Varint-G8IU as baselines
in Section 6.4.

These mathematical encoding methods minimize the number of
bits used to represent the docIDs, thereby achieving compression.
However, the constant-size block division of the posting list is
incompatible with clustering. To illustrate, if we split the toy posting
list

(1,2,3,4,5,6,7,8,9,10, 20, 21, 22, 23, 24, 30)
into length-4 blocks of docIDs
(1,2,3,4),(5,6,7,8), (9, 10, 20, 21), (22, 23, 24, 30)

we break apart the clusters of docIDs. To utilize this clustering
among docIDs, and EF encoding for random access, in the proposed
approach, we use PEF to compress one part of the document corpus.
For the documents not compressed using PEF, we use BitFunnel.
This proposed hybrid method deviates from the usual approach of
using a single index structure or compression method for the whole
corpus.

We also remark that the documents assigned to BF do not over-
lap with the documents assigned to PEF, thus the BF results and
PEF results do not require a subsequent time-consuming “merging”
operation.

We take advantage of the bitwise operation of BF for time ef-
ficiency and the dynamic block partitioning of PEF for space effi-
ciency. PEF’s compression is comparable to the best mathematical
encoding method we consider in this work, while also significantly
outperforming them in terms of intersection time (see Section 6.4).

Some hybrid indexes have been previously proposed, combining
different types of indexes to obtain a smaller index or a shorter
query time. Some methods partition the corpus by term [9, 20]
where different type of index (or server) is selected for each posting
list. Unlike their approaches, the proposed method partitions the
document corpus by document. In this way, the partitioning may
change the distribution of the inverted index (e.g., the length and the
clustering of posting lists). We expect different document subsets
adapt to different index type.

Ottaviano et al. [22] combined three mathematical encoding
methods (PFD [29], binary interpolative coding [21], and Varint-
G8IU [27]) to generate a hybrid index. Each block is assigned the
compression method which minimizes the average query time
through the greedy algorithm described in [26] while subject to
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a spatial threshold. Given a query log, Ottaviano et al. randomly
sample a few blocks to generate the training set, and use a linear
model to predict the decoding time of each block during query
processing using this training set.

Unlike the proposed method, the method by Ottaviano et al.
has a fixed block size, and does not take advantage of dynamic
partitioning for inverted indexes like PEF. Moreover, it does not
incorporate a bitmap-like index structure. We use [22] as a baseline
(hybrid-PIV in Section 6.4).

Kane and Tompa [16] introduced “semi-bitvectors”: the docu-
ments are grouped and reordered to increase the clustering in post-
ing lists. They divide each posting list by a cut point into two parts:
the denser front part for the bitvector and the remainder of the
inverted index is compressed by PFD [30]. The cut point for each
posting list is based on the bitvector density threshold F and the
number of groups G: two user-defined parameters. In principle, we
could apply a threshold on the intersection time or index size to
the semi-bitvector method by repeatedly adjusting the parameters
F and G and rebuild the index multiple times until the specified
threshold is satisfied. However, this approach neither optimizes
size nor time. In the proposed method, we use an iterative approach
to find an approximately optimal BF-PEF partition; we minimize
the intersection time while staying within a size threshold (or vise
versa with “intersection time” and “size” switched).

A major structural difference is that the proposed method splits
the document corpus into two parts, whereas Kane and Tompa’s
approach individually splits the posting lists. With semi-bitvectors,
it is necessary to perform list intersection across two disparate in-
dex structures, which hinders parallelization and the application of
Kane and Tompa’s approach to e.g. distributed systems. Instead, par-
titioning the document corpus (as in the proposed approach) avoids
this problem, since each partition can be intersected independently.

5 HYBRID BF-PEF PARTITION SELECTION

The proposed approach has three main components depicted in
Figure 2:

e We use machine learning to develop regression models which
compare BF-PEF partitions. We compare three different mod-
els, but find support vector regression to be the most suitable.

e Once a regression model is generated, we use a local search
approach where we perturb the “current” partition (starting
with an initialized partition), and replace it by the perturbed
partition if the relevant regression model considers the per-
turbed partition better.

e We consider two ways of perturbing the current partition:
one random, and one which prioritizes either PEF over BF
or BF over PEF.

5.1 Prediction

5.1.1 Feature selection. We predict the size and intersection time
of a hybrid index (arising from a BF-PEF partition) using machine
learning. For an arbitrary document d, we have the following docu-
ment features:

o the features fi and f3 are respectively URL and DL, as used

in the pilot experiments;
o the number f; of (not necessarily distinct) terms in d;
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Figure 2: Flow chart for generating an approximately optimal BF-PEF partition. Machine learning is used to give a prediction
model. The local search accepts a perturbed BF-PEF partition if it is predicted to outperform the current BF-PEF partition.

o the shardID f; of the document in the BF index, which varies
in BitFunnel according to the number of unique terms in a
document;

o the maximum f5, minimum fs, and mean f7 of the document
frequency among the terms t in the document (i.e., the length
of the posting list for t);

o we define the dispersivity fg as

1 (docID; — docID;)?

Me\Nb—a+1 logo( — i1 + 1)

ed jela by 10
where i is the index for document d in the posting list ¢;,
and a = max(1,i—32) and b = min(|£[t]|, i + 32), as used in
the pilot experiments;

e the maximum fy, minimum fjg, and mean fi; of the TF-IDF
score of the document d, restricted to the terms ¢t € S, where
S is the smallest set of highest-frequency terms such that
sum of the frequencies of terms in S accounts for 50% of the
total frequency; this approach is inspired by [16] because
high frequency terms usually play a more important role on
index size and query time; and

e query count fig, i.e., the number of query terms appearing

ind.
fi2 Lo
fu
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fs 0.6
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Figure 3: Feature correlation heat map.

We exclude some highly correlated features based on experi-
ments much like the pilot experiments (Section 2). For each feature,
we construct a vector of 8 values as in Figure 1. We normalize the
feature values to [0, 1], then calculate the correlation [10] between
each pair of features; we plot the results in Figure 3. We exclude
the features with correlation exceeding 98%: document length f5,
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document unique length f3, and shardID f; have pairwise correla-
tion exceeding 98%, so we exclude f; and fi. While other pairs of
features exhibit varying levels of correlation, there is virtually no
meaningful distinction between f3, f3, and f4, so we exclude two
of them so as to not add undue weight. The remaining features, i.e.,

those in { f1, f3} U {f5, fs. . .., fi2}, are denoted fl through flo.

5.1.2  Sample Extraction and Model Selection. In this section, we
introduce how we define samples which we use in machine learning
(to train the two prediction models). Generating a hybrid index
based on a whole corpus is time consuming, so we construct a
practical set of samples to train the model.

For the document corpus D, for each i € {1,..., 10}, we define
z)i(low) .'D:hlgh)

and as the set of documents respectively with the

least and greatest f, values, both comprising approximately 25%
of all documents. We define Dlgmedmm) =D\ (Dlglow) v Dghlgh)),
which comprises about 50% of all documents. For the purpose of
this paper (i.e., for use with the GOV2 dataset), we define the set of
pairs

N ={(5,7.5), (7.5, 10), (10, 25), (25, 50), (50, 100),
(100, 150), (150, 200), (200, 250)} X 10°,
so e.g. (500000, 750 000) € N, and so on.

Given a pair (a,b) € N we randomly select a number t €

{0,...,10} and a random ¢-subset F C {1,...,10}. Each i € F in-

dexes feature fi, and we randomly select D; € {Dghigh), Z)i(medium),

Z)l.(low) }, and for each document d € D, we assign it the score
score(d) :=|{i € F: d € D;}|. (1)
We randomly choose n € {a, ...,b—1} and form a document corpus

of size n consisting of the documents d € O with the greatest score.
If t = 0, we randomly select any n documents from D. Informally,
we randomly choose a “high”, “medium”, or “low” feature condi-
tion for each of a random selection of features, and we choose n
documents which satisfy the most conditions.

To reduce the time of sample extraction, we randomly choose
pairs (a, b) from N so that lower-valued pairs have a greater proba-
bility of being selected. This gives a family ¥ of document corpuses.
We split ¥ into training and validation sets.

We randomly choose two document corpuses DB and pFEF)
from ¥ to generate a partition (which might intersect, but we ignore
this as we expect it has a negligible effect). We compute the average

feature values for both of these corpuses, giving fl(BF) through



fl(;} F) (from D®F)) and fl(PEF) through f1(§ EF) (from DFPED) we
define the two sample vectors used for training: the size vector

Gsize = <f1(BF)’ cee ,fl((])gF)’ |D(BF)|’
fl(PEF), . ,ff(fEF), |DPED| spp + SPEF>

and the time vector

3time = < Al(BF)’ cee ’fl((?F)’ |D(BF)|,

I(PEF), - fl(g’EF)
where spF (resp. tgF) is the size (resp. average intersection time) of
the index formed when using BitFunnel on the corpus D®F) and
spEF (resp. tpgr) is the size (resp. average intersection time) of the
index formed when using PEF on the corpus D PEF), Doing this
repeatedly gives a set Mgj,e of size vectors and a set Mjme of time
vectors.

| DPER)|, tgp + fPEF>

The purpose of this elaborate generation process is to include
a diverse selection of vectors in the training and validation sets,
thereby helping the machine learning process to identify the (size
and time) impact of the features.

For model selection, we use three common regression models:
the gradient-boosted regression tree (GBRT) model [14], a support
vector regression (SVR) model [11], and a random forest model [5]
for training. Further, we use a validation set to tune the parameters.
An experimental comparison of these models is given in Section 6.2.

Once the size and time regression models are generated, we apply
these two models to the entire document corpus which assist local
search to judge the “candidate” partition and the “current” partition.
Noted that all the samples in test sets we use in experiments (see
Section 6.2) are real BF-PEF partitions (of the whole document
corpus, rather than artificial sets as for training and validation
samples).

5.2 Partition

We use a local search approach to find an approximately optimal
partition. We perturb the current partition, and accept the perturbed
partition if the chosen model (derived via machine learning, as in
Section 5.1) predicts the perturbed partition performs better (either
in terms of size or time, depending on which setup is chosen). This
is repeated some number of times; around 200 iterations seems suf-
ficient with the present paper’s experimental setup (see Section 6.3).
The details are given in Algorithm 1.
There are two different methods for selecting the documents P
in Algorithm 1 (Lines 3, 5, and 7):
(1) Random selection (used with probability 20%). Some subset
F of the features is randomly selected. We select a random
n € {250 000, ...,1250000} (n is the number of documents
in P, account for 1% to 5% of the whole corpus), and choose
the n documents with the highest score, as defined by eq. (1).
(2) Priority selection (used with probability 80%). This selection
method is the same as random selection, except in calculating
eq. (1), where we choose a collection of documents that
are more friendly to the destination index. Specifically, we
choose D; as either “high” or “low” respectively whenever
a greater or lesser value of the corresponding feature f,
benefits BF (resp. PEF) in terms of both size and time, and
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Algorithm 1 Local search method

Input: Document corpus, the number of iterations T
Output: An approximately optimal partition
1: Randomly partition the document corpus into two parts P =
{P(BF) , P(PEF) }
2: for i from 1to T do
3. Choose a subset P ¢ ¢ (BF) > two different methods
4 Replace the current partition # with the perturbed partition
{P B\ p, PPED) | Py if the perturbed partition is predicted
to perform better
5. Choose a subset P ¢ 9 (PEF) > two different methods
6:  Replace the current partition  with the perturbed partition
{PB) Y p, PFPEF) \ P} if the perturbed partition is predicted
to perform better
7. Choose a subset P; C P®F) and a subset Py C o (PEF)
> two different methods
8. Replace the current partition £ with the perturbed partition
{(P(BF) \P1)UP,, (P(PEF) \P;)UP; } if the perturbed partition

is predicted to perform better
9: end for

we refer to these features as BF-friendly features (resp. PEF-
friendly features). When prioritizing BF, we randomly choose
between “high” or “low” for non-BF-friendly features, and
likewise for non-PEF-friendly features when prioritizing
PEF.

For example, a lower dispersivity for PEF reduces both the index
size and intersection time, and thus it is a PEF-friendly feature.
In fact, dispersivity is also a BF-friendly feature. A non-example
is document frequency for PEF: a higher value reduces the index
size, while a lower value reduces the intersection time, so it is not
PEF-friendly.

When using friendly features in Algorithm 1, when a subset of
the documents are moved from one part to the other, “friendly” is
defined according to the destination. Specifically, in Algorithm 1,
we use PEF-friendly features in Line 3 and for P in Line 7, and we
use BF-friendly features in Line 5 and for P; in Line 7.

Suppose we apply a time threshold, i.e., an upper bound on the
average intersection time. We choose between the current partition
and the perturbed partition as follows:

(1) If the current partition and the perturbed partition both
satisfy the time threshold, we choose the partition which
minimizes index size.

(2) Otherwise, we choose the partition which minimizes time.

Above, both size and time are predicted using a machine-learning
model. When instead applying a size threshold, we do the same
thing with “time” and “size” swapped.

6 EXPERIMENTAL RESULTS

We experiment on the proposed hybrid BF-PEF index, which we ab-
breviate to hybrid-BP, under various circumstances. We explore the
accuracy of the machine-learning regression models, the impact of
the initial partition in the local search process, and the performance
of hybrid-BP in terms of index size and average intersection time.



We compare hybrid-BP against the mathematical hybrid index pro-
posed in [22], which we call hybrid-PIV; we also compare hybrid-BP
against the mathematical encoders involved in hybrid-PIV. We also
explore the feature distributions in hybrid-BP, and false positive
rates.

6.1 Experiment Setup

Our experiments are performed using public GOV2 dataset, contain-
ing 25205 183 documents with 6 220 848 172 postings. We remove
extra information, such as HTML tags, while retaining the title and
body parts. We do not remove any stop words. For query datasets,
we use the public query sets (a) MillionQuery, containing 58 506
queries from the 2007, 2008, and 2009 TREC Million Query Tracks!,
and (b) TerabyteQuery, containing 99 322 queries from the 2006
TREC Terabyte Track?. In both query sets, the terms which do not
exist in the GOV2 document set are filtered out, and the aforemen-
tioned query counts are after filtering. We do not remove the query
that only have one term.

All experiments are run on a platform with 2x Xeon E5-2650 v4
CPUs at 2.20GHz with 512GB RAM; both CPUs have 12 physical
cores (with 24 threads). The L1 instruction cache and data cache is
32KB, L2 cache is 256KB, and L3 cache is 30 720KB. All the programs
are implemented in C++11 and complied with g++ version 5.4.0
with -O2 optimization. The operating system is Linux CentOS 6.5
with kernel version 2.6.32.

We use the downloadable PEF? and BF* source code for testing,
with both using their default settings, and we set the density of
BitFunnel to 0.15 for all 11 shards. In the experiments, we reorder
the documents according to URL. For machine learning, we use
sklearn® by python.

6.2 Model Selection

For training and validation of the prediction models, we generate a
set of size vectors Mg, and a set of time vectors My, according
to the procedure in Section 5.1.2. We randomly choose 380 corpuses
from ¥, of which 340 are used for generating the training set,
and 40 are used for generating the validation set. The training set
is generated from the sample vectors for 5000 random pairs of
corpuses (where each pair acts as a BF-PEF partition for training),
and the validation set is generated from the sample vectors for
1000 random pairs of corpuses. We also add two extra BF-PEF
partitions to the training set: one where the whole document corpus
is assigned to BF (and no documents are assigned to PEF), and one
where the whole document corpus is assigned to PEF.

We generate prediction models for both “size” (i.e., total index
size, sgp + spgr) and “time” (i.e., average intersection time, fpF + tpgF).
We measure time using the MillionQuery query set. For both size
and time, we test three regression models, the gradient-boosted
regression tree (GBRT) model, a support vector regression (SVR)
model, and a random forest (RF) model.

The test set is from samples generated from 100 BF-PEF partitions
(of the whole document corpus), which are randomly generated

!https://trec.nist.gov/data/million.query.html
Zhttps://trec.nist.gov/data/terabyte06.html
3https://github.com/ot/partitioned_elias_fano
“https://github.com/BitFunnel/BitFunnel
Shttp://scikit-learn.org/stable/index.html
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similar to the procedure described in Section 5.1.2. We randomly
choose the number of documents n to assign to BF, and we assign
BF the n documents which achieve the top score as per eq. (1) while
other documents are assigned to PEF.

We compare the accuracy of the six prediction models (size and
time; GBRT, SVR, and RF) against experimental measurements.
When a value a is estimated as d, the relative error is defined as
|(d¢ — a)/a|. Table 2 records some statistics of the relative error: its
mean, and first, second, and third quartiles.

Table 2 indicates that SVR is the best regression model among the
three, in terms of both size and time. Consequently, we exclusively
use SVR for the remaining experiments. Moreover, we use the SVR
model as trained in this section. The small mean relative error (less
than 5%) indicates the predictions are suitable for practical use.

6.3 Initial Partition

In this section, we investigate the influence of the initial partition on
the local search method in Section 5.2. We choose initial partitions
using the method for generating BF-PEF partitions in Section 6.2:
we use 5 with a time threshold, and another 5 with a space threshold.
We plot the predicted hybrid index size and average intersection
time in Figure 4 where different colors correspond to different initial
partitions. We also include points which indicate the actual (i.e.,
not predicted) values after 500 iterations.

—~ ‘ ‘ ‘ T
g time threshold -+ space threshold
S
i
X
Q
N
w
x
%]
-]
= | | \ \
100 150 200 250

@

E, : : T
E ---------- space threshold

=

.8

©

&

g

E e
) ‘ ‘ ‘
= 50 100 150 200 250

number of iterations

Figure 4: With 5 different initial partitions, after some num-
ber of iterations of the local search procedure (x axis), we
measure the hybrid index size (top), and the average inter-
section time (bottom), with either a time threshold of 2.3ms
(solid) or a space threshold of 7000MB (dotted). We also in-
clude marks to indicate the exact measurements after 500
iterations. (Note that the y axes do not start at 0.)

We make three observations from Figure 4:

(1) Different initial partitions have a negligible impact on the
final result, i.e., they approximately converge. This suggests


https://trec.nist.gov/data/million.query.html
https://trec.nist.gov/data/terabyte06.html
https://github.com/ot/partitioned_elias_fano
https://github.com/BitFunnel/BitFunnel
http://scikit-learn.org/stable/index.html

Table 2: The relative error when predicting the index size and average intersection time of the resulting BF-PEF index using
GBRT, SVR, or RF; we list the first, second, and third quartiles, and the mean relative error.

index size average intersection time
1-st quart. 2-nd quart. 3-rd quart. 1-st quart. 2-nd quart. 3-rd quart. mean
GBRT 3.69% 6.66% 11.82% 3.45% 9.49% 26.48% 15.12%
SVR 1.09% 2.03% 2.90% 1.77% 3.61% 7.08%  4.81%
RF 3.73% 7.33% 25.16% 14.99% 3.24% 11.92% 24.23% 16.95%
that the local search is not getting stuck in local optima a 15 PR, " = :
(where we would expect non-converging measurements = »— hybrid-BP (Mill) —@— hybrid-BP (Tera.)
- .
from various local optima), which gives confidence that the S 10 X BF (Mlu-) ® BF (Tera) ]
process is reaching a close-to-optimal BF-PEF partition. RS X PEF (Mill) ® PEF (Tera)
(2) Only a small number iterations are needed (200 iterations, kS 51 ]
1%}
say), before an approximately optimal partition is reached. % 0—o
Consequently, there is not a massive overhead introduced e [ [ ‘ ‘ ‘ ‘
by this process. 1 15 2 25 3 35 4 45

(3) In these experiments, we see the prediction of the index size
and average intersection time is accurate: within 5% of the
actual values after 500 iterations. This is consistent with the
observations in Section 6.2.

These three observations suggest that the local search method is
a suitable approach to finding an approximately optimal BF-PEF
partition.

6.4 Time and Space Trade-off

We investigate the trade-off between space (index size) and time
(average intersection time). To generate the approximately optimal
partition, we use the local search method (500 iterations) described
in Section 6.3 with n = 12500000 (half of the whole document
corpus) assigned to BF while others are in PEF for initial partition.
The observations in Section 6.3 indicate this decision does not have
a major impact on the size or time of the resulting BF-PEF partition.
In this section the index size and average intersection time are
measured after the index is generated rather than predicted by
regression models. We do not normalize them as in Figure 1.

6.4.1 Time threshold. We set a threshold on the average inter-
section time, and minimize the hybrid index size subject to that
threshold. Figure 5 records the size and intersection time of the hy-
brid index subject to various time thresholds (for the MillionQuery
query set). Here and in the next section, we experiment with both
the MillionQuery and TerabyteQuery query sets (although model
training only uses the MillionQuery query set).

Figure 5 indicates that as the time threshold increases, the size
of the hybrid index decreases. This is as expected: as we relax the
time threshold, more documents are assigned to PEF, which results
in a smaller hybrid index. Indeed, when the time threshold is close
to the PEF time, almost all documents are assigned to PEF, in which
case there is negligible difference between the hybrid BF-PEF index
and PEF itself.

One interesting observation is that when we reduce the time
threshold to around the pure BF average intersection time, the size
of the proposed hybrid index is reduced by 45% compared to BF.
This significant improvement in space comes at virtually no cost in
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avg. intersection time (ms)

Figure 5: The index size vs. the average intersection time (on
the MillionQuery query set (Mill.) and TerabyteQuery query
set (Tera.)) of the hybrid BF-PEF index as the time threshold
varies (indicated by vertical dashed lines). For comparison,
we also include pure BF (red) and pure PEF (green) indexes.
(Note that the x axis does not start at 0.)

time. We expect this is partly because some documents are short
and are infrequently queried: reassigning these from BF to PEF does
not have a significant impact on the intersection time (it might even
slightly reduce it), but it reduces the index size.

In Figure 5, some time thresholds on MillionQuery query set
are exceeded by a relatively small amount (within 3%), which we
attribute to prediction errors in the regression model.

6.4.2 Size threshold. We set a threshold on the hybrid index size,
and minimize the average intersection time subject to that threshold.
Figure 6 records the size and intersection time of the hybrid index
subject to various size thresholds.

For comparison, we also perform the same tests on another
hybrid index (hybrid-PIV) proposed by [22]°; see Section 4 for more
about hybrid-PIV. For hybrid-PIV, we also use the MillionQuery
query set for training, and the block sampling rate is set to 0.01.
(Preliminary experiments with the block sampling rate set to 0.001
were not substantially different, so we do not report these results.)

From Figure 6 we observe that it is generally not possible to
improve hybrid-PIV’s average intersection time much beyond a
certain point (e.g. 2.5ms for the MillionQuery query set) by relaxing
the threshold on the index size. This implies the hybrid BF-PEF
index has a functional advantage over hybrid-PIV: if memory is
available, hybrid-BP can utilize it to reduce the intersection time.
Thus, the proposed hybrid BF-PEF index offers greater flexibility in
choosing a trade-off than hybrid-PIV.

®https://github.com/ot/ds2i
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Figure 6: The index size vs. the average intersection time on
the MillionQuery and TerabyteQuery query sets of the hy-
brid BF-PEF index (hybrid-BP) as the size threshold varies
(indicated by horizontal dashed lines). There is no result for
hybrid-PIV with a 8000MB threshold; its maximum index
size is around 7800MB. (Note that both the x and y axes do
not start at 0.)

We observe that for the 4000MB threshold, hybrid-PIV outper-
forms hybrid-BP by 11% and 8% on MillionQuery and Terabyte-
Query, respectively. A situation like this amounts to the search
engine only having a certain amount of memory they can use (not
more nor less). If instead the operator has spare memory and e.g.
is able to set a higher size threshold, then Figure 6 indicates that
hybrid-BP reduces the average intersection time by up to around
47% with almost the same size.

Compared with PEF on the MillionQuery query set, the maxi-
mum improvement in the average intersection time achieved by
hybrid-PIV and hybrid-BP is 23% and 55%, respectively; for the
4000MB threshold, the improvement is 18% and 9%, respectively.

In Table 3, we compare hybrid-BP with some indexes compressed
by a single form of mathematical encoding. Specifically, we com-
press the entire GOV2 corpus using each of OptPFD [29], binary
interpolative encoding [21], and Varint-G8IU [27], and generate
three BF-PEF hybrid indexes with a size threshold approximately
the same as the mathematical encoding index it is being compared
with. Among them, the binary-interpolative encoded index has
the best index size through recursive compression, but its inter-
section time is long due to recursive decompression. Varint-G8IU
uses byte-aligned encoding and SIMD acceleration, making it faster
for intersection but its compression is significantly worse; OptPFD
offers a trade-off between these two extremes.

When we set the BF-PEF index size threshold equal to the binary
interpolative encoding index size (3.13GB), the local search fails to
find a BF-PEF partition satisfying the size threshold. The minimum
index size of the hybrid BF-PEF index is close to the pure PEF index
size, which is 3.25GB. In this case, the hybrid BF-PEF index likely
assigns almost all documents to PEF (and acts much the same as
pure PEF).

From Table 3, we observe that the hybrid BF-PEF index results
in improving the intersection time (vs. the aforementioned mathe-
matical encoding methods) from 16% to 75% on MillionQuery and
from 20% to 76% on TerabyteQuery, while having almost the same
index size.
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6.5 Feature Analysis

We analyze the feature distributions of BF and PEF in the hybrid
BF-PEF index in the approximately optimal BF-PEF partition under
various threshold conditions. We consider five features: URL, DL,
DF, dispersivity, and TF-IDF, as defined in Section 5.1.1. For a feature
f, we define the feature ratio for I € {BF, PEF} as

fi—f

f

where ]_‘ is the average value of feature f in the whole document
corpus, and ?I is the average value of feature f among to the
documents assigned to I. The results are plotted in Figure 7 (for
time thresholds) and Figure 8 (for size thresholds) for the BF-PEF
partitions arising in Section 6.4. For these BF-PEF partitions, we
also tabulate the proportion of documents assigned to BF in Table 4.
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Figure 7: Feature ratios for the BF (top) and PEF (bottom)
parts of the hybrid BF-PEF index, under various time thresh-
olds.
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Figure 8: Feature ratios for the BF (top) and PEF (bottom)
parts of the hybrid BF-PEF index, under various index size
thresholds.



Table 3: The space time trade-off compared with mathematical encoding methods.

OptPFD hybrid bin. int. hybrid Varint hybrid
index size (GB) 3.66  3.77(+3%) 313 3.27(+4%) 774 7.77 (+1%)
avg. intersection time (ms) Mill. 3.65 3.08 (-16%) 1295  3.28 (-75%) 2.42  1.42(-41%)
avg. intersection time (ms) Tera. 4.25 3.42 (-20%)  15.06  3.67 (-76%)  2.78  1.43 (-49%)

Table 4: The proportion of documents in the BF part with a given time or size threshold.

time threshold (ms) 14 1.5 2.0 2.3 2.6 2.9 3.2
proportion 28.69% 24.23% 2147% 1533% 8.55% 5.36% 3.79% 0.10%
size threshold (x10°MB) 3.3 4.0 5.0 6.0 7.0 7.8 8.0
proportion 0.09% 4.15% 7.02% 10.73% 18.50% 25.99% 32.16% 34.14%

In general, if a feature f has a positive feature ratio for I €
{BF, PEF}, we think of I as favoring feature f. For example, BF gen-
erally strongly favors document length (DL) and dispersivity. For a
feature f with a negative feature ratio for I € {BF, PEF}, we instead
think of I as disfavoring feature f. For example, BF generally disfa-
vors document frequency (DF). Some of these feature preferences
are explainable (like in the pilot experiments in Section 2), while
others are not. These results are fairly consistent with Figure 1 in
the pilot experiments.

When we set the time threshold equal to the pure PEF inter-
section time (3.2ms), or the size threshold equal to the pure PEF
index size (3300MB), almost all the documents are partitioned into
PEF, therefore the feature distribution of the PEF part is almost
identical to the whole document corpus; the feature distribution
for BF in this setting is consequently unreliable, since it contains
few documents.

Figures 7 and 8 further emphasize how a simple method alone is
unlikely able to obtain a suitable BF-PEF partition; this is consistent
with the observations in Section 2.

6.6 False Positive Analysis

A non-negligible problem with the proposed hybrid index is the
false positives caused by BF. Table 5 lists the false positive rates
(the proportion of false positive documents among all positive
documents) for the proposed hybrid BF-PEF index under various
thresholds (the time threshold is for the MillionQuery query set).

Table 5 indicates that, as time threshold increases, the false pos-
itive rate decreases; this is due to an increasing number of docu-
ments being assigned to PEF, which does not incur false positives.
Conversely, as the size threshold increases, more documents are
assigned to BF, which increases the false positive rate.

Compared with the pure BF index, the false positive rate of
the hybrid BF-PEF index decreases by at least 40% and 23% on
MillionQuery and TerabyteQuery, respectively.

7 CONCLUDING REMARKS

In the paper, we propose a hybrid BF-PEF index, combining the spa-
tial efficiency of Partitioned Elias-Fano and intersection efficiency
of BitFunnel by partitioning the documents into two disjoint parts.
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Table 5: The false positive (fp.) rates for various thresh-
olds for the MillionQuery (Mill.) and TerabyteQuery (Tera.)
query sets. Note that the pure BitFunnel index has 2.48%
and 1.70% false positive rates on MillionQuery and Terabyte-
Query, respectively.

time thre. (ms) 14 1.5 1.7 2.0 2.3 2.6 2.9 3.2
Mill. fp. 1.39% 1.36% 1.03% 091% 0.74% 0.33% 0.14% 0.00%
Tera. fp. 1.25% 1.19% 1.01% 0.87% 0.71% 0.32% 0.15% 0.00%
size thre. (x103MB) 33 40 45 50 60 70 78 80
Mill. fp. 0.00% 0.24% 0.36% 0.52% 0.86% 130% 1.43% 1.49%
Tera. fp. 0.00% 0.23% 0.36% 0.49% 0.84% 1.21% 1.27% 131%

We use a local search to find an approximately optimal BF-PEF
partition that meets a pre-specified threshold; during this process,
we use machine learning to predict the size and intersection time
of the hybrid index.

Experimental results indicate that the proposed hybrid BF-PEF
index decreases the intersection time up to 47% compared with
another hybrid index with the same index size. Compared with
BitFunnel, it reduces the index size by 45% while maintaining almost
the same intersection time.

In the future, it would be interesting to explore (a) combining
multiple indexes, not just BF and PEF; (b) using more sophisticated
thresholding techniques; (c) using alternative regression models;
and (d) incorporating additional document features.

One limitation of the present approach is the implicit assump-
tion of everything taking place on a single machine. Scaling up to
a distributed system likely requires adapting the machine-learning
method for each machine. While we expect this is feasible in prac-
tice, this matter is not addressed this in this paper.
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