
Neurocomputing 287 (2018) 118–127

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

EC-DNN: A new method for parallel training of deep neural networks

Shizhao Sun

∗, Xiaoguang Liu

College of Computer and Control Engineering, Nankai University, Tianjin, PR China

a r t i c l e i n f o

Article history:

Received 17 December 2017

Revised 16 January 2018

Accepted 24 January 2018

Available online 2 February 2018

Communicated by Dr. Tie-Yan Liu

Keywords:

Parallel machine learning

Distributed machine learning

Deep learning

a b s t r a c t

Parallelization framework has become a necessity to speed up the training of deep neural networks

(DNN) recently. In the typical parallelization framework, called MA-DNN, the parameters of local mod-

els are periodically averaged to get a global model. However, since DNN is a highly non-convex model,

averaging parameters cannot ensure that such global model can perform better than those local models.

To tackle this problem, we introduce a new parallelization framework, called EC-DNN. In this framework,

we propose to aggregate the local models by the simple ensemble, i.e., averaging the outputs of local

models instead of the parameters. As most of prevalent loss functions are convex to the output of DNN,

the performance of the global model produced by the simple ensemble is guaranteed to be at least as

good as the average performance of local models. To get more performance improvement, we extend the

simple ensemble to the generalized ensemble, which produces the global model by the weighted sum

instead of the average of the outputs of the local models. However, the model size will explode since

each round of ensemble can give rise to multiple times size increment. Thus, we carry out model com-

pression after each ensemble to reduce the size of the global model to be the same as the local ones.

Our experimental results show that EC-DNN can achieve better speedup than MA-DNN without loss of

accuracy, and there is even accuracy improvement sometimes.

© 2018 Elsevier B.V. All rights reserved.

o

w

n

m

g

t

a

i

o

s

p

f

t

e

m

t

c

s

o

e
1. Introduction

Recent rapid development of deep neural networks (DNN) has

demonstrated that its great success mainly comes from big data

and big models [1,2] . However, it is extremely time-consuming

to train a large-scale DNN model over big data. To accelerate

the training of DNN, parallelization frameworks like MapReduce

[3] and Parameter Server [4,5] have been widely used. A typical

parallel training procedure for DNN consists of continuous itera-

tions of the following three steps. First, each worker trains the lo-

cal model based on its own local data by stochastic gradient decent

(SGD) or any of its variants. Second, the parameters of the local

DNN models are communicated and aggregated to obtain a global

model, e.g., by averaging the parameters of each local models [6,7] .

Finally, the obtained global model is used as a new starting point

of the next round of local training. We refer the method that per-

forms the aggregation by averaging model parameters as MA , and

the corresponding parallel implementation of DNN as MA-DNN .

However, since DNN is a highly non-convex model, the loss

of the global model produced by MA cannot be guaranteed to

be upper bounded by the average loss of the local models. In
∗ Corresponding author.

E-mail address: sunshizhao@mail.nankai.edu.cn (S. Sun).

c

t

w

c

https://doi.org/10.1016/j.neucom.2018.01.072

0925-2312/© 2018 Elsevier B.V. All rights reserved.
ther words, the global model obtained by MA might even perform

orse than any local model. As the global model will be used as a

ew starting point of the successive local training, the poor perfor-

ance of the global model will drastically slow down the conver-

ence of the training process and further hurt the performance of

he final model.

To tackle this problem, we propose a novel framework for par-

llel DNN training, called Ensemble-Compression (EC-DNN) , the key

dea of which is to produce the global model by ensemble instead

f MA. We first consider the simple ensemble. In the simple en-

emble, the local models are aggregated by averaging their out-

uts instead of their parameters. Since most of widely-used loss

unctions for DNN are convex with respect to the output vector of

he model, the loss of the global model produced by the simple

nsemble can be upper bounded by the average loss of the local

odels. Then, to get more performance improvement, we extend

he simple ensemble to the generalized ensemble, in which the

oefficients of the local models are evaluated instead of directly

et as 1/ K (where K is the number of the local workers). For ease

f reference, we collectively call simple ensemble and generalized

nsemble ensemble . According to previous theoretical and empiri-

al studies [8,9] , ensemble model tend to yield better results when

here exists a significant diversity among local models. Therefore,

e train the local models for a longer period for EC-DNN to in-

rease the diversity among them. In other words, EC-DNN yields

https://doi.org/10.1016/j.neucom.2018.01.072
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.01.072&domain=pdf
mailto:sunshizhao@mail.nankai.edu.cn
https://doi.org/10.1016/j.neucom.2018.01.072

S. Sun, X. Liu / Neurocomputing 287 (2018) 118–127 119

l

p

c

w

m

t

a

a

a

s

t

c

G

i

E

t

c

l

c

t

s

t

t

w

i

1

v

g

p

m

o

l

b

T

a

E

E

p

m

2

r

t

n

f

l

{

t

w

i

w

m

m

t

m

d

m

w

t

G

i

g

a

G

W

M

3

a

c

t

b

3

m

p

L

w

g

t

a

b

L

S

p

L

i

v

t

o

a

f

m

t

S

3

o

o

f
ess communication frequency than MA-DNN, which further em-

hasizes the advantages of EC-DNN by reducing communication

ost as well as increasing robustness to limited network band-

idth.

There is, however, no free lunch. In particular, the ensemble

ethod will critically increase the model complexity: the resul-

ant global equals to a larger neural network that is K times wider

nd one layer deeper than the local model. Several ensemble iter-

tions may result in explosion of the size of the global model. To

ddress this problem, we further propose an additional compres-

ion step after the ensemble. This approach cannot only restrict

he size of the resultant global model to be the same size as lo-

al ones, but also preserves the advantage of ensemble over MA.

iven that both ensemble and compression steps are dispensable

n our new parallelization framework, we name this framework as

C-DNN. As a specialization of the EC-DNN framework, we adopt

he distillation based compression [10–12] , which produces model

ompression by distilling the predictions of big models. Neverthe-

ess, such distillation method requires extra time for training the

ompressed model. To tackle this problem, we seek to integrate

he model compression into the process of local training by de-

igning a new combination loss, a weighted interpolation between

he loss based on the pseudo labels produced by global model and

hat based on the true labels. By optimizing such combination loss,

e can achieve model compression in the meantime of local train-

ng.

We conducted comprehensive experiments on CIFAR-10, CIFAR-

00, and ImageNet datasets. We have following important obser-

ations from the experiments: (1) Ensemble is a better model ag-

regation method than MA consistently. MA suffers from that the

erformance of the global model could vary drastically and even be

uch worse than the local models; meanwhile, the global model

btained by the ensemble method can consistently outperform the

ocal models. (2) In terms of the end-to-end results, EC-DNN sta-

ly achieved better speedup than MA-DNN in all the settings. (3)

he speedup of EC-DNN over MA-DNN is achieved without loss of

ccuracy, and there is even accuracy improvement sometimes. (4)

C-DNN can achieve better performance than MA-DNN even when

C-DNN communicates less frequently than MA-DNN, which em-

hasizes the advantage of EC-DNN in training a large-scale DNN

odel as it can significantly reduce the communication cost.

. Preliminary: parallel training of DNN

We denote a DNN model as f (w) where w represents the pa-

ameters. In addition, we denote the outputs of the model f (w) on

he input x as f (w ; x) = { f (w ; x, 1) , . . . , f (w ; x, C) } , where C is the

umber of classes and f (w ; x, c) denotes the output (i.e., the score)

or the c th class.

In the parallel training of DNN, suppose that there are K

ocal workers. Each local worker holds a local dataset D k =
 (x k, 1 , y k, 1) , . . . , (x k,m k

, y k,m k
) } with size m k , k ∈ { 1 , . . . , K} . Denote

he parameters of the DNN model at the iteration t on the local

orker k as w

t
k
. The communication between the local workers is

nvoked after every τ iterations of updates for the parameters, and

e call τ the communication frequency.

A typical parallelization framework of DNN iteratively imple-

ents the following three steps:

1. Local training: At iteration t , local worker k updates its local

odel by SGD. Such local model is updated for τ iterations before

he communication between different local workers.

2. Model aggregation: The parameters of local models are com-

unicated across the local workers. Then, a global model is pro-

uced by aggregating local models according to certain aggregation

ethod.
3. Local model reset: The global model is sent back to the local

orkers, and set as the starting point for the next round of local

raining.

We denote the aggregation method in the second step as

 (w

t
1
, . . . , w

t
K
) and the parameters of the global model as w̄

t . That

s, f (̄w

t) = G (w

t
1
, . . . , w

t
K
) , where t = τ, 2 τ, A widely-used ag-

regation method is model average (MA) [5–7,13–15] , which aver-

ges each parameter over all the local models, i.e.,

 MA

(
w

t
1 , . . . , w

t
K

)
= f

(

1

K

K ∑

k =1

w

t
k

)

, t = τ, 2 τ, (1)

e denote the parallel training method of DNN that using MA as

A-DNN for ease of reference.

. Model aggregation

In this section, we first reveal why the MA method cannot guar-

ntee to produce a global model with better performance than lo-

al models. Then, we propose to use ensemble method to perform

he model aggregation, which in contrast can ensure to perform

etter over local models.

.1. MA

For any model aggregation method, we hope that the perfor-

ance of the global model is at least not worse than the average

erformance of the local models, i.e.,

 (f (̄w

t ; x) , y) ≤ 1

K

K ∑

k =1

L (f (̄w

t
k ; x) , y) , (2)

here the performance is evaluated by the loss. Otherwise, the ag-

regation would be meaningless.

For MA, two conditions must be satisfied if we want to guaran-

ee that the performance of the global model is not worse than the

verage performance of the local models. First, the model should

e convex with respect to the model parameters w

t
k
, i.e.,

(
f
(
w̄

t ; x
)
, y

)
= L

(

f

(

1

K

K ∑

k =1

w

t
k ; x

)

, y

)

≤ L

(

1

K

K ∑

k =1

f
(
w

t
k ; x

)
, y

)

.

(3)

econd, the loss should be convex with respect to the model out-

uts f (·x), i.e.,

(

1

K

K ∑

k =1

f
(
w

t
k ; x

)
, y

)

≤ 1

K

K ∑

k =1

L

(
f
(
w

t
k ; x

)
, y

)
. (4)

However, DNN is a highly non-convex model due to the ex-

stence of activation functions and pooling functions (for con-

olutional layers). Therefore, MA method cannot always produce

he global model with guaranteed better performance than local

nes. Furthermore, given that the global model is usually used

s the starting point of the next round of local training, the per-

ormance of the final model could hardly be good if a global

odel in any round fails to achieve good performance. Beyond

he theoretical analysis above, the experimental results reported in

ection 6.3 and previous studies [7,15] also revealed such problem.

.2. Simple ensemble and generalized ensemble

While the DNN model itself is non-convex, we notice that most

f widely-used loss functions for DNN are convex w.r.t. the model

utputs (e.g., cross entropy loss, square loss, and hinge loss). There-

ore, Eq. (4) holds, which indicates that averaging the output of the

120 S. Sun, X. Liu / Neurocomputing 287 (2018) 118–127

j

p

n

t

S

D

p

f

m

p

a

4

4

N

t

t

S

i

s

b

c

S

i

l

o

a

e

w

c

l

w

{

n

f

s

(

e

t

C

c

l

M

t

n

w

m

t

1 In this paper, we limit the discussion of EC-DNN in the area of feed-forward

neural network (including fully connected layers and convolutional layers). For the

recurrent neural network, we leave it for future work because it needs special

methods for model compression.
2 As shown in [14] , MA-DNN in synchronous case converges faster and achieves

better test accuracy than that in asynchronous case.
local models instead of their parameters guarantees to yield bet-

ter performance than local models. To this end, we propose to use

simple ensemble to aggregate different local models, which averages

outputs of the local models as follows:

G SE

(
w

t
1 , . . . , w

t
K

)
=

1

K

K ∑

k =1

f
(
w

t
k ; x

)
, t = τ, 2 τ, (5)

Moreover, if the coefficients of the local models can be evalu-

ated or tuned instead of directly set as 1/ K , we have the chance to

further improve the performance of simple ensemble. To this end,

we extend the simple ensemble to the generalized ensemble , which

produces the global model by the weighted sum instead of the di-

rect average of the outputs of the local models, i.e.,

G GE

(
w

t
1 , . . . , w

t
K

)
=

K ∑

k =1

αk f
(
w

t
k ; x

)
, t = τ, 2 τ, (6)

For the coefficients { α1 , . . . , αK } in the generalized ensemble,

we propose two methods to evaluate them, i.e., regression based

method and margin based method.

1. Regression based method: The generalized ensemble can be

viewed as a linear regression problem with the target to produce

a global model as accurate as possible. Specifically, the coefficients

can be viewed as the parameters and the predictions of the local

models can be viewed as inputs.

Therefore, a direct way is to learn the coefficients in the gen-

eralized ensemble by minimizing the loss based on the true labels

on the training data [16,17] , i.e.,

{ α1 , . . . , αK } = arg min

{ α′
1
, ... ,α′

K
}

∑

(x,y) ∈ D

(

y −
K ∑

k =1

α′
k f

(
w

t
k ; x

)) 2

, (7)

where l 2 loss is used for simplicity, and D denote the local training

data. We denote the corresponding aggregation method as G GE−−R .

Compared to the huge training time cost by training the deep

neural networks, the extra learning time introduced by G GE−−R is

negligible. The reason is two-fold. First, the learning of coefficients

is only a linear regression problem, which is much easier than the

learning of the DNN model. Second, the dimension of the coeffi-

cients in the generalized ensemble equals to the number of the

local workers, which is quite small compared to the huge number

of parameters in the DNN model.

2. Margin based method: Besides assigning coefficient to each lo-

cal model, a fine-grained way is to also assign coefficient to each

data point (x, y). By this way, the coefficients are specified for each

data point, and thus the performance can be further improved.

To this end, for each data point, we consider putting more con-

fidence on the local model that is more confident for its classi-

fication result on this data point. Specifically, we use the margin

[18] to measure such confidence. The margin measures the gap

between the prediction for the true class and the maximum pre-

diction for all the other classes. By this way, the margin not only

indicates the correctness of the classification but also shows the

confidence of the classification result.

Therefore, the coefficient can be set to be proportional to the

margin of the local model on the data point, i.e.,

αk,x,y ∝ max

(
f
(
w

t
k ; x, y

)
− max

i � = y
f
(
w

t
k ; x, i

)
, 0

)
,

×(x, y) ∈ D, k ∈ { 1 , . . . , K} . (8)

where f
(
w

t
k
; x, y

)
is the prediction for the true class and

max i � = y f
(
w

t
k
; x, i

)
is the maximum prediction for all the other

classes. We denote the corresponding aggregation method as

G GE−−M

.
During the test, since we cannot access the true labels, we

ust directly set α1 = · · · = αK =

1
K . That is, G GE−−M

can only im-

rove the training performance of the simple ensemble, but can-

ot improve the test performance. However, G GE−−M

is used itera-

ively during the training process of EC-DNN (see more details in

ection 4) and thus can improve the training performance of EC-

NN. Therefore, although G GE−−M

cannot directly improve the test

erformance of the simple ensemble, it can improve the test per-

ormance of the whole EC-DNN by improving the training perfor-

ance of EC-DNN.

In the remaining part of this paper, we collectively call the sim-

le ensemble, i.e., G SE , and the generalized ensemble, i.e., G GE−−R

nd G GE−−M

, ensemble , for ease of reference.

. EC-DNN

.1. Framework

The details of EC-DNN framework 1 is shown in Algorithm 1 .

ote that, in this paper, we focus on the synchronous case 2 within

he MapReduce framework, but EC-DNN can be generalized into

he asynchronous case and parameter server framework as well.

imilar to MA-DNN, EC-DNN also iteratively conducts local train-

ng, model aggregation, and local model reset.

1. Local training: The local training process of EC-DNN is the

ame as that of MA-DNN, in which the local model is updated

y SGD. Specifically, at iteration t , local worker k updates its lo-

al model from w

t
k

to w

t+1
k

by minimizing the training loss using

GD, i.e., w

t+1
k

= w

t
k

− η�(L (f (w

t
k
; x k) , y k)) , where η is the learn-

ng rate, and �(L (f (w

t
k
; x k) , y k)) is the gradients of the empirical

oss L (f (w

t
k
; x k) , y k) of the local model f (w

t
k
) on one mini batch

f the local dataset D k . One local model will be updated for τ iter-

tions before the communication between local workers.

2. Model aggregation: During the model aggregation, the param-

ters of local models, i.e., w

t
1
. . . w

t
K
, are communicated across local

orkers. To this end, a global model is produced by ensemble ac-

ording to G SE , G GE−−R or G GE−−M

(see Eqs. (5) , (7) and (8)). Equiva-

ently, the global model produced by ensemble is a larger network

ith one additional layer with the parameters as 1/ K for G SE and

 α1 , . . . , αK } for G GE−−R and G GE−−M

, whose outputs consist of C

odes representing C classes, and whose inputs are those outputs

rom local models, where K is the number of local models.

Note that such global model (i.e., f (w̄ t)) produced by the en-

emble is one layer deeper and K times wider than the local model

i.e., f (w

k
t)). Therefore, continuous rounds of ensemble process will

asily give rise to a global model with exploding size. To avoid

his problem, we propose introducing a compression process (i.e.,

ompression(w

t
k
, w̄

t , D k) in Algorithm 1) after ensemble process, to

ompress the resultant global model to be the same size as those

ocal models while preserving the advantage of the ensemble over

A. We denote the compressed model for the global model w̄ t on

he local worker k as ˜ w

t
k
.

3. Local model reset: The compressed model will be set as the

ew starting point of the next round of local training, i.e., w

t
k

=

˜ w

t

here t = τ, 2 τ,

At the end of the training process, EC-DNN will output K local

odels and we choose the model with the smallest training loss as

he final one. Note that, we can also take the global model (i.e., the

S. Sun, X. Liu / Neurocomputing 287 (2018) 118–127 121

e

c

4

s

m

n

a

s

t

e

o

w

t

f

f

l

(

b

T

E

m

5

t

t

m

c

5

s

o

i

s

l

f

L

w

m

t

t

p

c

t

5

s

m

m

t

w

p

k

L

w

p

c

B

{

a

s

i

p

b

l

t

r

5

t

M

w

t

m

3 Other algorithms for the compression [20–25] can also be used for the same

purpose, but different techniques may be required in order to plug these compres-

sion algorithms into the EC-DNN framework.
4 In the algorithm, we take G GE−−R as an example and it can be directly general-

ized to G SE and G GE−−M .
nsemble of K local models) as the final model if there are enough

omputation and storage resources for the test.

.2. Comparison with traditional ensemble methods

Traditional ensemble methods for DNN [1,19] usually first train

everal DNN models independently without communication and

ake ensemble of them only at the end of the training. We de-

ote such method as E-DNN. E-DNN was proposed to improve the

ccuracy of DNN models by reducing variance and it has no neces-

ity to train base models with parallelization framework. In con-

rast, EC-DNN is a parallel algorithm aiming at training DNN mod-

ls faster without the loss of the accuracy by leveraging a cluster

f machines.

Although E-DNN can be viewed as a special case of EC-DNN

ith only one final communication and no compression process,

he intermediate communications in EC-DNN will make it outper-

orm E-DNN. The reasons are as follows: (1) local workers has dif-

erent local data, the communications during the training will help

ocal models to be consensus towards the whole training data;

2) the local models of EC-DNN can be continuously optimized

y compressing the ensemble model after each ensemble process.

hen, another round of ensemble will result in more advantage for

C-DNN over E-DNN since the local models of EC-DNN has been

uch improved.

. Implementations

In this section, we introduce one concrete implementation of

he EC-DNN framework. Algorithm 1 contains two sub-problems

Algorithm 1: EC-DNN(D k).

Randomly initialize w

0
k

and set t = 0 ;

while stop criteria are not satisfied do

w

t+1
k

← w

t
k

− η�(L (f (w

t
k
; x k) , y k)) ;

t ← t + 1 ;

if τ divides t then

w̄

t ← Ensemble({ w

t
1
, . . . , w

t
K
});

˜ w

t
k

← Compression(w

t
k
, w̄

t , D k);

w

t
k

←

˜ w

t
k
.

return w

t
k

hat need to be addressed more concretely: (1) how to train local

odels that can benefit more to the ensemble model; (2) how to

ompress the global model without costing too much extra time.

.1. Diversity driven local training

In order to improve the performance of ensemble, it is neces-

ary to generate diverse local models other than merely accurate

nes [8,9] . Therefore, in the local training phase, i.e., the third line

n Algorithm 1 , we minimize both the loss on training data and the

imilarity between the local models, which we call diversity regu-

arized local training loss . For the k th local worker, it is defined as

ollows,

k
LS (f (w k ; x k,i) , y k,i) =

m k ∑

i =1

(
L

(
f (w k ; x k,i) , y k,i

)
+ αL sim

(
f
(
w k ; x k,i

)
, ̄z k,i

))
, (9)

here z̄ y,i is the average of the outputs of the latest compressed

odels for input x k, i . In our experiments, the local training loss L
akes the form of cross entropy, and the similarity loss L takes
sim
he form of −l 2 distance. The smaller L sim

is, the farther the out-

uts of a local model is from the average of outputs of the latest

ompressed models, and hence the farther (or the more diverse)

he local models are from (or with) each other.

.2. Accelerated compression

In order to compress the global model to the one with the

ame size as the local model, we use distillation base compression

ethod

3 [10–12] , which obtains a compressed model by letting it

imic the predictions of the global model. In order to save the

ime for compression, in compression process, we minimize the

eighted combination of the local training loss and the pure com-

ression loss, which we call accelerated compression loss . For the

 th local worker, it is defined as follows:

k
LC (f (w k ; x k,i) , y k,i) =

m k ∑

i =1

(
L

(
f
(
w k ; x k,i

)
, y k,i

)
+ βL comp

(
f
(
w k ; x k,i

)
, ȳ k,i

))
, (10)

here ȳ k,i is the output of the latest ensemble model for the in-

ut x k, i . In our experiments, the local training loss L and the pure

ompression loss L comp both take the form of cross entropy loss.

y reducing the loss between f (w k ; x k, i) and the pseudo labels

 ̄y k,i ; i ∈ [m k] } , the compressed model can play the similar function

s the ensemble model. We denote the distillation based compres-

ion process as Compression distill (w

t
k
, w̄

t , D k), and show its details

n Algorithm 2 . 4 Note that before minimizing the accelerated com-

Algorithm 2: Compression distill (w

t
k
, w̄

t
k
, D k).

for j ∈ [m k] do

for c ∈ [C] do

ȳ k, j,c ←

∑ K
r=1 αk f (w

t
r ; x k, j , c) ;

ȳ k, j = (̄y k, j, 1 , . . . , ̄y k, j,C) ;

ˆ D k ← { (x k, 1 , y k, 1 , ̄y k, 1) , . . . , (x k,m k
, y k,m k

, ̄y k,m k
) } ;

Set ˜ w

t
k

= w

t
k

and i = 0 ;

while i ≤ p do

˜ w

t+ i +1
k

←

˜ w

t+ i
k

− η�(L

k
LC

(f (̃ w

t+ i
k

; x k) , y k)) ;

i ← i + 1 ;

return

˜ w

t+ p
k

.

ression loss, we first produce the pseudo labels by the ensem-

le model and construct a new training dataset ˆ D k by the pseudo

abels. And, the parameters of the compressed model ˜ w

t
k

are ini-

ialized by the parameters of the latest local model w

t
k

instead of

andom numbers.

.3. Time complexity

We compare the time complexity of MA-DNN and EC-DNN from

wo aspects:

1. Communication time: EC-DNN prefers larger τ compared to

A-DNN. Essentially, less frequent communication across the local

orkers can give rise to more diverse local models, which will lead

o better ensemble performance for EC-DNN. On the other hand,

uch diverse local models may indicate greater probability that

122 S. Sun, X. Liu / Neurocomputing 287 (2018) 118–127

Table 1

Hyperparameter setting of EC-DNN.

Hyperparameter Explored values Chosen value

CIFAR 10, CIFAR 100 ImageNet

α {0.2, 0.4, 0.6, 0.8, 1} 0.6 0.6

β {0.2, 0.4, 0.6, 0.8, 1} 0.4 1

p {5%, 10%, 15%, 20%} 10% 10%

μ {30%, 50%, 70%} 70% 30%

E

E

e

d

M

t

n

M

t

D

p

6

6

M

m

g

D

w

w

i

E

p

d

c

w

t

a

t

a

s

o

M

f

m

o

b

o
local models are in the neighboring of different local optima such

that the global model in MA-DNN is more likely to perform worse

than local ones. Therefore, EC-DNN yields less communication time

than MA-DNN.

2. Computational time: EC-DNN does not consume extra com-

putation time for compression since the compression process has

been integrated into the local training phase (see discussions in

Section 5.2). Therefore, compared with MA-DNN, EC-DNN only re-

quires additional time to relabel the local data using the global

model, which approximately equals to the time of the feed-forward

propagation over the local dataset. To limit the relabeling time, we

choose to relabel a portion of the local data, denoted as μ. Our ex-

perimental results in Section 6.3 will demonstrate that the relabel-

ing time can be controlled within a very small amount compared

to the training time of DNN. Therefore, EC-DNN can cost only a

slightly more or roughly equal computational time over MA-DNN.

Overall, EC-DNN is essentially more time-efficient than MA-

DNN as it can reduce the communication cost without significantly

increasing computational time.

6. Experiments

6.1. Experimental setup

Platform: Our experiments are conducted on a GPU cluster in-

terconnected with an InfiniBand network, each machine of which

is equipped with two Nvdia’s K20 GPU processors. One GPU pro-

cessor corresponds to one local worker.

Data: We conducted experiments on public datasets CIFAR-10,

CIFAR-100 [26] and ImageNet (ILSVRC 2015 Classification Chal-

lenge) [27] . CIFAR-10 and CIFAR-100 contain 50,000 training im-

ages and 10,0 0 0 test images for 10-class and 100-class classifica-

tion respectively. ImageNet contains 1,281,167 training images and

50,0 0 0 test images for 10 0 0-class classification. For all the datasets,

each image is normalized by subtracting the per-pixel mean com-

puted over the whole training set. The training images are horizon-

tally flipped but not cropped, and the test data are neither flipped

nor cropped.

Model: On CIFAR-10 and CIFAR-100, we employ NiN [28] , a 9-

layer convolutional network. On ImageNet, we use GoogLeNet [1] , a

22-layer convolutional network. We used the same tricks, including

random initialization, l 2 -regularization, Dropout, and momentum,

as the original paper. All the experiments are implemented using

Caffe [29] .

Parallel setting: On experiments on CIFAR-10 and CIFAR-100, we

explore the number of the local workers K ∈ {4, 8} and the commu-

nication frequency τ ∈ {1, 16, 20 0 0, 40 0 0} for both MA-DNN and

EC-DNN. On experiments on ImageNet, we explore K ∈ {4, 8} and

τ ∈ { 1 , 10 0 0 , 10 , 0 0 0 } . The communication across the local workers

is implemented using MPI.

Hyperparameter setting of EC-DNN: There are four hyperparam-

eters in EC-DNN, including (1) the coefficient of the regularization

in terms of similarity between local models, i.e., α in Eq. (9) ; (2)

the coefficient of the model compression loss, i.e., β in Eq. (10) ; (3)

the length of the compression process, i.e., p in Algorithm 2 , mea-

sured by the percentage of the number of the mini-batches that

the whole training lasts; and (4) the portion of the data needed to

be relabeled in the compression process μ as mentioned in Section

5.3 . We tune these hyperparameters by exploring a certain range of

values and then choose the one resulting in best performance. The

explored values and the chosen value on each datasets are shown

in Table 1 .

6.2. Compared methods

We conduct performance comparisons on four methods:
• S-DNN denotes the sequential training on one GPU until

convergence [1,28] .

• E-DNN denotes the method that trains local models inde-

pendently and makes ensemble of the local models merely

at the end of the training [1,19] .

• MA-DNN refers the parallel DNN training framework with

the aggregation by averaging model parameters [5–7,13–15] .

• EC-DNN refers the parallel DNN training framework with the

aggregation by ensemble. EC-DNN applies Compression distill

for the compression for all the experiments in this paper.

Furthermore, for different versions of EC-DNN method, we use

C-DNN-S to denote the one with simple ensemble G SE , and use

C-DNN-R and EC-DNN-M to denote the method with generalized

nsemble G GE−−R and G GE−−M

, respectively. And, we collectively

enote EC-DNN-S, EC-DNN-R and EC-DNN-M as EC-DNN.

In addition, we use EC-DNN-S L (or EC-DNN-R L and EC-DNN-

 L), MA-DNN L and E-DNN L to denote the corresponding methods

hat take the local model with the smallest training loss as the fi-

al model, and use EC-DNN-S G (or EC-DNN-R G and EC-DNN-M G),

A-DNN G and E-DNN G to represent the respective methods that

ake the global model (i.e., the ensemble of local models for EC-

NN-S (or EC-DNN-R and EC-DNN-M) and E-DNN, and the average

arameters of local models for MA-DNN) as the final model.

.3. Experimental results

.3.1. Model aggregation

We first compare the performance of aggregation methods, i.e.

A and Ensemble. To this end, we employ DiffLG as the evaluation

etric, which measures the improvement of the test error of the

lobal model compared to that of the local models, i.e.,

iff LG =

1

K

K ∑

k =1

error k − error global , (11)

here error k denotes the test error of the local model on local

orker k , and error global denotes the test error of the correspond-

ng global model produced by MA (or ensemble) in MA-DNN (or

C-DNN). The positive (or negative) DiffLG means performance im-

rovement (or drop) of global models over local models. On each

ataset, we produce a distribution for DiffLG over all the communi-

ations and all the parallel settings (including numbers of the local

orkers and communication frequencies). We show the distribu-

ion for DiffLG of MA and ensemble on CIFAR datasets in Figs. 1

nd 2 , respectively, in which red bars (or blue bars) stand for that

he performance of the global model is worse (or better) than the

verage performance of local models. In these figures, we take the

imple ensemble G SE as an example because it is the least powerful

ne over all the discussed ensemble methods. If it can outperform

A, all the other ensemble methods can also outperform MA.

We have following observations from Figs. 1 and 2 : (1) for MA,

rom Fig. 1 , we can observe that, on both datasets, over 10% global

odels achieve worse performance than the average performance

f local models, and the average performance of locals model can

e worse than the global model by a large margin, e.g., 30%; (2)

n the other hand, for ensemble, we can observe from Fig. 2 that

S. Sun, X. Liu / Neurocomputing 287 (2018) 118–127 123

Fig. 1. MA. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 2. Ensemble. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

t

a

i

t

6

t

s

a

e

o

p

b

W

s

s

o

t

T

t

a

e

f

Table 2

Test error (%), speed, and communication frequency τ on CIFAR-10.

K = 4 K = 8

Error Speed τ Error Speed τ

MA-DNN G 10.3 1 16 9.99 1 2k

E-DNN G 9.44 1.58 – 9.05 1.92 –

EC-DNN-S G 8.43 1.92 4k 8.19 2.05 4k

EC-DNN-R G 8.32 2.05 2k 8.16 2.11 2k

EC-DNN-M G 8.13 2.05 4k 8.06 2.14 2k

MA-DNN L 10.55 0 16 10.54 0 2k

E-DNN L 11.04 0 – 10.95 0 –

EC-DNN-S L 10.04 1.36 4k 9.88 1.26 4k

EC-DNN-R L 9.92 1.42 2k 9.79 1.32 2k

EC-DNN-M L 9.84 1.45 4k 9.70 1.38 2k

S-DNN 10.41

d

E

w

m

M

(

E

a
he performance of the global model is consistently better than the

verage performance of the local models on both datasets. Specif-

cally, the performances of over 20% global models are 5+% better

han the average performance of local models on both datasets.

.3.2. EC-DNN vs. MA-DNN

We compare the performance of EC-DNN and MA-DNN from

hree aspects, i.e., speed, accuracy and communication frequency.

For any parallel algorithm, speed is the most important mea-

ure. To this end, we measure the overall training time by MA-DNN

nd EC-DNN to achieve the same accuracy. Fig. 3 shows the test

rror curves w.r.t. overall training time. For all the EC-DNN meth-

ds, the relabeling time has been counted in the overall time when

lotting the figures. We report EC-DNN and MA-DNN that achieve

est test performance among all the communication frequencies.

e calculate the speed of compared methods from the figures and

how results in Tables 2 and 3 . In these tables, we denote the

peed of MA-DNN G as 1, and normalize the speed of other meth-

ds by dividing that of MA-DNN G . If one method never achieves

he same performance with MA-DNN G , we denote its speed as 0.

herefore, larger value of speed indicates better speedup. From

hese tables, we can observe that all the EC-DNN methods can

chieve better speedup than MA-DNN on all the datasets. On av-

rage, EC-DNN-S G and EC-DNN-S L runs about 2.24 and 1.33 times

aster than MA-DNN , respectively (which is averaged over all the
G
atasets and the number of the local workers). And, EC-DNN-R and

C-DNN-M can achieve more speedup.

In addition, the speedup of EC-DNN over MA-DNN is achieved

ithout loss of accuracy, and there is even accuracy improve-

ent sometimes. In Tables 2 and 3 , each EC-DNN G outperforms

A-DNN L and MA-DNN G . The average improvements of EC-DNN G

which is computed by averaging the performance of EC-DNN-S G ,

C-DNN-R G and EC-DNN-M G) over MA-DNN L and MA-DNN G are

round 1% and 5% for CIFAR-10 and CIFAR-100 respectively. Be-

124 S. Sun, X. Liu / Neurocomputing 287 (2018) 118–127

Fig. 3. Test error curves on CIFAR datasets.

Table 3

Test error (%), speed, and communication frequency τ on CIFAR-100.

K = 4 K = 8

Error Speed τ Error Speed τ

MA-DNN G 36.18 1 16 35.55 1 16

E-DNN G 32.49 1.95 – 30.9 1.97 –

EC-DNN-S G 30.26 2.52 4k 29.31 2.48 2k

EC-DNN-R G 30.19 2.61 2k 29.10 2.61 4k

EC-DNN-M G 29.85 2.63 4k 28.93 2.61 4k

MA-DNN L 36.39 0 16 35.56 0 16

E-DNN L 39.57 0 – 39.55 0 –

EC-DNN-S L 34.80 1.42 4k 35.1 1.27 2k

EC-DNN-R L 34.33 1.48 2k 34.93 1.36 4k

EC-DNN-M L 34.05 1.50 4k 34.75 1.38 4k

S-DNN 35.68

t

m

M

T

D

S

s

b

w

c

6

a

t

D

S

a

t

o

S

2

n

E

sides, we also report the final performance of EC-DNN L consider-

ing that it can save test time and still outperform both MA-DNN L

and MA-DNN G when we do not have enough computational and

storage resource. We can observe that all the EC-DNN L (including

EC-DNN-S L , EC-DNN-R L and EC-DNN-M L) methods achieve compa-

rable or better performance than both MA-DNN L and MA-DNN G .

Specifically, for example, EC-DNN-S L achieved test errors of 10.04%

and 9.88% for K = 4 and K = 8 respectively on CIFAR-10, while it

achieved test errors of 34.8% and 35.1% for K = 4 and K = 8 respec-
ively on CIFAR-100. In addition, for all the datasets, all the EC-DNN

ethods achieve comparable or better accuracy than S-DNN.

We also compare the communication frequency τ that makes

A-DNN and EC-DNN achieve the best speed respectively.

ables 2 and 3 show the results. We can observe that all the EC-

NN methods tend to communicate less frequently than MA-DNN.

pecifically, MA-DNN usually achieves the best performance with a

mall τ (i.e., 16), while EC-DNN cannot reach its best performance

efore τ is not as large as 20 0 0. These observations are consistent

ith our analysis in Section 5.3 , that EC-DNN requires less frequent

ommunication than MA-DNN.

.3.3. EC-DNN vs. E-DNN

We compare the performance of EC-DNN and E-DNN from two

spects, i.e., speed and accuracy.

For the speed, we show the test error curves w.r.t. overall

raining time of EC-DNN and E-DNN in Fig. 3 . The speed of E-

NN is calculated by the same way as EC-DNN (see details in

ection 6.3.2), and shown in Tables 2 and 3 . We can observe that

ll the EC-DNN methods consistently results in better speedup

han E-DNN on all the datasets. Specifically, on average, E-DNN G

nly runs about 1.85 times faster than MA-DNN G while EC-DNN-

 G (the slowest one over all the EC-DNN methods) can reach about

.24 times faster speed. In addition, we can also find that E-DNN L

ever achieves the same performance with MA-DNN G while all the

C-DNN methods can contrarily run much faster than MA-DNN .
L G

S. Sun, X. Liu / Neurocomputing 287 (2018) 118–127 125

Fig. 4. Test error curves on ImageNet.

E

p

t

1

C

M

w

t

6

v

o

t

a

(

d

M

c

b

i

e

t

E

E

6

p

m

F

a

i

c

a

s

M

s

t

b

s

s

t

c

l

t

i

6

e

w

s

S

E

d

o

f

t

t

i

e

t

s

t

c

q

t

d

f

s

s

v

p

a

v

t

n

i

t

n

c

t

t

p

7

v
For the accuracy, we can observer from Tables 2 and 3 that

C-DNN-S G (the worst one over all the EC-DNN methods) out-

erforms E-DNN G consistently for different datasets and number of

he local workers. Specifically, on average, EC-DNN-S G can achieve

+% and 1.8+% better performance than E-DNN G on CIFAR-10 and

IFAR-100, respectively. In addition, E-DNN L never outperforms

A-DNN L and MA-DNN G , while all the EC-DNN L methods can al-

ays achieve comparable performance with or better performance

han both MA-DNN L and MA-DNN G .

.3.4. EC-DNN with different ensemble methods

Fig. 3, Tables 2 and 3 also show the performances for different

ersions of EC-DNN methods, which use different ensemble meth-

ds. First, we can observe that all the EC-DNN methods consis-

ently outperforms MA-DNN and E-DNN in terms of speedup and

ccuracy, indicating that technologies in EC-DNN are very powerful

see detailed discuss in Sections 6.3.2 and 6.3.3). In addition, with

elicate design of ensemble methods in EC-DNN-R and EC-DNN-

, the performance of simple version of EC-DNN, i.e., EC-DNN-S,

an be further improved. For example, for CIFAR-100 and K = 8 ,

y generalized ensemble G GE−−M

, the speedup of EC-DNN-S can be

mproved from 2.48 to 2.61 without loss of accuracy, and the test

rror can even be reduced from 29.31% to 28.93%. Furthermore, by

he fine-grained way that assigns coefficient to each data point in

C-DNN-M, EC-DNN-M usually achieves better performance than

C-DNN-R.

.3.5. Large-scale experiments

In the following, we will conduct experiments to compare the

erformance of MA-DNN with that of EC-DNN with the setting of

uch bigger model and more data, i.e., GoogleNet on ImageNet.

ig. 4 shows the test error of the global model w.r.t the over-

ll time. In the figure, we take EC-DNN-S as an example since it

s the least powerful one over all the versions of EC-DNN. The

ommunication frequencies τ that makes MA-DNN and EC-DNN

chieve best performance are 1 and 10 0 0, respectively. We can ob-

erve that EC-DNN consistently achieves better speed than S-DNN,

A-DNN and E-DNN throughout the training. Besides, we can ob-

erve that EC-DNN outperforms MA-DNN even at the early stage of

he training, while EC-DNN cannot achieve this on CIFAR datasets

ecause it communicates less frequently than MA-DNN. The rea-

on is that frequent communication will make the training much

lower for very big model, i.e., use less mini-batches of data within

he same time. When the improvements introduced by MA cannot

ompensate the decrease of the number of used data, MA-DNN no

onger outperforms EC-DNN at the early stage of the training. In
his case, the advantage of EC-DNN becomes even more outstand-

ng.

.3.6. Discussions

The influence of the communication frequency: To study the influ-

nce of the communication frequency τ on our proposed EC-DNN,

e explore the communication frequency τ ∈ {2 k , 4 k , 8 k , 16 k }, and

how the test error curves in Fig. 5 . We take K = 4 and EC-DNN-

 as an example and the results for K = 8 and other versions of

C-DNN are similar. From the figure, we can observe that, on both

atasets, EC-DNN can achieve good performance in a wide range

f communication frequency, e.g., from 2k to 8k on CIFAR-10 and

rom 2k to 4k on CIFAR-100. This indicates that EC-DNN is robust

o the change of communication frequency. In addition, when τ is

oo large, e.g., 16k, the accuracy and the speed drop due to the

nsufficient communication between different local workers. In the

xtreme case that there is only one communication at the end of

he training, i.e., E-DNN, the accuracy and the speed drop more

everely.

Local training as a indispensable part: Since we minimize both

he local training loss and the pure compression loss in the ac-

elerated compression step (see details in Section 5.2), a natural

uestion is whether it is still necessary to have a separate local

raining step that merely minimizes the local training loss (see

etails in Section 5.1). To answer this question, we compare the

ollowing settings of EC-DNN: (1) EC-DNN without local training

tep; (2) EC-DNN with local training step but without the diver-

ity based term; (3) EC-DNN with local training step and the di-

ersity based term, which is the one we used in all the above ex-

eriments. Fig. 6 shows the experimental results. We take K = 4

nd EC-DNN-S as an example and the results for K = 8 and other

ersions of EC-DNN are similar. From the figure, we can observe

hat even if there is no diversity based term in case 2, case 2 sig-

ificantly outperforms case 1. This indicates that the local training

s an indispensable part. We hypothesis the reason as that during

he separate local training step, the different local models do not

eed to learn to mimic the common ensemble model, and thus be-

omes more diverse. Such diversity benefit the ensemble and thus

he performance of the whole EC-DNN. In addition, we can observe

hat by introducing diversity in case 3, case 3 further improve the

erformance of case 2.

. Related works

With the growing effort s in parallel training for DNN, many pre-

ious studies have paid attention to MA-DNN. Some studies aim

126 S. Sun, X. Liu / Neurocomputing 287 (2018) 118–127

Fig. 5. The influence of the communication frequency.

Fig. 6. Local training as an indispensable part.

p

m

i

g

o

e

f

c

h

s

R

at improving the speedup or convergence of MA-DNN. For exam-

ple, NG-SGD [7] proposes an approximate and efficient implemen-

tation of Natural Gradient for SGD (NG-SGD) to improve the per-

formance of MA-DNN; EASGD [13] improves MA-DNN by adding

an elastic force which links the parameters of the local models

with the parameters of the global model; BMUF [15] leverages data

parallelism and blockwise model-update filtering to improve the

speedup of MA-DNN; large mini-batch methods [30,31] increase

the learning rate and the mini-batch size to accelerate the conver-

gence; DC-ASGD improves the accuracy of the asynchronous data

parallelism by compensating the delayed gradients using the sec-

ond order term of the Taylor expansion of the gradients. Some

studies focus on reducing the communication cost. For example,

for NLP tasks, sampling method [32] reduces communication cost

by only transferring the gradients of the parameters that corre-

sponds to the most frequent words in the vocabulary in the RNN

model; Quantization method [33–35] reduces communication cost

by quantizing each gradient to a small number of bits (less than

32 bits) during the communication. All these methods aim at solv-

ing different problems with us, and our method can be used with

those methods simultaneously.

8. Conclusion and future work

In this work, we propose a new parallelization training frame-

work for DNN, called EC-DNN. As compared to the traditional ap-
roach, MA-DNN, which averages the parameters of different local

odels, our proposed method uses the ensemble method (includ-

ng both the simple ensemble and the generalized ensemble) to ag-

regate local models. In this way, we can guarantee that the error

f the global model in EC-DNN is upper bounded by the average

rror of the local models and can consistently achieve better per-

ormance than MA-DNN. In the future, we plan to consider other

ompression methods for EC-DNN. Besides, we plan to investigate

ow to generalize EC-DNN to more types of deep neural networks,

uch as recurrent neural networks.

eferences

[1] C. Szegedy , W. Liu , Y. Jia , P. Sermanet , S. Reed , D. Anguelov , D. Erhan , V. Van-

houcke , A. Rabinovich , Going deeper with convolutions, in: Computer Vision
and Pattern Recognition, 2015, pp. 1–9 .

[2] K. He , X. Zhang , S. Ren , J. Sun , Delving deep into rectifiers: surpassing hu-
man-level performance on ImageNet classification, in: Proceedings of the IEEE

International Conference on Computer Vision, 2015, pp. 1026–1034 .
[3] J. Dean , S. Ghemawat , Mapreduce: simplified data processing on large clusters,

Commun. ACM 51 (1) (2008) 107–113 .
[4] M. Li , D.G. Andersen , J.W. Park , A.J. Smola , A. Ahmed , V. Josifovski , J. Long ,

E.J. Shekita , B.-Y. Su , Scaling distributed machine learning with the parameter

server, in: Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation, 2014, pp. 583–598 .

[5] J. Dean , G. Corrado , R. Monga , K. Chen , M. Devin , M. Mao , A. Senior , P. Tucker ,
K. Yang , Q.V. Le , et al. , Large scale distributed deep networks, in: Proceedings

of Advances in Neural Information Processing Systems, 2012, pp. 1223–1231 .

http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0001a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0001a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0001a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0001a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0001a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0001a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0001a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0001a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0001a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0001a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0004

S. Sun, X. Liu / Neurocomputing 287 (2018) 118–127 127

[

[

[

[

[

[

[

[

[

[

[

[

[

[6] X. Zhang , J. Trmal , D. Povey , S. Khudanpur , Improving deep neural network
acoustic models using generalized maxout networks, in: Proceedings of IEEE

International Conference on Acoustics, Speech and Signal Processing, IEEE,
2014, pp. 215–219 .

[7] D. Povey , X. Zhang , S. Khudanpur , Parallel training of DNNs with natural gra-
dient and parameter averagin, in: International Conference on Learning Repre-

sentations, 2015 .
[8] L.I. Kuncheva , C.J. Whitaker , Measures of diversity in classifier ensembles and

their relationship with the ensemble accuracy, Mach. Learn. 51 (2) (2003)

181–207 .
[9] P. Sollich , A. Krogh , Learning with ensembles: how overfitting can be useful,

in: Proceedings of Advances in Neural Information Processing Systems, 8, 1996,
pp. 190–196 .

[10] C. Bucilua , R. Caruana , A. Niculescu-Mizil , Model compression, in: Proceedings
of the 12th ACM Conference on Knowledge Discovery and Data Mining, ACM,

2006, pp. 535–541 .

[11] A. Romero , N. Ballas , S.E. Kahou , A. Chassang , C. Gatta , Y. Bengio , Fitnets: Hints
for thin deep nets, in: International Conference on Learning Representation,

2015 .
[12] G. Hinton , O. Vinyals , J. Dean , Distilling the knowledge in a neural network, in:

NIPS Deep Learning and Representation Learning Workshop, 2015 .
[13] S. Zhang , A.E. Choromanska , Y. LeCun , Deep learning with elastic averaging

SGD, in: Proceedings of Advances in Neural Information Processing Systems

28, 2015, pp. 685–693 .
[14] J. Chen , R. Monga , S. Bengio , R. Jozefowicz , Revisiting distributed synchronous

SGD, in: International Conference on Learning Representations, 2016 .
[15] K. Chen , Q. Huo , Scalable training of deep learning machines by incremental

block training with intra-block parallel optimization and blockwise model-up-
date filtering, in: Proceedings of 2016 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), IEEE, 2016, pp. 5880–5884 .

[16] D.H. Wolpert , Stacked generalization, Neural Netw. 5 (2) (1992) 241–259 .
[17] L. Breiman , Stacked regressions, Mach. Learn. 24 (1) (1996) 49–64 .

[18] X. Shen , L. Wang , et al. , Generalization error for multi-class margin classifica-
tion, Electron. J. Stat. 1 (2007) 307–330 .

[19] D. Ciresan , U. Meier , J. Schmidhuber , Multi-column deep neural networks for
image classification, in: Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition, IEEE, 2012, pp. 3642–3649 .

20] W. Chen , J.T. Wilson , S. Tyree , K.Q. Weinberger , Y. Chen , Compressing neural
networks with the hashing trick, in: Proceedings of the 32st International Con-

ference on Machine Learning, 2015 .
[21] Y. Gong , L. Liu , M. Yang , L. Bourdev , Compressing deep convolutional networks

using vector quantization, in: International Conference on Learning Represen-
tations, 2014 .

22] M. Denil , B. Shakibi , L. Dinh , N. de Freitas , et al. , Predicting parameters in deep

learning, in: Proceedings of Advances in Neural Information Processing Sys-
tems, 2013, pp. 2148–2156 .

23] E.L. Denton , W. Zaremba , J. Bruna , Y. LeCun , R. Fergus , Exploiting linear struc-
ture within convolutional networks for efficient evaluation, in: Proceedings of

Advances in Neural Information Processing Systems, 2014, pp. 1269–1277 .
24] R. Rigamonti , A. Sironi , V. Lepetit , P. Fua , Learning separable filters, in: Pro-

ceedings of IEEE Conference on Computer Vision and Pattern Recognition, IEEE,
2013, pp. 2754–2761 .

25] S. Han , J. Pool , J. Tran , W. Dally , Learning both weights and connections for

efficient neural network, in: Proceedings of Advances in Neural Information
Processing Systems 28, 2015, pp. 1135–1143 .

26] A. Krizhevsky , Learning Multiple Layers of Features From Tiny Images, Techni-
cal Report, University of Toronto, 2009 .
[27] O. Russakovsky , J. Deng , H. Su , J. Krause , S. Satheesh , S. Ma , Z. Huang , A. Karpa-
thy , A. Khosla , M. Bernstein , A.C. Berg , L. Fei-Fei , ImageNet large scale visual

recognition challenge, Int. J. Comput. Vis. 115 (3) (2015) 211–252 .
28] L. Min , C. Qiang , S. Yan , Network in network, in: International Conference on

Learning Representations, 2014 .
29] Y. Jia , E. Shelhamer , J. Donahue , S. Karayev , J. Long , R. Girshick , S. Guadarrama ,

T. Darrell , Caffe: Convolutional architecture for fast feature embedding, in: Pro-
ceedings of the 22nd ACM international conference on Multimedia, ACM, 2014,

pp. 675–678 .

30] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A . Kyrola, A . Tul-
loch, Y. Jia, K. He, Accurate, large minibatch SGD: training ImageNet in 1 hour,

arXiv:1706.02677 (2017).
[31] Y. You, I. Gitman, B. Ginsburg, Scaling SGD batch size to 32k for ImageNet

training, arXiv:1708.03888 (2017).
32] T. Xiao , J. Zhu , T. Liu , C. Zhang , Fast parallel training of neural language mod-

els, in: Proceedings of International Joint Conference on Artificial Intelligence,

2017 .
33] F. Seide , H. Fu , J. Droppo , G. Li , D. Yu , 1-bit stochastic gradient descent and its

application to data-parallel distributed training of speech DNNs, in: Proceed-
ings of Interspeech, 2014, pp. 1058–1062 .

34] D. Alistarh , D. Grubic , J. Li , R. Tomioka , M. Vojnovic , QSGD: Communication–
efficient SGD via gradient quantization and encoding, in: Advances in Neural

Information Processing Systems 30, 2017, pp. 1707–1718 .

35] W. Wen , C. Xu , F. Yan , C. Wu , Y. Wang , Y. Chen , H. Li , TernGrad: ternary gradi-
ents to reduce communication in distributed deep learning, in: Proceedings of

Advances in Neural Information Processing Systems 28, 2017 .

Shizhao Sun is a Ph.D. student in Nankai University, ma-

jored in computer science. Before that, she received her
bachelor degree in computer science from Nankai Uni-

versity in 2013. Her research interests center around par-

allel/distributed machine learning and statistical learning
theory.

Xiaoguang Liu received the B.Sc. degree, M.Sc. degree
and Ph.D. degree in computer science from Nankai Uni-

versity, Tianjin, China, in 1996, 1999 and 2002, respec-
tively. He is currently a professor in computer science at

Nankai University, Tianjin, China. His research interests
include parallel computing, cloud storage and search en-

gine system.

http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0007a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0007a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0007a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0007a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0011a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0011a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0011a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0011a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0011a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0011a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0011a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0012a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0012a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0012a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0012a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0014a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0014a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0014a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0014a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0014a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0014
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0021a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0021a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0021a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0021a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0021a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0028a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0028a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0028a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0028a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0029a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0029a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0029a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0029a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0029a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0029a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0029a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0029a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0029a
http://arXiv.org
http://arXiv.org
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0024
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0034a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0034a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0034a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0034a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0034a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0034a
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0025
http://refhub.elsevier.com/S0925-2312(18)30105-X/sbref0025

	EC-DNN: A new method for parallel training of deep neural networks
	1 Introduction
	2 Preliminary: parallel training of DNN
	3 Model aggregation
	3.1 MA
	3.2 Simple ensemble and generalized ensemble

	4 EC-DNN
	4.1 Framework
	4.2 Comparison with traditional ensemble methods

	5 Implementations
	5.1 Diversity driven local training
	5.2 Accelerated compression
	5.3 Time complexity

	6 Experiments
	6.1 Experimental setup
	6.2 Compared methods
	6.3 Experimental results
	6.3.1 Model aggregation
	6.3.2 EC-DNN vs. MA-DNN
	6.3.3 EC-DNN vs. E-DNN
	6.3.4 EC-DNN with different ensemble methods
	6.3.5 Large-scale experiments
	6.3.6 Discussions

	7 Related works
	8 Conclusion and future work
	 References

