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Abstract—In the era of cloud computing, the over-occupancy
of data center resources (CPU, memory, disk) and subsequent
machine failure have resulted in great loss to users and enter-
prises. So it makes sense to anticipate the server workload in
advance. Previous research on server workloads has focused on
trend analysis and time series fitting. We propose an approach to
forecast the workloads of servers based on machine learning. And
our data comes from a database-based data center that is real,
large-scale, and enterprise-class. We use the servers’ historical
monitoring data for our models to predict future workloads and
hence provide the ability to automatically warn overload and
reallocate resources. We calculate the failure detection rate and
false alarm rate of our overload detection models, as well as
put forward an evaluation based on the overload processing
cost. Experimental results show that machine learning methods
especially Random Forest can better predict the server load
than traditional time series analysis method. We use the forecast
results to propose some scheduling strategies to prevent server
overload, achieve intelligent operation and maintenance, and
failure prediction. Compared with the traditional time series
analysis method, our method uses less data and lower dimensions,
and yields more accurate predictions.

Index Terms—data center, load prediction, overload processing
cost

I. INTRODUCTION

As the core of data processing, data exchange, and data
storage, the data center has become one of the most important
infrastructures in the cloud computing era [1], [2]. The demand
for data communication and information services is rapidly
increasing, so data centers that provide database services are
widely used. Also due to the rapid increase in demand, some
issues faced by data centers are prevalent, such as managing
and maintaining a wide spectrum of data. In addition, high
utilization of workloads such as CPU, memory, and disk not
only affects users’ usage, but also may cause data center
failures that result in huge losses to enterprises.

According to an Emerson Network Power-sponsored study
conducted by the Ponemon Institute1, the average cost of a
single data center outage today is about $730,000 and the cost
can rise significantly. As an example, the Delta Airlines data
center outaged in August 2016, which grounded about 2,000
flights over the span of three days and lost the company $150
million [3].

1https://www.ponemon.org/

A survey conducted by The Data Center Journal2 analyzed
the cost of a data center outage within different industries.
They found the cost of a data center failure to the energy in-
dustry is $2.1878 million, to the telecommunications industry
is $2.0662 million, and to the financial industry is $1.4951
million.

In 2012, the UPTIME Institute3 surveyed 94 computer
rooms around the world and created a report including 291
incidents and 8 failures in total [4]. Of the 291 incidents, 39%
were caused by operational reasons such as overload. Among
the 8 failures, 25% were caused by operations. Of the 213
incidents, 13% were compensated and rescued by operational
intervention. This shows that in a data center it is important
to not only physically maintain the equipment, but also that
operational tasks are performed well.

To avoid server failure, a scheme is needed to notify
operations engineers when a server is overloaded. At present,
this is done by the threshold method using real-time workload
monitoring in which a threshold is set for each monitoring
item, and the operations engineers are notified to intervene
when the load exceeds the threshold [5]. However, this method
has some problems.
• When an emergency situation occurs, for example a quick

rise in resource usage, the monitoring indicator may
deteriorate rapidly. If the operations engineers can not
handle it promptly, the performance of the system may
be seriously affected.

• In addition, for a large cluster of servers, a great num-
ber of overloaded machines may need to be handled
simultaneously, which would put a significant burden on
operations engineers.

In a database service-based data center, the failure of a
machine in one cluster may affect other machines related to
this [6]. Therefore, the automatic and intelligent operation
of the data centers is particularly important, which we hope
to achieve through our forecasting work and improve the
availability of data centers based database services.

We use workloads data from a data center over a period
of time to make a prediction of future servers overload. With
this, we are able to provide overload detection in advance,
and take timely measures to deal with failures. The method

2http://www.datacenterjournal.com/
3https://uptimeinstitute.com/



turns a ‘passive response’ after the incident is underway into
an ‘active prevention’ that takes action before a failure occurs.
This means the data and tasks on the database server can be
migrated to ensure the normal and efficient working status
of the server. In addition, the server may select to redistribute
tasks, thereby reducing resource consumption while preventing
failures. A pursuit of business is to maximize profits, which
means that reducing unnecessary cost is crucial. This fail-safe
approach not only improves the user experience, but also helps
the company save significant amounts of money and effort. We
use the overload processing cost to measure different models
as a way of distinguishing their effectiveness.

We make the following contributions:
• For a large enterprise data center based on database

services, we compare time series method and several
machine learning models and analyze the characteristics
of the workload according to the experimental results.

• We evaluate the six models which used in our experiment
to predict the workload by a new evaluation standard that
demonstrates the cost of the model in terms of overload
processing cost.

• We propose several strategies for task scheduling based
on the results of load forecasting, which can avoid over-
load or save resources.

The rest of the paper is organized as follows: Section II
discusses related work, Section III presents an overview of
the workload prediction framework, Section IV details the ex-
perimental process and analysis, and we present the conclusion
in Section V.

II. RELATED WORK

Time series analysis [7] is used to analyze dynamic timing
data and is often handled with statistical approaches and
machine learning methods. Popular statistical methods include
ARIMA [8], SARIMA [9], Gaussian [10], and HMM [11].
Machine learning models such as SVM [12], RNN [13], and
LSTM [14] have also been used for time series analysis.

In the past, most of the research within machine learning
has focused on network traffic, malicious behavior detection,
intrusion detection, registry anomalies, and so on [15]–[19].
There is little research on the workload prediction of data
centers based on database services.

Stokely et al. [20], [21] studied disk allocation in a dis-
tributed storage system. They collected disk occupancy, I/O
rates, and the duration of data storage from thousands of
different engineering users and teams to forecast the feature
usage. Their work is similar with ours but we focus on the
workloads of data centers, which mainly depends on the
server processing tasks, while Stokely’s work is for users in
distributed storage, which is affected by users’ habits. Wamba
et al. [22] proposed two workload forecasting models based
on constrained programming and neural networks to predict
the CPU usage of a cloud data center’s physical servers to
facilitate resource deployment in a cloud environment. Both
works of Stokely et al. and Wamba et al. are about a single

system attribute, but the performance of the data center is
affected by several system attributes.

Xue et al. [23] presented a neural network-based frame-
work called PRACTISE to predict the future workload of the
CPU, memory, disk, and network bandwidth, and showed the
model had reliable accuracy, robustness, and flexibility. They
developed a bagging module to reduce the randomness of
training and testing sets, used online-updating models, and
trained a neural network. Unfortunately, the bagging module
they developed is not computationally efficient in an online
context. Karakurt et al. [24] used machine learning methods
include LR, SVM, and RF to predict the failure of database-
related management systems and showed that supervised learn-
ing algorithms, especially RF, have satisfactory recall rate
and accuracy. However, we find no model has an absolute
advantage, so we put forward a new evaluation system based
on the failure detection rate and the false alarm rate, which
takes into account the cost of migrating and storing data.

Predicting workload is only part of the job, and more
importantly, forecasting result should be used to optimize the
performance of servers in data centers. Cortez et al. [25]
used Resource Center (RC) to collect VM telemetry, learn
behaviors offline, and provide predictions to various resource
managers online through client libraries. They modified the
VM schedulers, which was used to demonstrate that predictive
notifications improve utilization and prevent physical resources
from running out. Hu et al. [26] put forward three models to
predict workload. They also proposed a new trigger strategy
for the cloud computing elasticity mechanism. Their works
give us the inspiration for our scheduling strategies.

III. OVERVIEW

In this section, we describe the work flow of the workload
prediction in a real data center. Figure 1 demonstrates the
overview of the workload predicting system. We first collect
historical workload data from the monitoring system of the
data center, including CPU, memory, and disk data. Then we
clean the data, performing tasks such as filling-in the missing
values, deleting invalid values, and standardizing the values to
ensure we have high-quality and accurate data. After feature
selection, we train the models using the cleaned data, and then
predict the workload after certain periods of time. Finally, the
forecast results are fed back to the system and the operations
engineers for scheduling policies and other troubleshooting
actions.

A. Data Collection

In a real data center, daily overload prediction is necessary,
so we need to take the CPU, memory and disk data from
the server monitoring system every morning. After the data
is acquired, we organize it into a fixed data format that
contains the values of the monitored items (represented as
CPU, memory, and disk utilization) and sampling time points.

In total we take the previous 5 days worth of data from
the system as a training sample. This data includes 2 days
considered as feature samples and 3 days of data to extract
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Fig. 1: Overview of the work flow for workload prediction

the target values. In the last 3 days, we label the target values
by whether overload occurs within 1 hour, 6 hours, 12 hours,
1 day, 2 days, and 3 days. For the testing samples, we use the
previous 2 days data as the input of trained models and predict
the load for the next 3 days. Since the number of overloaded
servers is much smaller than the number of servers that are not
overloaded, in order to guarantee the quality of the prediction
model, we need to use additional overload data, which is older
and held in a repository of all the servers’ recent overloads.

B. Data Cleaning

The collected data is drawn from multiple business systems.
So such data may have varying levels of accuracy, and may
even conflict with each other. Inaccurate data such as this is not
useful to our models, so we have to clean the collected data.
Data cleaning is the process of re-examining and verifying data
for the purpose of removing duplicate information, supple-
menting missing information, and providing data consistency.

In the system framework of this paper, the process of data
cleaning is completed by the computer program automatically
and includes two parts: lost and duplicated data processing
and data normalization.
• Various reasons (such as failure of the monitoring system)

can cause some single data points to be lost or duplicated.
In this paper, we use the imputation method for missing
values, that is, taking the average of the two adjacent time
points as a supplement value of the missing one. In the
case that larger amounts of data is missed from some
servers during the sampling period because of server
outages or replacements, we abort the servers from the
original sampling set. For duplicated data, if the data
values are consistent, we make up the sample, otherwise
delete the sample.

• Due to the various numeric ranges of the values that the
data could take, it is beneficial to normalize the data, and
doing so can improve the classification results [27]. In
this paper, we use Min-Max standardization, shown as
Formula (1). It applies a linear transform to the original

data so that each of the resulting transformed data lies on
the [0,1] interval.

Valuenew =
Valueorigin−Valuemin

Valuemax−Valuemin
(1)

In above formula, Valuenew is the standardized data and
Valueorigin is the original data, both of which correspond
to certain time points. The symbols Valuemax and Valuemin
represent the maximum and minimum values of the
corresponding features over the entire sampling period.

C. Feature Selection

Feature selection refers to selecting some features and
ignore others [28], as using all of the sampled data as a training
set not only fails to improve the predictive performance of
the model, but also lengthens the time to train it. In real-
time online prediction systems, it is unrealistic to analyze the
importance of each feature without automation. Therefore, this
paper applies feature selection based on tree models which can
achieve it based on the weights of each feature.

Throughout our experiments, a feature selection method
based on the Gradient Boosting Decision Tree (GBDT) [29]
works best. In this method, all the features are used to establish
the training model, and certain features whose weight is larger
than the given threshold in the training model are chosen for
prediction. In addition, we have six prediction targets (1 hour,
6 hours, 12 hours, 1 day, 2 days, 3 days), each of which has
the corresponding selected features. We consider some feature
valid when there are four or more targets have chosen it.
Such feature selection reduces the data dimension and makes
classification more accurate and effective.

D. Model Training and Prediction

In this subsection, we use the selected features and the
corresponding algorithms to build a predictive model, and then
enter the test sample into the model and conclude whether a
server will overload for the next three days. The following
describes some of the models used in this article.

1) DT: Decision Tree (DT) is a tree structure, in which each
non-leaf node represents the judgment of the characteristic
attributes and each leaf node represents a category [30]. The
decision-making process is to proceed from the root node,
judge the corresponding attributes of the samples layer by
layer and select the corresponding branch until a leaf node
is reached. The leaf node’s category is the sample’s category.

In this paper, we apply the Classification And Regression
Tree (CART) [31] to train the DT. The generation of a CART
is a recursive process of building a binary decision tree that can
be used both for classification as well as for regression. For
classification trees, CART uses the Gini coefficient minimiza-
tion criteria for feature selection and generates a binary tree.
For a given node t, its impurity is a measure of the proportion
of records in this node that belong to differing category. The
Gini coefficient shown as Formula (2) is used to evaluate the
nodes impurity:



Algorithm 1 The CART Algorithm

Input: Data set D = {(X1,y1),(X2,y2), . . . ,(Xn,yn)};
Feature set F={ f1, f2,. . . , fk}; Cut Point set
C={C1={ f1,1, f1,2,. . . , f1,m1},C2={ f2,1, f2,2,. . . , f2,m2},. . . ,
Ck={ fk,1, fk,2,. . . , fk,mk}}; Stop Condition

Output: A CART Decision Tree T
1: T ← create a tree node based on data set D
2: if Stop Condition then
3: return T
4: end if
5: for every feature fi in F do
6: for every fi, j in Ci do
7: Gi, j ← Gini coefficient of fi, j
8: end for
9: end for

10: the minimum Gi, j which belongs to feature fi
11: Dl ← subset of D if sample point satisfy fi < fi, j
12: Dr ← subset of D if sample point satisfy fi ≥ fi, j
13: Tl ← Call the CART with (Dl , F , C, Stop Condition)
14: Tr ← Call the CART with (Dr, F , C, Stop Condition)
15: Return T

Gini(t) = 1−∑
j
[p( j | t)]2, (2)

where p( j | t) is the relative frequency of class j at node t
(that is the proportion of records belonging to class j in a
given node t).

The gain ∆ shown in Formula (3) is a criterion that can
be used to determine the effect of division under a property
condition test which compares the impurity of the node before
the division and the sub-nodes’ impurity after the division.
The bigger the difference is, the better the branch conditions
it choose.

∆ = I(parent)−
k

∑
j=1

N(v j)

N
I(v j) (3)

In the above formula, I(.) is the metric of impurity for a
given node (for us, the Gini coefficient), N is the total number
of records on a parent node, k is the number of attribute values,
and N(v j) is the number of records associated with the child
node v j. Because I(parent) is a constant value for all test
conditions, the maximized gain is equivalent to the minimized
weighted average of the impurity of the child node.

The process of CART building is shown in Algorithm 1.
In this algorithm, the data set D is what we use to train a
DT, the feature set F is the features of each sample in D
and the Cut Point set C is all the values of each feature. The
Stop Condition is that all instances belong to one class, the
Gini coefficient is smaller than some threshold, the number of
samples is smaller than some threshold, or F is empty.

2) RF: Random Forest (RF) [32] is a classifier that uses
multiple DTs to make a prediction, selecting the output cate-

Algorithm 2 The Random Forest Algorithm

Input: Data set D={(X1,y1),(X2,y2),. . . ,(Xn,yn)}; Feature sub-
set size K; the number of estimators m.

Output: Majority vote of estimators {T1,T2,. . . ,Tm}
1: for mi ∈ {1,2, . . . ,m} do
2: Dmi ← bootstrap sample from D for n′ times
3: Fmi ← select K features from F randomly;
4: Construct classifier Tmi based on Dmi for feature set

Fmi through Algorithm 1
5: end for

gory determined by a voting mechanism of all the individual
decision trees’ predictions.

The DT model is easy to overfit, however the RF model
can improve upon this shortcomings. The good performance
is benefits from two aspects: Bagging algorithm and Random
Subspace Method (RSM). Bagging algorithm ensures the
random selection of samples. It constructs sub-datasets by
bootstrap sampling to build sub-decision trees and generate
a strong classifier by combining these weak sub-decision tree
classifiers. RSM guarantees the random selection of features.
Instead of using all the features, each sub-tree in the RF
selects some of the features randomly, reducing the correlation
between each sub-tree and making them highly varied. It
improves the diversity of the system and so enhances the
classification performance.

RF is described as Algorithm 2 with the RSM and the
Bagging strategy.

The Bagging strategy steps are as follows:
a) Choose n′ samples from the sample set containing n

samples by bootstrap sampling;
b) Establish classifiers for all attributes based on the n sam-

ples;
c) Repeat the above two steps m times to obtain m classifiers;
d) Predict with the m classifiers and finally decide which

category the sample belongs to based on the voting results
of the m classifiers.

E. Scheduling Strategies

The predicting results are fed back to the system and
operations engineers, then we can apply some scheduling
strategies to migrate some of the tasks in the server which
is going to overload to other free servers to ensure the normal
operation of the current server.

In addition, we also propose some other scheduling strate-
gies to save resources according to the predicting results in
subsection IV-D, but have not yet verified their benefit through
experiments. Furthermore, the use of experienced operations
engineers to deal with proposals will help achieve automatic
migration of the system.

IV. EXPERIMENT

In this section, we describe the experiment in detail. First,
the experiment setup is introduced including data set genera-
tion, feature selection, model training and prediction. Next,



we give the failure detection rate (FDR) and false alarm
rate (FAR) after different periods of time for the six models.
The word ‘failure’ here means overload rather than system
failure. Then, we analyze the experiment performance based
on the prediction results. In order to evaluate the quality of
the models, we propose an overload processing cost from
the perspective of practical application of enterprises. The
methods can prevent failures caused by overload, and relocate
tasks by several strategies which can take up less load and
save resources.

A. Experiment Setup

1) Data Set: Our data comes from Baidu Inc., an Internet
company in China. It is a real-world, large-scale data set that
represents an enterprise-wide system and therefore can support
our experiments. Due to commercial security, our data is not
accessible to the public. The monitoring values of each server’s
workload (CPU, memory, and disk) are sampled every 10
minutes. We collect data from 5,731 servers over 67 days
between December 19, 2016 and February 23, 2017, yielding
a total of 55,311,984 records. The data contains the workload
utilization rate and corresponding time point. Due to the severe
loss of record information on some servers, these data were
removed. After data cleaning, there are 5,466 servers and
52,735,968 sample records in total.

Figure 2 plots some examples of the load records of CPU,
memory, and disk. We find that the workload can be divided
into periodic and aperiodic. In our experiment, we did not
distinguish between periodicity to train different models. And
in a real data center, such as the one we surveyed, the server’s
CPU load usually fluctuates drastically, and memory and disk
usage usually change more smoothly.

2) Compared Methods: To compare the performance of
multiple predictive models, we use the following methods:
• ARIMA: Autoregressive Integrated Moving Average

Model (ARIMA) [33] is often used to analyze stationary
stochastic processes and has important applications in
modeling and predicting time series. The data sequence
formed by the prediction object over time is considered as
a random sequence that can be fitted by a class of constant
coefficient difference equations. Once the mathematical
model has been established by the past time series, future
values can be predicted from the fitted equations.

• NB: Based on the Bayesian theorem, Naive Bayes (NB)
model [34] classifies some item as coming from one of
several classes, depending on the items characteristics.
For the given item to be classified, the model considers
the probability of occurrence of each category under
the conditions that appear. It classifies the item into
the category that has the largest probability. This model
performs well for small-scale data and can handle multi-
category tasks for incremental training.

• LR: Logistic Regression (LR) [35] is a widely used
classification machine learning algorithm. For problems
where the samples’ features can be continuous values and
the range of the values is unbounded, logistic regression

fits the data to the function with a binary dependent
variable denoting our prediction.

• SVM: In machine learning, Support Vector Machine
(SVM) [36] is a supervised learning model commonly
used in pattern recognition, classification, and regression
analysis. For linearly separable cases, its goal is to find
a hyperplane that maximizes the separation of categories.
For linearly non-separable, one way is to map the sample
space into a high-dimensional space and transform the
problem into a linearly separable one. And another way
is to use a straight line but without guaranteeing complete
separability, and add a penalty function that indicates the
distance of this point from its correct category position.

• In addition, we use DT and RF to train the prediction
model introduced in subsection III-D

The methods of time series analysis emphasize the peri-
odicity and trend of sequence changes. In order to find the
periodicity, it is usually necessary to use continuous time
series. It should be noted, however, that we have found that
longer time series do not improve the accuracy of predictions
when predicting servers’ load, and even reduce the accuracy
for most servers. This is because the workloads of servers
change frequently and recent data is more likely to be useful
to predict future load. The methods of machine learning can be
independent of continuous time, and they build models using
important features obtained through feature selection rather
than all of the data.

3) Model Training: As we are predicting server overload,
rather than failure, we define an overload threshold T of
CPU to be 80%, memory to be 80%, and disk to be 75%.
These threshold choices and the different weight of positive
and negative samples in models ensure the overloaded and
normal samples reach equilibrium. We divide the training set
and testing set into 6 : 4. We determine the model parameters
by ten-fold cross-validation (10-fold CV) in the training set for
four models (LR, SVM, DT, and RF). After determining the
model parameters, ten experiments are conducted separately,
using the average as a result. We use auto.arima4 in R to im-
plement an ARIMA model and the rest of the machine learning
methods are implemented from the scikit-learn package5 in
Python. The five machine learning models predict whether an
overload will occur (binary) within 1 hour, 6 hours, 12 hours,
1 day, 2 days, or 3 days, while the ARIMA model predicts the
value of the load at these time. In order to standardize this,
we only predict an overload for the ARIMA model when it
returns a predicted load above the threshold T , and otherwise
predict that no overload will occur.

B. Experimental results

Our prediction is binary, classifying a sample as either
positive or negative. In this paper, positive refers to the over-
loaded workload and negative represents the normal workload.
As such, our prediction can result in one of four cases. If

4https://cran.r-project.org/web/packages/forecast/
5http://scikit-learn.org/
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Fig. 2: Workload Utilization Records

an instance is positive and is also predicted as positive, it
is called True Positive (TP), and if an instance is negative
but is predicted as positive, it is called False Positive (FP).
Correspondingly, if an instance is negative and is predicted as
negative, it is called True Negative (TN), and if an instance is
positive but is predicted as negative we name it False Negative
(FN). Table I tabulates the category of each predicted sample.

TABLE I: Prediction cases

Actual class

≥ T < T

Predicted class
≥ T TP(Type1) FP(Type1)

< T FN(Type2) TN

total P N

We will list the FDR (see Formula (4)) and FAR (see
Formula (5)) for each model, as well as workload types and
time periods. Given a threshold of T , the FDR depicts the
proportion of the positive instances correctly identified by
the classifier as positive instances. The FAR calculates the

proportion of negative instances that the classifier incorrectly
predicts as positive.

FDR =
TP

TP+FN
=

TP
P

(4)

FAR =
FP

FP+TN
=

FP
N

(5)

The predicted FAR and FDR results are shown in Table II.

C. Experimental analysis

In this subsection, we first analyze the experimental results
of each model to predict the CPU, memory, and disk usage,
and then describe the new evaluation system.

1) Result Analysis:
• We can find from the Table II, for CPU and disk, almost

all of the models show a downward trend in FDR and
an upward trend in FAR as predicted time increases. It is
easy to understand that as a prediction time point far from
the data of the training set, the correlation between the
data of the training set will decrease, the probability of
being influenced by other factors during the period will
increase, and the weight of the available training features
of the data will be weakened, which result in a decrease
in FDR and an increase in FAR.



TABLE II: Experiments on the workload (CPU, memory, and disk) using six models, showing the FDR and FAR for each case

Workload Model
one hour(%) six hours(%) twelve hours(%) one day(%) two days(%) three days(%)

FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR FDR FAR

CPU

ARIMA 78.57 0.27 73.33 0.37 72.37 0.38 27.64 2.64 22.09 3.56 20.45 3.92

NB 93.71 2.11 92.11 2.48 92.30 2.46 78.27 3.62 73.44 3.89 73.13 3.96

LR 92.73 0.52 90.12 1.36 88.34 1.36 75.14 3.76 75.36 4.58 77.27 4.69

SVM 89.81 0.25 85.15 0.98 84.52 0.91 77.32 2.44 76.61 3.06 77.80 2.97

DT 88.41 0.73 84.08 1.10 82.49 1.11 72.44 26.64 77.61 28.32 79.37 29.30

RF 90.52 0.19 86.60 0.20 84.22 0.20 64.07 1.06 67.77 1.23 68.43 1.37

Memory

ARIMA 100.0 0.00 100.0 0.00 100.0 0.00 100.0 0.00 99.62 0.02 99.24 0.05

NB 97.20 14.43 97.20 14.43 97.20 14.43 97.20 14.43 97.20 14.46 97.21 14.47

LR 100.0 1.20 100.0 1.20 100.0 1.20 100.0 1.20 100.0 1.28 100.0 1.35

SVM 100.0 0.66 100.0 0.66 100.0 0.66 100.0 0.66 100.0 0.70 100.0 0.77

DT 100.0 0.01 100.0 0.01 100.0 0.01 100.0 0.01 99.89 0.16 99.63 0.26

RF 100.0 0.00 100.0 0.00 100.0 0.00 100.0 0.00 99.89 0.02 99.63 0.07

Disk

ARIMA 99.25 0.15 98.33 0.22 97.61 0.35 97.30 0.38 96.31 0.64 95.67 0.90

NB 99.85 3.56 99.72 3.66 99.82 3.64 99.72 3.82 99.42 5.09 98.69 5.58

LR 99.85 1.78 99.67 1.87 99.39 1.92 98.21 2.02 98.83 2.52 98.30 2.70

SVM 99.85 1.61 99.77 1.60 99.53 1.60 99.26 1.61 98.61 2.06 97.90 2.08

DT 99.76 0.29 99.68 0.51 99.48 0.68 99.26 0.83 98.69 1.32 98.02 1.32

RF 99.38 0.25 99.09 0.38 99.05 0.44 98.98 0.36 97.79 0.40 96.81 0.38

• For CPU, ARIMA performs poorly compared to the
other machine learning methods. But it performs well
for disk and memory. As mentioned in IV-A2, this is
because the predictions of the ARIMA model depending
on time periodicity and trend, where as CPU usage
changes significantly outside of periodic changes. So
it is difficult to characterize its periodicity and hence
the FDR is relatively low. In this paper, we do not
distinguish between periodic and non-periodic samples,
that is, training models that are not specific to a particular
category.

• For memory, no matter what kind of models, the FDR
is close to 1 and FAR is close to 0. The reason is that
our experiment is aimed at the workload of a database
service-based data center, and the applications running
on the servers occupy certain amount of memory, so the
usage changes little and makes it easier to train a model
with good predictions.

• We notice that the CPU’s FDR drop drastically in ARIMA
and RF, and the CPU’s FAR of DT model suddenly rise.
This appears to be caused by the nature of the CPU usage,
as the CPU’s daily usage cycle is strongly dependent on
the tasks running on the server, which varies from day to
day. In addition, RF improves the shortcoming of easily
overfitting of DT. Although the FAR of RF is lower than
other models, but the FDR of RF is also affected.

We count the number of overloads in the samples of the
workload for the six predicted time point targets, see Table
III. In order to more intuitively show the trend of changes
in the actual overload data, we collect data detailing the total
number of servers that experience an overload and depict as a

TABLE III: Positive (P) and Negative (N) samples of a test
dataset

Target Class
Workload

CPU Memory Disk

one hour
P 23 105 206

N 2160 2078 1977

six hours
P 26 105 208

N 2157 2078 1975

twelve hours
P 27 105 213

N 2156 2078 1970

one day
P 84 105 218

N 2099 2078 1965

two days
P 103 105 224

N 2080 2078 1959

three days
P 108 106 228

N 2075 2077 1955

line chart in Figure 3. In this figure, we can see that the total
number of servers with CPU overload increases over time. This
is because CPU workload changes rapidly, and the number of
servers that are overloaded in one day increases. But after one
day, the increase is slower. This means that the servers that
have CPU overload in the future will be different to the servers
presently experiencing CPU overload. For memory and disk,
the number of overloads increases slowly. This is because the
changes are typically more gradual compared with the CPU
changes. For example, the applications running on the server
will often use a consistent amount of memory. The disk may
have large amounts of data written to it at one time that leads
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to overload, and hence is slightly less stable than the memory.

2) evaluation system: For enterprises, workload forecasting
is not focused primarily on FDR and FAR, as they are more
concerned about the cost of forecasting which is diverse due to
the difference of types and handling times of errors in practical
business. After the workload prediction, data migration, data
storage, and task migration may occur. Migration consumes
bandwidth while storage takes up storage space. For Type1
predictions as in Table I where an overload is predicted, the
system handles migration and storage work intelligently in
a planned manner (such as at night or when the workload
is low enough), while as for Type2 predictions where an
overload is not predicted but actually occurs, the processing
is unplanned and so data recovery may be performed under a
heavy workload.

There are four kinds of model results. No treatment is taken
for TN. The migration and storage are efficient and non-
destructive for TP but invalid and wasteful for FP. For FN, their
migration and storage efforts are detrimental to the system and
likely to prove costly.

Although different servers process data differently, in order
to compare the model results, we assume that the size of data
which needs to be processed during an overload is the same
as that of the actual server, and that we can complete the
troubleshooting before an actual failure, that is, the migration
of data and tasks as well as the storage of data. We consider
several representations:

1) Type1 storage cost: α1;
2) Type1 migration cost: β1;
3) Type2 storage cost: α2;
4) Type2 migration cost: β2.

As Type2 work must be done under unplanned conditions
or even a high workload, we can assume α2 > α1, β2 > β1.

Cost = α1×TP+β1×TP+α1×FP+β1×FP
+α2×FN+β2×FN
= (α1 +β1)×P×FDR+(α1 +β1)×N×FAR
+(α2 +β2)×P× (1−FDR)

(6)

We apply the above evaluation system shown in Formula (6)
in our experimental results. Due to the special circumstances
of memory, that is the memory changes infrequently, we do not
evaluate it quantitatively. The positive and negative samples for
CPU and memory are shown in Table III. Since the cost of
missing hits (FN) is much higher than the cost of the normal
predicting, and the cost of storage will probably cost more
than migration, we set the storage cost ratio to be 5 to 1, and
the migration cost ratio to be 3 to 1, that is α2 = 5×α1 and
β2 = 3×β1. According to [37] and [38], we set the cost of
storage α1 to be 100 USD and the cost of migration β1 to
be 80 USD respectively. Table IV and Table V tabulate the
overload processing cost per TB.

TABLE IV: CPU Overload Processing Cost (K USD)

models one
hour

six
hours

twelve
hours

one
day

two
days

three
days

ARIMA 7.950 10.00 10.51 59.13 76.81 82.21

NB 13.14 15.46 15.58 39.00 48.43 50.50

LR 7.114 11.40 11.90 41.03 49.92 50.72

SVM 6.4096 10.63 10.95 35.00 43.49 43.96

DT 8.465 11.27 11.83 128.7 137.5 141.4

RF 6.100 7.388 8.003 36.02 41.75 43.64

TABLE V: Disk Overload Processing Cost (K USD)

models one
hour

six
hours

twelve
hours

one
day

two
days

three
days

ARIMA 38.38 40.17 42.43 43.88 47.21 59.74

NB 49.93 50.78 51.52 53.08 59.02 62.33

LR 43.59 44.47 45.89 47.33 50.68 52.69

SVM 42.98 43.40 44.57 45.85 49.34 51.04

DT 38.39 39.61 41.37 43.08 46.60 48.20

RF 38.69 39.83 41.03 41.76 44.55 46.45

From the cost calculation results, we found that for CPU,
the performance of RF is significantly better than ARIMA’s,
and for disk, the gap of advantage narrows, but it is still
significantly better than ARIMA except the result of one hour.
As CPU has large fluctuations while disk is relatively stable,
ARIMA is more suitable for periodic and trend-obvious time
series while the machine learning method RF is more suitable
for the fluctuating time series.

D. Discussion

The enterprises want to achieve a higher utilization rate
to improve the performance of data center and reduce cost.
Therefore, in addition to feeding back predictions to systems
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and operations engineers for scheduling and performing neces-
sary troubleshooting, we propose some server task scheduling
strategies based on the database for these data centers in two
application scenarios as shown in Figure 4 shown to achieve
maximum utilization of limited resources.

1) Merge server tasks based on different types of workload
utilization. Consider the case that two or more servers
emphasize different types of resources shown in Figure
4 (a). Server A is the main memory consumer and uses
less CPU, while server B is mainly responsible for CPU
computing and data processing but uses less memory, we
can combine these tasks to one server, thereby sparing
another server to run other applications and reducing
resource wastage.

2) Merge server tasks based on similar workload utilization.
If two or more servers mainly consume the similar
resources such as server A and server C shown in Figure
4 (b), the tasks on these two servers can be consolidated
to one server, assuming that the total resource utilization
does not exceed the threshold. So the servers can operate
stably and efficiently, reducing resource consumption.

In addition, the applications running on data centers based
on database services are mostly fixed, and have higher memory
utilization as well as lower CPU utilization. It would be ideal
to find other data centers based on other kinds of services and
primarily consuming CPU resources, so that we could combine
tasks to increase the utilization of data center resources and
reduce the cost of enterprises correspondingly.

V. CONCLUSION AND FUTURE WORK

In this paper, after the data was cleaned up, we collect 67
days of data from 5466 servers in order to analyze the data
of data centers that are based on database services from a
real, large-scale enterprise. Six different models are applied
to predict the workload, which provide intuitive and accurate
results in advance about whether the workload is going to be
overloaded or not, and help the operations engineers handle
them in a timely manner. In order to better meet the enter-
prises’ requirement of minimizing the cost of prediction, we
put forward an evaluation system based on the cost of overload
processing. Experimental results show that machine learning
methods, especially RF, have good predicting performance

for CPU and disk. In the discussion section, we propose
several scheduling strategies for data centers and suggest
that enterprises should jointly utilize different service based
servers according to the different emphasis of workload to
reduce resource wastage, and achieve intelligent operation and
maintenance in data centers.

We do not carry out actual and relevant experimental
analysis for the proposed scheduling strategies. In future work,
we consider experiments to verify the impact of scheduling
strategies in real data centers.
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