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Abstract—Common distributed storage systems use data repli-
cation to improve system reliability and maintain data availabil-
ity, but at the cost of disk storage. In order to lower storage
costs, data may instead be stored according to erasure codes,
but this results in greater network and disk traffic when data
blocks are reconstructed following an erasure. These methods are
also passive, i.e., they only reconstruct data after failures occur.

In this paper, we present a proactive erasure coding scheme
(ProCode). We monitor the health of disks via drive failure
prediction and automatically adjust the replication factor of
data blocks on at-risk disks to ensure data safety. In this way,
we achieve fast recovery after disk failures without significantly
increasing the storage overhead. ProCode is implemented as an
extension to HDFS-RAID used by Facebook.

Compared with replication storage and erasure coding,
ProCode improves system reliability and availability. Specifically,
experimental results show 2 or more orders of magnitude
reduction in the average number of data loss events over a 10-
year period, a 63% or greater drop in degraded read latency,
and a 78% drop in recovery time.

I. INTRODUCTION

With modern disk technology, an individual disk failure

might be rare. However, in a cloud data center with thousands

of storage disks, we may frequently experience failures and

even simultaneous failures [35]. For these systems, providing

satisfactory data reliability is a significant challenge. Two

traditional data storage methods are:

Data replication: Data is simply stored multiple times

(typically 3) over different storage units on different nodes.

This gives high reliability in practice, but incurs significant

storage costs, which is problematic particularly for large-scale

systems.

Erasure coding: Data is stored according to an erasure code.

This method requires less disk space than replication, but

in case of disk failures, the computation and communication

overhead is increased during the reconstruction process (pos-

sibly by a factor of 10).

Erasure codes have outstanding performance at providing

higher reliability at significantly lower storage costs when used

in large distributed storage systems. Recently much research

has been carried out focusing on how to reduce the high

degraded read latency and shorten the long reconstruction

time, both in theory and practice [12], [16], [23], [30],

[34]. Some researchers have employed new erasure codes to

optimize the tradeoffs. For example, Huang et al. presented

LRC [12], which divides the parity blocks into local parity

blocks, which reduces the single failure recovery cost, and

global parity blocks, to provide high reliability, and has been

successfully applied in the Microsoft Windows Azure storage

system. Rashmi et al. presented Hitchhiker [23], which “rides”

on top of RS codes and reduces both network traffic and disk

IO during reconstruction of missing or otherwise unavailable

data with no additional storage. There is also research into the

optimization of encoding and decoding [16], [30], [34], which

reduces network transfer loads without increasing storage.

Some two-phase techniques [1], [6], [31], [33], which are

mostly inspired by tiering RAID architectures, have been put

into practice. AutoRAID [31] provides a two-level storage

hierarchy within the storage controller which automatically

and transparently migrates data blocks between different RAID

levels as access patterns change. It adopts two copies for

active data and requires low storage overhead due to the use

of RAID 5 protection for inactive data. DiskReduce [6] and

Facebook’s HDFS-RAID [1] go a little further and employ

two-phase techniques, asynchronously migrating data from

replication to erasure coding if it has not been recently

modified. HACFS [33] extends this scheme further by splitting

the erasure-coded storage tier into two parts to optimize

both storage overhead and recovery performance. This hybrid

method results in lower reconstruction cost than both LRC and

Google ColossusFS [7].

Only a few researchers focus on proactive disk warning, i.e.,

predicting drive failures before they actually occur. Aiming

to improve prediction accuracy, some statistical and machine

learning methods are used [13], [17], [20], [29] to build hard

drive failure prediction models based on SMART attributes [3].

For example, the classification tree prediction model predicted

over 95% of failures at a false alarm rate (FAR) under

0.1% [17]. A threshold-based predictor, PLATE [19], which

monitors the health of each drive by tracking the number

of reallocated sectors, is capable of detecting up to 65% of

impending whole-disk failures with up to 2.5% FAR.

In the context of storage systems, failure prediction by

itself is not enough; we need to combine the prediction

results with disk pre-warning methods to improve system

reliability and availability. A few research has been carried

out to apply failure prediction models to storage systems. E.g.,

RAIDShield [19] proposed PLATE to predict the single drive

failure, and ARMOR as well to estimate the health status of

RAID group using joint probability.

In this paper, we present a proactive erasure coding scheme
(ProCode) for distributed storage systems that combines the

storage efficiency of erasure coding with the low recovery

costs of simple data replication by utilizing drive failure

prediction. We implement a prototype as an extension to

HDFS-RAID.
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Traditional two-phase storage systems generally adjust data

redundancy according to file access patterns and give the “hot”

(frequently accessed) data higher redundancy. For example,

HDFS-RAID [1] focuses on the tradeoff of read performance

and storage space, replicating hot data and erasure coding

cold data. ProCode is designed from a different angle: distinct

from HDFS-RAID-like systems, ProCode instead stores at-risk

data (blocks with low “block health degree”) with replication

while other data is erasure coded. The aim is to reduce the

recovery cost in erasure coding when failure happens. ProCode

also adopts a fine-grained replication scheme where blocks

are duplicated, rather than the entire stripe or file. By using

this scheme, the units from the same stripe can have different

numbers of replicas corresponding to the units’ individual

health degrees.

Replication systems achieve better read performance in

read-intensive workloads but perform worse in write-intensive

workloads than erasure coding system. ProCode offers a

balance, performing the same as erasure coding for write-

intensive workloads. For read-intensive workloads, while the

3-way replication system performs the best, the methods sim-

ilar to [2], [15], [33], who give “hot” data higher redundancy

can help ProCode to reduce the performance gap (between

replication and erasure coding).

One stripe example for ProCode(6,2) is shown in Figure 1.

Blocks are either predicted to fail (i.e., resident on a drive that

is predicted to fail) or are healthy (i.e., resident on a healthy

drive). This stripe has six unique data blocks and two unique

code blocks (parity blocks). Some blocks like A21 are healthy

blocks so one copy of each of them is considered enough

to ensure their reliability. However, A11, A31, A32, A51, and

P11 are predicted to fail, so we use a healthy replica to ensure

their content’s safety. In this way, we ensure each block has

a healthy copy.

:  block predicted to fail:  healthy data or code block

P21

A12

P11A41 A51 A61A11 A21

A33

A31

A32 A52

Aij :  jth copy of data block Ai Pij :  jth copy of code block Pi

P12

Fig. 1: Illustrating one stripe for ProCode(6,2) with some

blocks residing on disks which are predicted to fail.

ProCode aims to eliminate most resource-consuming block

recovery operations in erasure coding by using hard drive

failure predictors with high prediction accuracy [17], [19].

Moreover, as previous work [17], [20] shows, disk failure

prediction can provide sufficient time for block replication,

thereby enabling the bandwidth for data migrating to be

throttled, reducing the impact on the system during migration.

The remainder of the paper is organized as follows. We fur-

ther motivate our research in Section II and describe ProCode

in detail in Section III. The results of experimental testing

are given in Section IV. We put this work into context and

consider some possible extensions in Section V.

II. BACKGROUND

A. Passive fault tolerance

At present, replication and erasure coding are two practi-

cal passive fault-tolerant methods typically trade off storage

overhead against recovery overhead, which have been used

in [1], [7], [8], [28]. There is also some research focusing

on the optimization of replication or erasure coding to reduce

recovery costs and/or storage overhead. For example, Cidon et

al. [5] proposed Copyset, which distributes replicas in limited

node groups to reduce the probability of data loss and recovery

costs, but this unavoidably incurs a high storage overhead due

to the replication strategy. Local Reconstruction Codes [12],

Regenerating codes [21] and Weaver codes [10] also both

reach a balance between recovery costs and storage utilization.

There are also some researchers [16], [24], [27], [34] focusing

on the optimization of encoding or decoding processes to

minimize disk IO and network overhead such as Diagonal

Optimal Recovery (RDOR) [34], which can perform single

disk failure recovery efficiently.

Table I tabulates the properties of some popular storage sys-

tems and their recovery costs and storage overhead. Recovery

costs (third column) are the average-case number of blocks

needed to recover a lost block and storage overhead (fourth

column) represents the proportion of storage required for a

given storage method vs. the storage required for a single

copy of the raw data. Google’s ColossusFS and Facebook’s

HDFS-RAID use two different Reed-Solomon codes whereas

Microsoft Azure encodes 12 data blocks into 2 global and 2
local code blocks.

System Code Recovery Storage

HDFS [28] — 1 3
Facebook HDFS-RAID [1] RS(10, 4) 10 1.4
Google ColossusFS [7] RS(6, 3) 6 1.5
Microsoft Azure [12] LRC(12, 2, 2) 6 1.3

TABLE I: The recovery cost and storage overhead of some

popular storage systems.

B. Proactive fault tolerance

Self-Monitoring, Analysis, and Reporting Technology (S-

MART) is implemented on most modern hard disks [3].

SMART monitors and compares disk attributes with preset

thresholds, and issues warnings in the event that some attribute

exceeds its threshold. SMART allows administrators to take

appropriate actions in advance before disk failures actually

occur, i.e., proactive fault tolerance, which fundamentally

improves system reliability. However, to avoid false alarms,

disk manufacturers set conservative thresholds to keep the false

220



alarm rate low, which comes at the expense of the failure

detection rate [20].

SMART, by itself, can not reach a satisfactory prediction

performance. To improve prediction accuracy, many statistical

and machine learning methods have been proposed to build

prediction models based on SMART attributes [13], [17],

[20], [29], some of which have achieved good prediction

performance. Li et al. [17] proposed a Classification Tree (CT)

model which predicts over 95% of failures at a false alarm rate

(FAR) under 0.1% on a real-world dataset containing 25,792
drives; we incorporate it into ProCode.

In addition to disk failure prediction, a few studies focus

on disk failure pre-warning mechanisms, which give time to

backup at-risk data and replace at-risk disks before failure oc-

curs, improving system reliability. Fatman [22] and IDO [32]

simply replace at-risk disks by using prediction results without

taking the availability of at-risk disks and the migration

impact on the system performance into consideration; and

SSM [14] proactively migrates data from soon-to-fail disks

predicted by failure prediction models, which inspired this

work. RAIDShield [19] is an active defense method for RAID

storage systems which predicts the possibility of data loss in

one code group. We incorporate a pre-warning mechanism into

ProCode via the health degree model.

III. PROCODE

In the proposed method, ProCode, the system initially uses

an erasure code strategy for a low storage overhead. Blocks

that are determined to be at risk (i.e., residing on a disk with

poor disk health) are duplicated before failure occurs (i.e.,

proactive fault tolerance). We have the following simultaneous

goals:

Goal 1: Achieve high storage efficiency, comparable to

erasure coding and significantly better than 3-way replication

system.

Goal 2: Provide superior failure recovery performance,

significantly better than erasure coding, with higher reliability

as well.

Goal 3: Maintain high data availability (low degraded read

latency), in the same ballpark as the 3-way replication system.

A. Architecture and design

An overview of the architecture of ProCode is given in

Figure 2. ProCode is implemented as an extension to HDFS-

RAID, which has a master/slave architecture and does not

support random write operations. There is only one master,

called NameNode, which manages the file system metadata

and controls client access while slave nodes, called DataNodes,

store application data using small blocks. The RaidNode is

responsible for erasure encoding/decoding and also activates

the recovery of corrupted blocks.

DataNode predicts its associated drives’ health statuses,

which are reported to NameNode. NameNode is responsible

for automatically adjusting the storage policy (e.g., increasing

or decreasing block replication) accordingly. Thus, when fail-

ures occur, the system should have predicted it, and replicated

Read/Write requests

Report Health Periodically 

Report

Dynamic Replication 
Module

Health Monitor Module
Adaptive 

Replication 
Adjustment 

Module

Client_1

Client_2

Client_m DataNode_1Health Prediction 
and Report 

Module

DataNode_1Health Prediction 
and Report 

Module

DataNode_nDataNode_1

Increase or Decrease Replicas

NameNode

tReport

Dynamic Replication 
Module

Health Monitor Module
Adaptive 

Replication 
Adjustment

Module

Fig. 2: Architecture and design of ProCode.

the data in response to the early warning. However, this

depends on accurate failure predictions.
1) Health Prediction and Report Module: These modules

monitor the health status of individual disks and report the

prediction result to NameNode. For the drives that are pro-

tected by a local RAID group, we can use joint probability to

predict the health of RAID group (as described in [19]). This

module starts a daemon thread to collect SMART attributes

of drives periodically and transfers the collected information

to a trained disk failure predictor to predict the disk health

after necessary pre-processing such as data standardization

and feature selection. We use the classification tree method

proposed by Li et al. [17] for disk failure prediction.
2) Adaptive Replication Adjustment Module: ProCode ad-

justs the redundancy of data blocks according to their health

statuses.
a) Block Health: For each block, the Health Monitor

Module in NameNode periodically collects its health reports

from the DataNodes. We define a block’s health by

H :=
∑
i

hi (1)

where hi ∈ {0,1} is the health status of the drive containing

the i-th copy of the block, with 1 meaning healthy and 0
meaning predicted to fail. A drive’s health status is determined

using the CT method by Li et al. [17].
b) Health Monitor Module: The Health Monitor Module

receives the drive health reports from DataNodes and updates

the blocks’ health accordingly. When a block’s health changes,

its replication level may also be changed, which is decided by

the Dynamic Replication Module.
c) Dynamic Replication Module: ProCode extends era-

sure coding by dynamically replicating blocks according to

their health determined from (1). We describe the details of

transitioning states in this section. Files are initially stored

compactly using erasure coding, and we subsequently increase

or decrease (or leave unmodified) the number of copies of each

block.
If H = 0 for a given block, this module will trigger a

process to copy that block onto a healthy node, which will
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increase the block’s H-value. If H ≥ 1, there is at least one

copy of that block on a healthy disk, but to reduce storage

costs, if H ≥ 2, we delete a copy. However, to safeguard

against noisy predictions we build in a time delay before

deleting blocks. Drive failure prediction model gives the time
in advance (TIA) before drive failures actually happen [17],

which can be used as the time delay. TIA varies with the model

updates and ProCode will adjust the time delay accordingly. A

time delay exceeding the TIA will be a stronger safeguard, but

will result in extra data storage. The optimal choice of time

delay will vary according to the TIA and false alarm rate, and

should be matched to the storage system.

When one or more disk warnings occur, a large number of

blocks with H = 0 will need to be replicated. A priority-based

method is used for increasing block replication, where blocks

with the fewest copies are copied first. Deleting copied blocks

is done in a First In First Out manner while for blocks which

need to have a copy deleted, we prioritize unhealthy copies.

Previous studies [19], [22], [32] on disk fault prediction

regard at-risk drives as failed, replacing them with healthy

drives immediately. In contrast, ProCode retains at-risk drives

still available in the system until failure actually occurs, and

this can be superior in two ways: (a) There is a possibility of

intermittent false alarms, which would ordinarily result in a

disk being classed as “failed” and consequently disused and

replaced. However, ProCode will instead continue to monitor

its health, where it would be later reclassified as healthy,

thereby avoiding replacing a healthy disk. (b) Drives that are

about to fail are still capable of serving read requests for clients

and replicating tasks before they are replaced or actually fail,

improving data availability.

Disk warning events trigger the process of increasing repli-

cation, which results in greater storage costs than replacing

disks immediately. In storage systems, most drives are healthy

and only a small fraction are classed as at risk. For this

reason, ProCode won’t result in excessive additional storage

overhead vs. traditional erasure coding but will achieve higher

recovery performance. Section III-B analyzes the ProCode’s

extra storage overhead in detail.

3) Disk Failure: When a disk failure actually occurs,

ProCode will first check the block health degrees of the blocks

residing on that disk. If a drive was predicted to be at risk and

all of its blocks have been copied onto other healthy disks,

the recovery process was completed in advance. If a drive had

not been deemed at risk or only part of its blocks had been

copied, its lost blocks will be repaired by RaidNode which

will reconstruct lost blocks as usual in erasure coding. And a

spare healthy disk will be added into the system because of the

actually failed disk. In the event of simultaneous disk failures,

ProCode proceeds the same as with single disk failure.

B. Theoretical analysis

Here we construct mathematical models for the system

performance. We focus on three important parameters for disk

failure prediction: the failure detection rate (FDR), the false

alarm rate (FAR), and the warning time before drive failure,

i.e., time in advance (TIA).

a) Storage overhead: The storage overhead owing to

erasure coding can be described by

Serasure = Sorig + Scode

where Serasure is the storage required for erasure coding while

Sorig and Scode represents the storage cost for original data

blocks and code blocks, respectively. For RS(k,m) codes,

where each stripe has k data blocks and m code blocks, we

have
Serasure

Sorig

=
k +m

k
. (2)

The total storage required by ProCode can be described by

Serasure + SFDR + SFAR

where SFDR and SFAR are the extra storage overhead owing

to correct (FDR) and incorrect (FAR) failures predictions, re-

spectively. Predictions not to fail, whether correct or incorrect,

do not result in increased storage.

To simplify the mathematical model, we make the assump-

tion that blocks that are stored multiple times are stored

precisely twice, contributing once to Serasure and once to either

SFDR or SFAR. While ProCode can result in blocks being stored

three or more times, this requires that there are multiple copies

of a block, at least two of which are on distinct at-risk disks,

which we expect is sufficiently unlikely as to be negligible.

Alarms (whether correct or not) are resolved within a time

period of length equal to the TIA: when an alarm is raised, a

disk will either actually fail by time TIA, or be recognized as

a false alarm, in which case ProCode deletes the unnecessary

replicas. Thus, at a given time t, precisely those disks which

are predicted to fail within the time interval [t− TIA, t) will

have their blocks replicated. If the proportion of disks failing

within that interval is df , then df ·FDR of these are predicted

and trigger replication. So

SFDR = Serasure · df · FDR, (3)

and similarly we have

SFAR = Serasure · (1− df) · FAR. (4)

The proportional increase in storage in using ProCode (vs.

unduplicated original blocks) is given by

Serasure + SFDR + SFAR

Sorig

=
Serasure + SFDR + SFAR

Serasure

· k +m

k
, [by (2)]

= (1 + df · FDR+ (1− df) · FAR) · k +m

k
[by (3) and (4)]

≤ (1 + df + FAR) · k +m

k
. (5)

Ordinarily, we expect that df will be relatively small (since

hard drives don’t fail often) and that FAR will be small (as
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required by disk manufacturers). Thus we expect (5) to be

close to that from pure erasure coding, i.e., (k+m)/k, which

is the theoretical best possible (when no errors occur).

Experimental results for the classification tree method were

given in [17], who found FAR ≤ 0.001, and [26] gave df �
0.0015 (with TIA � two weeks). In this setting, (5) implies

we can expect the storage costs to increase by a factor of

around 0.0025 vs. pure erasure coding. Versus storing the data

without redundancy, (5) instead gives a factor of 1.336 when

using ProCode(6, 2) or 1.203 when using ProCode(10, 2).
b) Recovery time: In ProCode, additional recovery time

can arise in three situations as a result of disk failure: (a)

unpredicted disk failures, (b) disk failures occurring during the

warning process, owing to insufficient TIA, and (c) predicted

disk failures with sufficient TIA.

Let T denote the time required to reconstruct one block that

has been erasure coded, and let T denote the time required to

recover one block that has been duplicated. For simplicity, we

consider the reconstruction time T of fail-in-warning disks

with insufficient time in advance equal to disks which fail

without any warning. Let FIW denote the proportion of fail-in-

warning disks. The average block recovery time can therefore

be modeled as follows:

(1−FDR) · T +FDR ·FIW · T +FDR · (1−FIW) · T (6)

Disk failures can typically be correctly predicted for several

days in advance [17], [36], which is sufficient time to generate

a replica (particularly for an automated process) if adequate

bandwidth is provided [18], which results in FIW close to 0,

and thus implying a negligible second term in (6). We also

expect FDR to be close to 1 in practice, e.g. around 95% as

found by [17]. Thus, we bound (6) as

≤ T + 0.05T. (7)

To access lost blocks, RaidNode will launch a MapReduce

job to recover it by retrieving the surviving blocks in the same

stripe and then perform decoding. For RS(6, 2) for example, 6
blocks are required, so without even factoring in computation

time, we have T ≥ 6T . So (7) gives an upper bound on

the average block recovery time of 0.21T , implying a lower

bound on the speedup of 4.8 (vs. pure erasure coding).

Since ProCode does nothing for disks that are not predicted

to fail, the average block recovery time will be at least (1 −
FDR) · T � 0.05T , i.e., the first term in (6). This gives an

upper bound on the speedup of 20, which cannot be improved

upon (without improving the FDR).

The degraded read latency, i.e., the time it takes to read a

block on an failed drive, admits an analogous mathematical

analysis to recovery time, and is omitted.

C. Prototype implementation

We implement ProCode as an extension to HDFS-RAID.

Our prototype spans more than 1000 lines of code by modi-

fying the modules of NameNode, RaidNode, and DataNode.

In HDFS-RAID, a degraded read can happen when a

block’s CRC check error occurs while system reconstruction

is performed owing to a disk or node failure. During system

reconstruction or degraded read, HDFS-RAID triggers a pro-

cess called RaidNode which launches a MapReduce job on

different DataNodes to decode corrupted blocks.

HDFS-RAID simply protects data using reactive fault toler-

ance and reconstructs lost data after failure happens. In con-

trast, ProCode proactively protects at-risk data before failures

occur, adding some features such as health reporting, health

monitoring, and dynamic replication, as shown in Figure 2.

IV. EVALUATION

We (a) run simulations using sequential Monte Carlo meth-

ods [4] to compare ProCode’s reliability (infrequency of

data loss) to 3-way replication and erasure coding, and (b)

build a small cluster to evaluate the performance of ProCode

experimentally.

We write ProCode(k,m) to indicate the underlying erasure

code, where k and m respectively denote the number of data

blocks and code blocks in a stripe.

A. Methods

1) Simulation: In a single simulation, one possible system

operating chronology is represented by random events. Virtual

time is accumulated until a specified mission time is exceeded.

During the simulation, we count the number of times data loss

occurs.

We begin with two basic types of events that drive the

virtual time forward: (a) failure events, which are triggered

by Weibull distributed and independent disk failures, and (b)

failure rebuild-complete events, which are triggered at the time

when a disk failure repair session is finished.

To simulate ProCode, we add two additional events: (a)

warning events, which are triggered by Weibull distributed and

independent disk warnings predicted by the failure predictor,

and (b) warning rebuild-complete events, which are triggered

at the time when a disk warning backup session is finished.

Through simulation, we can estimate how many times data

loss occurs during a time interval. To achieve this, we use the

probability that a given minimal set of drive failures, which

could possibly cause data loss, actually causes data loss (Pdup

and Peras in what follows). These probabilities depend on how

blocks are stored and are used in Section IV-B1 to evaluate

system reliability. At present, storage systems typically use

rack-aware placement strategies where data blocks are dis-

persed across racks and nodes, which we take into account

for simulations.

a) 3-way replication: In a 3-way replication system, the

3 copies of a data block will be stored in 3 distinct nodes,

exactly 2 of which belonging to the same rack.

Suppose we have r racks, n nodes per rack, and d disks per

node in a storage system. Call a selection of three disks such

that two disks belong to distinct nodes on one rack, and the

remaining disk belongs to another rack, a suitable configura-

tion. Suppose three disks in a random suitable configuration

fail, and that disk A is one of those disks. There are two types
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of such suitable configurations, illustrated in Figure 3. Thus,

the number of suitable configurations A belongs to is

Figure 3a︷ ︸︸ ︷
(n− 1)d× (r − 1)nd+

Figure 3b︷ ︸︸ ︷
(r − 1)

(
n

2

)
d2

=
3(r − 1)n(n− 1)d2

2
.

So the probability that a data block x stored on disk A is also

stored on the two other disks that are lost is

pdup :=
2

3(r − 1)n(n− 1)d2
.

If there are b blocks per disk, then the probability of any block

on A being lost caused by these failures is

Pdup := 1− (1− pdup)
b

assuming duplicate blocks are stored in random suitable con-

figurations.

failed disk A

x

failed disk

failed disk

n nodes

r racks

d disks

(a) Disk A belongs to a node on the same rack as another node
containing an failed disk, and another failed disk belongs to a node
on a different rack.

failed disk A

x

failed disk

failed disk

n nodes

r racks

d disks

(b) Disk A belongs to a node on a different rack than the two other
failed disks, which belong to two nodes on the same rack.

Fig. 3: The two ways in which disk A can belong to a suitable

configuration of three disks, which are all failed.

b) Erasure coding: In an erasure system tolerant of m
erasures, there will be k data blocks and m code blocks in

each stripe, and each of the k + m blocks will be stored on

disks in separate racks. For data loss to occur, we need m+1
simultaneous failures; suppose disk A is one of those m + 1
disks which contains some data block x. There are

(nd)k+m−1

(
r − 1

k +m− 1

)

ways in which the remaining blocks in the stripe containing

x could be distributed among disks. Of these, there are

(nd)k−1

(
r − 1−m

k − 1

)

ways in which a given set of m + 1 disks, each of which

containing blocks in the stripe containing x, and one of which

being disk A, occur. So the probability that a given set of

m + 1 data blocks in the stripe containing x, including disk

A, are lost is

peras :=
(nd)k−1

(
r−1−m
k−1

)
(nd)k+m−1

(
r−1

k+m−1

) .
If there are b blocks per disk, then the probability that erasure

of those m+ 1 disks results in data loss is therefore

Peras := 1− (1− peras)
b

assuming blocks are stored randomly on distinct racks.

2) Experiment: ProCode is developed based on HDFS-

RAID and deployed in our cluster with 13 nodes, one Na-

meNode and 12 DataNodes, linked by gigabit network, and

each node is configured with CentOS 6.3, four Intel Xeon

CPUs @ 2.80GHz, 1GB memory, and 500GB SATA disk

storage. We use the default HDFS file system block size

of 64 MB and the default policy of block placement for

erasure coding. We upload files whose size distribution has a

lognormal distribution to the HDFS-RAID cluster. In ProCode,

disk warning and failure events are generated (matching some

desired failure prediction rate and false alarm rate) while in 3-

way replication and erasure code systems, only failure events

are produced.

B. System Comparison

In this section, we use simulation and experiments to evalu-

ate the reliability and performance of ProCode. We experiment

with both RS(6, 2) and RS(10, 2) as the underlying erasure

code in ProCode.

1) System Reliability: We simulate the various systems,

estimating the expected number of data loss events that occur

over 10 years. Fewer data loss events implies greater system

reliability. We use Pdup and Peras discussed in Section IV-A1 to

evaluate whether data loss would actually occur when a given

minimal set of drive failures occurs.

We use a Weibull distribution to simulate failure and warn-

ing events (setting the shape parameter β = 1.12 in the

Weibull expression [9]). In the simulation, we set the mean

time to failure (MTTF) to 100000 hours, and set TIA to 360
hours. We vary the FDR from 60% to 90%.

We perform two related experiments:

1) We simulate a system with a varying number of racks,

with each rack containing 20 nodes, and each node

containing 10240 blocks. We set the mean time to repair

(MTTR) to 24 hours.

2) We simulate a system as the system MTTR varies. Here,

the number of racks is set to 640.

The results are plotted in Figure 4.
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Fig. 4: Expected number of data loss events over a 10-year period for ProCode(6, 2) (left column) and ProCode(10, 2) (right

column) vs. RS(6, 2), RS(10, 2), and 3-way replication as the number of racks varies (top row) and the mean time to repair

varies (bottom row). The percentage next to ProCode in the key is the failure detection rate.

As we would expect, more accurate failure predictions result

in higher reliability. With each 10% increase in FDR, the

reliability is enhanced nearly by an order of magnitude; this

highlights the benefit of a proactive fault tolerance. Also as

we would expect, a system’s reliability tends to decrease as

MTTR increases, as it provides more time for simultaneous

disk failures to occur in.

The expected number of data loss events over 10 years in

the default 3-way replication system is one order of magnitude

lower than the erasure code system of RS(6, 2) and two orders

lower than that of RS(10, 2). With proactive fault tolerance,

ProCode(6, 2) with an FDR of 70% and ProCode(10, 2) with

an FDR of 80% achieves nearly the same reliability compared

with default 3-way replication system.

While both ProCode(6, 2) and ProCode(10, 2) can recover

from any two erasures, ProCode(6, 2) has a higher reliability

but uses more storage space. While 3-way replication is

designed to be highly reliable (at a significant cost in terms

of storage space), we find that ProCode incurs fewer data loss

events when failure detection rate is around 80% or more.

With a MTTR of 4 hours, the expected number of 10-year

data loss events for 3-way replication is 0.07. With a FDR

of 90%, the same level of reliability can be achieved with a

MTTR of around 20 hours with ProCode(6, 2) and around 12
hours with ProCode(10, 2).

2) Performance Results: We conduct experiments on the

13-node cluster to evaluate two aspects of ProCode’s perfor-

mance: degraded read latency and recovery time. We use a

FDR of 80%, FAR of 0.1%, and TIA of 360 hours which

were found to be reasonable in [17].

We measure the degraded read latency as follows: we inject

disk events with given parameters and use a single client to

randomly read 16000 data blocks which are either corrupted

(and need to be reconstructed by a MapReduce job) or having

a healthy replica (owing to disk warning) and calculate the

block’s expected read latency and average storage overhead.

During the reconstruction time phase, the disk events are

produced in the same way as when measuring degraded

read. Some disk failures can be recovered quickly owing to

pre-warning while others which weren’t predicted accurately

are network and IO intensive and can be time consuming.

We measure the average recovery time and average storage

overhead of different kinds of failures.
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a) Degraded read latency: Figure 5 plots the degraded

read latency and storage overhead of ProCode vs. the 3-

way replication system, and the erasure code systems using

RS(6, 2) and RS(10, 2). In ProCode, during a warning pro-

cess, resources are consumed to create new replicas for the

at-risk blocks, which we term migration. Consequently, we

test ProCode’s degraded read latency in two circumstances: (a)

where network bandwidth used for migration is not throttled

(“best-effort” strategy), which we call BE-ProCode, and (b)

where network bandwidth used for migration is throttled to

about 10% (“leisure” strategy), which we call LS-ProCode.
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Fig. 5: The degraded read latency and the storage overhead of

ProCode under various conditions, two erasure coded systems,

and the 3-way replication system.

We observe that ProCode(6, 2) has a 63% lower degraded

read latency than RS(6, 2), and ProCode(10, 2) has a 70%

lower degraded read latency than RS(10, 2). This improvement

is due to failure pre-warning: at-risk blocks will be copied to

other healthy disks in advance, so when a disk failure actually

occurs, there is a healthy replica for use and there’s no need

to rebuild the lost block.

In ProCode, a degraded read takes only twice as long as

the 3-way replication scheme when the leisure copy strategy

is used, and about three times as long when the best-effort

strategy is used. In comparison, a degraded read will take

about 6.3 and 11.5 times longer for erasure-coded system with

RS(6, 2) and RS(10, 2), respectively. This is consistent with

the theoretical analysis because a degraded read for RS(6, 2)
and RS(10, 2) will require 6 and 10 times of network transfers

and disk IOs respectively, and extra decoding operations as

well.

The average storage overhead is also presented in Figure 5,

displaying the trade-off in storage space and degraded read

latency. The 3-way replication system requires 3 times as much

storage space as a system without any redundancy, whereas

erasure-coded systems respectively take around 1.2 and 1.3
times as much time as the erasure-coded systems with RS(6, 2)
and RS(10, 2). ProCode takes a little more space than that of

its underlying erasure code. This slight additional storage cost

is the price paid for significantly better degraded read latency

in ProCode. Versus 3-way replication, ProCode uses much less

storage space with only a slight reduction in degraded read

performance.

b) Recovery time: Figure 6 compares the node recovery

time after the failure of a 110GB disk using erasure coding,

ProCode and 3-way replication. And if not specified, the fol-

lowing experiments are conducted using “best-effort” strategy

for migration.
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Fig. 6: Time required for the recovery of 110GB node and

the average proportional storage overhead. The data points

for ProCode have been modified from their original values

as described in the main text.

In 3-way replication, the server takes about 0.22 hours to

recover because the lost blocks on the failed disk still have

two available replicas distributed evenly on other healthy disks

which can be used to launch block recovery simultaneously.

At the other extreme, it takes up to 6.5 hours in RS(10, 2)
and 3.5 hours in RS(6, 2) to reconstruct the same number of

corrupted blocks in erasure-coded system. The reason for slow

reconstruction is that when one block is lost, the system need

to read several other blocks in the same stripe to rebuild it.
In ProCode, most of the disk failures are predicted suffi-

ciently early, giving adequate time to protect at-risk blocks

by creating replicas on other healthy drives, therefore when a

disk failure occurs, the recovery process amounts to metadata

modification. Therefore, for failure predictions with sufficient

TIA, the recovery time can be reduced from hours to minutes.

However, there will still be some disk failures that are not

properly predicted, and some failures which happen before the

at-risk blocks are completely copied. These cases form a small

proportion of all failures, so ProCode shows almost the same

level of recovery performance as the 3-way replication system.

If a higher FDR is achieved, ProCode can even outperform the

3-way replication system.
On the cluster available to the authors, consisting of only 13

nodes, we find hour-level recovery for one drive failure in RS

coding. In a large cluster with thousands of nodes, the recovery

time for one drive failure can be decreased to minute-level by

spreading the network and computation overhead to multiple

nodes. However, the total amount of data to be transferred

upon disk failure will remain constant.

C. Sensitivity Study
The ProCode performance is influenced by several impor-

tant factors, including FDR, FAR, and TIA. In this section,
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we test how these factors affect the total amount of data

transferred (TADT) for data recovery which indicates the level

of consumption of system resources (disk bandwidth, network

bandwidth, etc.) during recovery.

As in [26], an annual disk failure rate of 2% to 4% is

common (i.e., daily, 0.01% to 0.03% of disks fail). Li et

al. [17], observed ≤ 0.1% FAR in a two-day time window.

With this in mind, we set the number of drive failure events

equal to the number of false alarm events in a fixed time period

with FAR of 0.1% in the following experiment.

The available cluster has 13 nodes and it may require several

years to have even a single actual drive failure, so we simulate

failures on the cluster. Given a required number of failure

events, we use a simulation process to produce the failure

events, disk warning events, and false alarm events to give

desired FDR, FAR, and TIA values and apply them to the

disks in the cluster. If the next event is e.g. “in 100 days, disk

X is falsely predicted to fail”, we skip time forward 100 days.

c) FDR: To evaluate how the FDR affects the system, we

conduct experiments to measure the TADT to perform system

recovery as FDR varies from 0% to 90%. We set the FAR at

0.1%, and run the generation process until 100 failure events

and 100 false alarm events have occurred. Figure 7 plots the

results.
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Fig. 7: Total amount of data transferred with ProCode(6, 2)
and ProCode(10, 2) with varying FDR. Here, FAR is 0.1%
and TIA is 360 hours. (Note: the horizontal axis has a

discontinuity between 0% and 60%.)

As expected, TADT generally decreases as FDR increases,

since with a higher FDR, more disk failures are (correctly)

predicted in advance so that the warning process can duplicate

at-risk data blocks. Theoretically, ProCode(6, 2) recovering

from an unpredicted drive failure should require about 6
times the amount of data transferred vs. from a predicted

drive failure. However, experiment results are not completely

consistent with this ideal situation; this could be caused e.g.

by insufficient TIA to migrate blocks or false alarms, which

bring additional and unnecessary data transfers.

d) FAR: We measure the total amount of data transferred

with ProCode as FAR varies from 0% to 0.8%. This will result

in the number of false alarm events varying from 0 to 800.

The results are plotted in Figure 8.
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and TIA is 360 hours.

As we would expect, we see that TADT increases with

an increasing number of false alarms. With each false alarm,

additional and unnecessary data will be transferred. ProCode

eventually deletes these unnecessary block replicas when false

alarms occur.

e) TIA: To investigate the effect of TIA on ProCode, we

conduct experiments with TIA varying from 24 to 384 hours.

The results are plotted in Figure 9.
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Fig. 9: Total amount of data transferred with ProCode(6, 2)
and ProCode(10, 2) with varying TIA. Here, FAR is 0.1%
and FDR is 80%.

We can see that TADT decreases with increasing TIA. If

the TIA is sufficient, when failures actually occur, at-risk

blocks will have been migrated to healthy drives, and thus

less resources are required to recover from these failures.

f) Trade-off: In general, high FDR can be obtained at

the expense of FAR. In ProCode, higher FDR, lower FAR,

and longer TIA will result in improved performance, but

ProCode is more sensitive to changes in FDR than FAR (cf.

Figures 7 and 8). Therefore, a ProCode system would benefit

from a higher-than-usual FDR. Zhu et al. [36] reported that

two different parameter pairs lead to an FDR of 68.5% with

0.03% FAR, and an FDR of 80.0% with 0.3% FAR; we should

choose the latter to reduce the recovery overhead. The trade-

off between FDR and FAR, however, will affect TIA, which

also should be sufficiently large (see Figure 9).
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V. CONCLUDING REMARKS

Petabyte-scale data levels are becoming common in large-

scale storage system [12], [25], [28] and disk failures occur

frequently. Two primary approaches have drawbacks: repli-

cation increases storage costs and erasure coding results in

a large communication overhead when reconstructing lost or

corrupted blocks.
Recent studies focus on the optimization of erasure coding

to improve reconstruction performance. For example, LRC-

s [12], Weaver codes [10], and Hover codes [11] are all specif-

ically designed for cloud storage systems, and use additional

storage for efficient data reconstruction. In contrast, ProCode

takes advantage of drive failure prediction to almost eliminate

the need for block recovery using erasure coding. It combines

ideas behind previous approaches, such as RAIDShield [19],

which proactively monitors the disk health and quantifies the

vulnerability of RAID groups. This is achieved in ProCode by

using the classification tree model from [17].
In future research, it would be interesting to employ the

underlying idea of ProCode to other kinds of codes, aiming to

apply them to cloud storage systems in order to optimize the

trade-off of storage overhead vs. recovery performance.
In this paper, we focus on individual drive failure, but in a

real data center containing tens of thousands of servers, whole

server failures can happen. A server failure can simultaneously

erase many hard drives, which would result in a much higher

recovery cost than a single hard drive erasure. This is another

possible future work direction.
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