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Abstract
Recurrent Neural Networks (RNNs) have been widely used
in processing natural language tasks and achieve huge suc-
cess. Traditional RNNs usually treat each token in a sentence
uniformly and equally. However, this may miss the rich se-
mantic structure information of a sentence, which is useful
for understanding natural languages. Since semantic struc-
tures such as word dependence patterns are not parameter-
ized, it is a challenge to capture and leverage structure in-
formation. In this paper, we propose an improved variant of
RNN, Multi-Channel RNN (MC-RNN), to dynamically cap-
ture and leverage local semantic structure information. Con-
cretely, MC-RNN contains multiple channels, each of which
represents a local dependence pattern at a time. An attention
mechanism is introduced to combine these patterns at each
step, according to the semantic information. Then we pa-
rameterize structure information by adaptively selecting the
most appropriate connection structures among channels. In
this way, diverse local structures and dependence patterns in
sentences can be well captured by MC-RNN. To verify the
effectiveness of MC-RNN, we conduct extensive experiments
on typical natural language processing tasks, including neural
machine translation, abstractive summarization, and language
modeling. Experimental results on these tasks all show signif-
icant improvements of MC-RNN over current top systems.

1 Introduction
Recurrent neural networks (RNNs), designed with recurrent
units and parameter sharing, have demonstrated outstanding
ability in modeling sequential data and achieved success in
various Nature Language Processing (NLP) tasks, such as
language modeling (Merity, Keskar, and Socher 2018), ma-
chine translation (Bahdanau et al. 2017; Huang et al. 2018),
abstractive summarization (Suzuki and Nagata 2017), and
dialog systems (Asri, He, and Suleman 2016). Traditional
RNNs produce hidden state vectors one by one through re-
current computations, treating all tokens in the sequence uni-
formly and equally. This would limit the applicability of the
model.

Notice that the meaning of a sentence is determined by
two main factors: the meaning of each word and the rule of
combining them. Thus, the semantic structure information is
essential for understanding texts. In fact, natural languages
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exhibit strong local structures in terms of semantics. For ex-
ample, in sentence “We must find the missing document at
all costs.”, word “at”,“all” and “cost” form a phrase and
are strongly related to each other, so do word “missing” and
“document”. In contrast, “document” and “at” have no such
strong semantic correlation, although they are also neigh-
bors. This indicates that phrase structures are very important
and essential for capturing a wealth of semantic information
and understanding the meaning of sentences. However, they
are hard to be modeled by traditional RNNs in the uniformly
sequential way.

To capture and leverage the semantic structure informa-
tion, there are two main challenges. First, since there are
diverse word dependence patterns, flexible and learnable
structure modeling method is preferred than predefined con-
nections or fixed topology. Second, the local structures and
word dependence patterns in sentences are discrete symbols
rather than regular learnable model parameters, so it is non-
trivial to capture and parameterize them.

In this paper, we propose Multi-Channel RNN (MC-
RNN), a novel RNN structure that makes full use of lo-
cal structure information and dependency patterns of natural
language, without requiring additional grammar knowledge.
To tackle the first challenge, MC-RNN enumerates possible
local structure patterns in a sentence. Different from the sim-
ple dependence among hidden states in conventional RNNs
(i.e., a hidden state connects directly only to its immediate
predecessor), MC-RNN is designed with multiple channels,
each channel is partitioned into multiple blocks. With such
a multi-block design, a hidden state takes the outputs of sev-
eral direct/indirect predecessors as inputs. Different parti-
tions of the nodes in different channels focus on different
local structures at each step. Together, many possible lo-
cal dependency patterns can be enumerated. Compared with
the methods of predefined connections or fixed topology,
our proposed MC-RNN with multiple channels and multiple
blocks is more representative in modeling diverse patterns,
and flexible to RNN variants.

For the second challenge, we propose an attention mech-
anism among channels to select proper local structure or
dependency patterns at each step. In this way, the struc-
tures and connections in sentences can be parameterized,
and the discrete local structures and dependency patterns
can be mined and transformed into a regular learnable prob-



lem. Concretely, an attention mechanism among channels
is proposed to aggregate the outputs of all channels with
different weights according to the sentence semantic infor-
mation. The channels which more accurately capture local
structures/dependence at the current step are expected to be
assigned larger weight. As a result, we can dynamically and
adaptively select the most appropriate connection structure
among different channels.

Our main contributions are summarized as follows.

• We propose MC-RNN, a novel varient of RNN with the
multi-channel multi-block design, to learn and capture lo-
cal patterns/dependence in sequential text data. By enu-
merating different structures in multi-channels, MC-RNN
parameterizes the structure learning problem.

• We introduce an attention mechanism among channels
which can aggregate the outputs of all channels with dif-
ferent weights according to sentence semantic informa-
tion. The most appropriate connection structure among
different channels can be dynamically and adaptively se-
lected at the different steps.

• We apply MC-RNN to three NLP tasks: machine trans-
lation, language modeling, and abstractive summariza-
tion. The experimental results show that MC-RNN sig-
nificantly outperforms previous works.

2 Related Work
Our work is related to previous studies about learning sen-
tence representations considering structures information to
improve the performance of NLP tasks (Kim et al. 2017;
Daniluk et al. 2017; Liu and Lapata 2017; Chung, Ahn, and
Bengio 2017; Koutnı́k et al. 2014; Soltani and Jiang 2016;
Wang and Tian 2016). The related work can mainly be clas-
sified into three categories.

The methods in the first category are based on external
knowledge such as grammatical knowledge (Su et al. 2017),
sentence structure information (Zhu, Sobihani, and Guo
2015; Tai, Socher, and Manning 2015; Maillard, Clark, and
Yogatama 2017) and surrounding context information (Liu
and Lapata 2017). However, external knowledge usually can
only be used in the encoder of sequence-to-sequence models
rather than the decoder. A complete sentence should be pro-
vided as input to use grammatical knowledge, however, this
does not hold for the target sequence, since words will be
generated by the decoder. In addition, prior knowledge may
be inaccurate and noisy in practice.

The second category of methods intends to design new
topological structures of RNN (Soltani and Jiang 2016;
Wang and Tian 2016). For example, Higher Order RNN
(Soltani and Jiang 2016) connects more preceding states
to the current state to better explore the local dependence.
However, the topological connections are predefined and
keep fixed in the model, which limits its ability in discov-
ering a wide range of diverse local structures.

The third category of methods attempts to design new re-
current computation functions in RNN (Chung, Ahn, and
Bengio 2017; Koutnı́k et al. 2014). For example, HM-RNN
(Chung, Ahn, and Bengio 2017) adaptively learns hard

boundaries among input tokens, which enhances informa-
tion flow by reducing the update frequencies of high ab-
stractive levels. It achieves high flexibility in determining
whether to keep/update the hidden state of previous time
step unchanged. However, the information flow may be bro-
ken between two boundaries when the hidden states are
not updated within a semantic unit. Furthermore, HM-RNN
is difficult to be adapted to other types of RNNs since it
changes the recurrent computation of RNN units.

There are some other studies, which are not based on
recurrent structures, also model word relations to improve
model performance, including convolutional neural network
(CNN) (Gehring et al. 2017) and transformer (Vaswani et al.
2017). However, since they are not recurrent models, their
ability to model ordering information is not as strong as
RNN. Specifically, recent studies (Yang et al. 2018) show
that transformer model suffers from the lost of temporal or-
der information, especially within an attention, which is very
important for modeling structures in the sentence. CNN suf-
fers from similar problem of losing temporal order informa-
tion, and the fixed kernel size also limits it’s flexibility.

We remark that our proposed MC-RNN is different from
existing methods and combines their advantages: (1) MC-
RNN requires no external grammar knowledge as supervi-
sory information. (2) By forming locally connections among
adjacent input units, MC-RNN can model diverse depen-
dence patterns in sequences and better leverage rich infor-
mation of adjacent semantic units. (3) It is highly flexible
and can be easily adapted to any RNN variants.

3 Model Description
In this section, we introduce the MC-RNN model. Figure 1
shows an example of the MC-RNN layer with 3 channels.
MC-RNN consists of multiple channels, and each chan-
nel consists of multiple blocks. All blocks in a channel
are joined, head-to-end, in a single line, thus the sequen-
tial property and temporal order information can be retained.
Each node is connected with all previous nodes in the same
block, which strengthens local dependence for the nodes
within the block. We set the blocks of neighboring channels
has one step staggered with each other in a progressive way,
so that all possible local patterns/dependence whose length
is no more than the block size can be covered. At each step,
all channels in the layer are aggregated by an attention mod-
ule, which makes it possible to dynamically and adaptively
select the most appropriate local structure among different
channels at the different step.

We will introduce the details of multiple-channel design
in Section 3.1 and the attention module in Sectionn 3.2.
Moreover, we leave the discussion of how to determine the
block size in Section 4.1 and the time cost of MC-RNN in
Section 5.3.

3.1 Capturing Rich Patterns with Multiple
Channels

To ensure the ability to represent most of local structure pat-
terns for MC-RNN, we design different connection mech-
anism for different channels. As shown in Figure 1, chan-
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Figure 1: Illustration of the structure of one-layer MC-RNN with 3 channels. Each channel in the MC-RNN layer contains several blocks.
Local connections are built in each block. Solid lines with the same color (red/blue/black) share the same parameter matrices. Parameters in
different channels are all shared with each other. The outputs of hidden states from of all channels are fed into the multichannel attention
module to generate an aggregated hidden state to next layer at each step. Channels can be computed in parallel (see Section 5.3). Best viewed
in color.

nels are different from each other in terms of the partition of
blocks. The nodes in the same block are fully connected. For
example, if phrase “at all costs” is in the block, word “costs”
will be both connected to word “at” and “all”. Such connec-
tion mechanism makes MC-RNN have inherent advantage
to model local structure information than traditional RNN.
Since the begin-to-end block composition in one channel
can only handle part of the possible local structure patterns,
we set the blocks of neighboring channels has one step stag-
gered with each other in a progressive way. In this way,
all possible local structures or dependency patterns whose
length is no more than the block size can be enumerated.

Figure 2 illustrates the detail of channels inside an MC-
RNN. To be clear, we list all definitions of used symbols
in Table 1. Suppose there are n channels in the MC-RNN.
In each channel k ∈ [n], the first block consists units
hk2−k, h

k
3−k, · · · , hkn+1−k. We define hkt to be zero vector

for t ≤ 0, namely, we pad zero vectors for the first block for
all the channels except the first one. With full connections
in each block, the inputs of each recurrent unit include not
only its immediate predecessor but also from the historical
units within a certain distance. Thus, MC-RNN can capture
a strong dependence between words in a phrase, and make
compact representations for the phrase.

We use pair notation (t, k) to denote the node at step t in
channel k andmk

t to denote the in-degree of node (t, k), i.e.,
the number of predecessors connected to node (t, k). Thus,
we have

mk
t = (t− k − 1) mod (n− 1) + 1. (1)

We use f : RNh ×RNx → RNh to represent the recurrent
computation in a traditional RNN, where Nh is the dimen-
sion of hidden state and Nx is the dimension of RNN input.
Thus, the output of the node at any step t, denoted as ht,
can be computed by ht = f(st−1,xt), where st−1 is the
temporal input at step t and xt is the input from previous
layer at step t. Since MC-RNN does not require any modifi-
cations to the traditional RNN formulation, f could be any
recurrent function used in vanilla RNN, GRU, LSTM, etc.

Table 1: The definitions of important symbols used in our paper.

Symbol Definition
n block size, i.e. number of nodes in a block
n− 1 number of channels in each MC-RNN layer
k index of channel in one MC-RNN layer
t index of time step
mk

t in-degree of a node, i.e. how many precessing
nodes are connected to current node at step
t in channel k

xt the input from previous layer at step t-th
hkt output of the node at step t in channel k
skt−1 temporal input at step t in channel k

In traditional RNNs, st−1 is the same as ht−1, while in the
MC-RNN, we define the temporal input at step t in channel
k as

skt−1 =
1

mk
t

mk
t∑

j=1

Wjh
k
t−j , (2)

where mk
t is computed by Eq. (1) and Wj is the weight ma-

trix between node (t, k) and node (t − j, k). Note that the
weight matrix between two nodes only depends on their dis-
tance, i.e., weight matrices of solid lines with the same color
in Figure 1 are the same. In other words, we compute the
temporal input of each recurrent computation by taking a
weighted average of previous outputs within the block. Then
we apply the recurrent computation f to get the output:

hk
t = f(skt−1,xt). (3)

Note that learnable parameters including RNN internal pa-
rameters and weights in blocks are shared among different
channels.

3.2 Aggregating Patterns by an Attention Module
Since each channel of MC-RNN is designed to have dif-
ferent topological connections representing different depen-
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Figure 2: Dependence patterns in different channels at time step t − 1 and t. The red lines indicates active connections at current time step.
At time step t − 1, the red lines in channel 1, 2, 3 represent 3-word/ 2-word/ 4-word dependence patterns respectively, while at time step
t, the red lines in channel 1, 2, 3 represent 4-word/ 3-word/ 2-word dependence patterns respectively. For example, channel 2 at time step t
represents the dependence pattern that the current word is strongly dependent on previous two words.

dence patterns, we propose an attention mechanism to com-
bine them by dynamically adjusting the weight of each chan-
nel. For example, in the case of a three-word phrase, when
we process the third word, we want to make use of the in-
formation of the first two terms explicitly because they be-
long to the same phrase and have local semantic coherence.
Therefore, we want the channel that directly connects the
word with its two predecessors to have the largest weight.

Specifically, we use the attention mechanism to obtain the
weighted average of each channel’s hidden state at time t as
the input to next layer, which is denoted as

hatt
t =

n∑
k=1

αk
th

k
t , (4)

where αk
t is the attention weight for the k-th channel at time

t. The attention weight αk
t is calculated by

αk
t =

exp(ekt )∑n
i=1 exp(e

i
t)
, (5)

and ekt is defined as

ekt = rT tanh

(
V ·
[
hk
t

xt

])
. (6)

where r ∈ RNh and V ∈ RNh×(Nh+Nx) are weight ma-
trices of the attention module. The combination weights are
determined by the current states of the channels as well as
the input from previous layer. In this way, local semantics
are taken into consideration when integrating the output of
different topical connections and diverse dependency pat-
terns are modeled.

4 Experiments
In this section, we evaluate the performance of MC-RNN
on three different tasks, including neural machine trans-
lation, abstractive summarization and language modeling.

Both neural machine translation and abstractive summariza-
tion are sequence-to-sequence text generation tasks. They
first try to understand the source sentence using an encoder
and then generate a target sentence. The process of sentences
understanding and generating would both benefit from cap-
turing the local dependence patterns and structure informa-
tion in sentences. Besides, language modeling task aims at
predicting next words conditioned on previous words, which
would intuitively rely more on the local information. We also
study the learned dependence patterns and analyze the per-
formance of our model with different sentence lengths in this
section.

4.1 Machine Translation
Experimental Setups The data we use is the German-
English (De-En for short) machine translation track of the
IWSLT 2014 evaluation campaign (Cettolo et al. 2014),
which is popular in machine translation community (Bah-
danau et al. 2017; Ranzato et al. 2015). We follow the
same pre-processing as described in above works. The train-
ing/dev/test dataset respectively contains about 153k/7k/7k
De-En sentences pairs. We pre-processed the corpus with
byte pair encoding (BPE) (Sennrich, Haddow, and Birch
2016), since BPE has been shown to be an effective ap-
proach to handle the large vocabulary issue in NMT and thus
has better performance than word-based vocabulary. Follow-
ing the settings of previous works, we extract about 25k sub-
word tokens as vocabulary. BLEU (Papineni et al. 2002) is
used as the evaluation metric.

We first implement a basic baseline model following
the most widely used sequence to sequence framework
RNNSearch (Bahdanau, Cho, and Bengio 2015), denoted
as Baseline-RNN. And then we build MC-RNN follow-
ing the settings of Baseline-RNN but adding block connec-
tions and multi-channel attention. The performance of MC-
RNN is compared to that of Baseline-RNN so that we can



Table 2: BLEU scores on IWLST 2014 De-En dataset.

Methods Params BLEU
Actor-critic - 28.53
NPMT-LM - 29.16
HM-RNN 25M 30.60
HO-RNN 30M 31.29
Baseline-RNN 25M 31.03
MC-RNN-2 28M 31.98
MC-RNN-3 29M ?32.23
MC-RNN-4 31M 32.09

make a direct comparison and see the improvement brought
by our method. The encoders and decoders of our model
and Baseline-RNN are all equipped with 2-layer LSTM
with word embedding size 256 and hidden state size 256.
BPE is used as pre-processing for MC-RNN and baselines.
For Baseline-RNN, all hyperparameters such as dropout ra-
tio and gradient clipping threshold are chosen via cross-
validation on the dev set. For our MC-RNN, we followed the
settings of Baseline-RNN, and keep all hyperparameters the
same with Baseline-RNN. During training, we automatically
halve the learning rate according to validation performance
on dev set and stop when the performance is not improved
any more. For decoding, we use beam search (Sutskever,
Vinyals, and Le 2014) with width 5.

We also compared our method with two recent models,
which are representative of two classes of studies to capture
the local structure of sentences without external knowledge.
One is HO-RNN (Soltani and Jiang 2016) which changes the
topological structure of RNN. The other one is HM-RNN
(Chung, Ahn, and Bengio 2017) which modifies the recur-
rent computations. In addition, we compare our model with
the following RNN based methods on this task. (1) Actor-
critic (Bahdanau et al. 2017), an approach to training neural
networks to generate sequences using reinforcement learn-
ing. (2) NPMT-LM (Huang et al. 2018), a neural phrase-
based machine translation system that models phrase struc-
tures in the target language.

Experimental Results We first study the effect of the
number of channels k and block size n with n = k + 1.
In Table 2, we examine the performance of different model
structures. MC-RNN-k stands for MC-RNN with k chan-
nels, which varies from 2 to 4. The results show that MC-
RNN-3 achieves significantly better performance than MC-
RNN-2, which matches our intuition that a model with larger
block size has stronger ability to learn complex dependence
patterns. However, when we further increase the number of
channels from 3 to 4, MC-RNN-4 performs worse than MC-
RNN-3 due to the larger model size of MC-RNN-4. Since
there are too many parameters to learn, the optimization pro-
cess would be more complex and prone to overfitting.

The experiment results from Table 2 show that MC-RNN
achieves 1.20 BLEU gains over Baseline-RNN model. Fur-
thermore, MC-RNN (32.23) even outperforms the best result
among all previous RNN based methods, 31.29 of HO-RNN,
by 0.94.

Table 3: ROUGE F1 scores on Gigaword test set of abstractive
summarization. RG-N stands for N-gram based ROUGE F1 score,
RG-L stands for longest common subsequence based ROUGE F1
score. ‘†’: scores of Baseline-RNN. ‘?’: best scores of our method.

Methods Params RG-1 RG-2 RG-L
HM-RNN 35M 34.68 16.11 32.22
HO-RNN 46M 35.86 16.99 33.38
Baseline-RNN 36M †34.65 †16.13 †32.24
MC-RNN-2 38M 36.21 17.30 33.60
MC-RNN-3 40M ?36.55 ?17.58 ?33.72
MC-RNN-4 42M 36.50 17.44 33.68
Gain from † to ? - +1.90 +1.45 +1.48

4.2 Abstractive Summarization
Experimental Setups The dataset we use is Gigaword
corpus (Graff et al. 2003), which consists of headline-article
pairs. The task is to generate the headline of the given arti-
cle. We pre-process the dataset similar to (Rush, Chopra, and
Weston 2015), resulting in 3.8M training article-headline
pairs, 190k for validation and 2000 for test. Following the
settings in (Shen et al. 2016), we set the vocabulary size to
30k. ROUGE F1 score (Flick 2004) is used as evaluation
criterion for summarization task.

On this task, MC-RNN also follows the settings of
Baseline-RNN with LSTM as the recurrent unit. Both the
encoder and the decoder have 4 layers. The embedding size
of our model is 256, and the LSTM hidden state size is 256.
The mini-batch size is 64 and the learning rate is halved
when the dev performance stops increasing. Similar to the
machine translation task, we also use HM-RNN and HO-
RNN with the same configuration of Baseline-RNN as base-
lines. For decoding, we use the beam search with width 10
which is the same with previous works.

Experimental Results From Table 3, we have similar ob-
servations to the above machine translation experiments
that MC-RNN with 3 channels achieves the best perfor-
mance. All of the three MC-RNN models perform better
than Baseline-RNN by non-trivial margins, demonstrating
the effectiveness of our method. Our best model, MC-RNN-
3 achieves 1.90, 1.45, 1.48 points improvement compared
to the Baseline-RNN model on unigram based ROUGE-1,
bigram based ROUGE-2 and longest common subsequence
based ROUGE-L F1 score respectively. Our models also
significantly outperform two related baseline methods HM-
RNN and HO-RNN.

Furthermore, we compare the performance of MC-RNN
with other recent methods on this task. We find that both
ROUGE-1 and ROUGE-2 of our model outperform all cur-
rent top systems, including (Shen et al. 2016; Gehring et al.
2017; Suzuki and Nagata 2017).

4.3 Language Modeling
Experimental Setups We conduct our experiments on the
Penn Treebank corpus which contains about 1 million words
(Mikolov et al. 2010), which has long been a central data set
for experimenting with language modeling. We use perplex-
ity as the evaluation metric.



Table 4: Single model perplexity on validation and test sets for the PTB language modeling task.

Methods Validation Test
Variational LSTM + augmented loss (Inan, Khosravi, and Socher 2017) 71.1 68.5
Variational RHN (Zilly et al. 2016) 67.9 65.4
NAS Cell (Zoph and Le 2017) - 62.4
Skip Connection LSTM(Melis, Dyer, and Blunsom 2018) 60.9 58.3
AWD-LSTM w/o finetune (baseline) (Merity, Keskar, and Socher 2018) 60.7 58.8
MC-RNN 59.2 56.9

MC-RNN uses LSTM as the recurrent unit on this task.
Specifically, our network structures and regularization se-
tups follow the state-of-the-art model, AWD-LSTM (Merity,
Keskar, and Socher 2018) on this task, using a stacked three-
layer LSTM model, with 1150 units in the hidden layer and
400-dimensional word embeddings. DropConnect is used on
the hidden-to-hidden weight matrices.

Experimental Results We compare perplexity of our
model with other recent approaches in Table 4. We take
the recent top model, AWD-LSTM, as our baseline model.
To validate the effectiveness of our model itself rather than
other factors, we report the performance of our model MC-
RNN-3 without any post-processing tricks in the table. Since
the original AWD-LSTM baseline model is further improved
by a model-specific optimization algorithm, as well as some
other post-processing tricks, to focus on the performance of
the model itself, we compare our method with the original
“AWD-LSTM w/o finetune”. This baseline directly reports
the performance of the model without optimization tricks
and post-processing tricks. From the table, we can find our
method achieves improvement of 1.5 and 1.9 points perplex-
ity on validation and test set respectively, compared to the
baseline model.

Furthermore, by adopting the same post-processing tricks
as AWD-LSTM (i.e., continuous cache pointer), MC-RNN
even outperforms previously reported best result (Merity,
Keskar, and Socher 2018) of 53.9/52.8 on validation and test
set, which uses optimization tricks while our model does not.
MC-RNN achieves 53.3/52.6 perplexity, outperforming the
state-of-the-art model by 0.6/0.2 on validation and test set.

5 Analysis
To get a deep insight of MC-RNN, in this section, we con-
duct case studies to investigate how the attention module
helps the learning process. Moreover, we analyze the per-
formance of our method with different sentence lengths.

5.1 Case Studies and Visualization
We conduct case studies to investigate what the model learns
and how the model works. Figure 3 presents the internal
states of MC-RNN when processing a sentence from Gi-
gaword test set of abstractive summarization task. We use
the model with block size 4 and 3 channels. The darkness
of the hidden nodes represents the value of attention scores.
Specifically, the bigger the attention score, the darker the
color.

From Figure 3, we can observe that the attention mecha-
nism plays an important part in modeling local dependence.
In particular, we list and analyze some dependence pat-
terns of the sentence “Home-grown champions have been
few and far between at the Italian Open.” (1) The 4-th at-
tention score of channel 2 is significantly larger than those
in other channels. Correspondingly, word “been” is directly
connected with the previous two words, together forming
a subject-predicate structure, i.e., “champions have been”.
(2) Another large attention score appears at the 8-th place
at channel 2. The corresponding channel connects “few and
far between” together, which is a phrase meaning “scarce
and infrequent”. (3) The last but one attention score of chan-
nel 2 represents a noun phrase, “Italian Open”, which is
an event name. (4) The 2-nd score of channel 1 stands
for “home-grown champions”. These observations clearly
demonstrate that MC-RNN can effectively model diverse
local dependence patterns explicitly, including phrases and
subject-predicate structures.

5.2 Performance on Long Sentences
We study the model performance on different lengths of
sentences and observe an interesting phenomenon, that is
our model works significantly better on long sentences than
baselines. Figure 4 shows the performance of our model
compared to Baseline-RNN by different sentence lengths.
Studies are conducted on IWSLT-14 De-En translation task,
the same machine translation experiments as we described in
previous section. We can observe that both our method and
the baseline-RNN model perform worse as the lengths of the
sentences increase, indicating long sentences are more dif-
ficult to handle than short ones. However, our model brings
much more improvement on long sentences. To be specific,
when the sentence length is greater than 61, our model out-
performs baselines by a larger margin (more than 4.0 BLEU
scores) compared with the case when the sentence length is
less than 40 (less than 1.0 BLEU score).

To understand why MC-RNN achieve better performance
when handling long-term dependence in sequences, we
make some theoretical analysis and try to give some in-
sight. Following Chang et al., we define di(l) as the length
of the shortest path from node at time i to node at i + l.
For conventional RNNs, di(l) = l, while for MC-RNN,
d ≤ b l

n−1c + 1, because when gradients are propagating
backwards, the shortest paths to the nodes within a block
are equal. MC-RNN enables short-cut connections across
timestep and directly passes error signal through blocks. In
this way, gradient vanishing can be alleviated. Therefore,
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Figure 3: Visualization of attention scores of the sentence “ Home-grown champions have been few and far between at the Italian Open.” from
Gigaword. Local dependence patterns and local structures are captured such as ”home-grown champions”, ”champions have been”, ”few and
far between”, ”Italian Open”.
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Figure 4: BLEU scores of Baseline-RNN and MC-RNN on De-En
translation task.

MC-RNN enables faster information flow and easier gradi-
ent propagation.

There is another work called DenseNet (Huang et
al. 2016) which also use skip connections. Interestingly,
we both enhance information flow by different means.
DenseNet applies skip connection among layers, ensuring
gradient signal could be propagated without much loss from
the end to the beginning of the network. while MC-RNN is
different from DenseNet. MC-RNN applies skip connection
among recurrent nodes in one layer. The skip connection
in our MC-RNN can not only shorten the paths of gradi-
ent propagation but also explicitly model local dependence
patterns of text sentences.

5.3 Impact of Model Size and Time Cost
Since MC-RNN uses more parameters than Baseline-RNN,
we also conduct experiments to exclude the improvement
of performance caused by larger model size. (1) We in-
crease the size of the hidden state of Baseline-RNN model
from 256 to 286. This model is called Baseline-RNN-large.
(2) We increase the number of layers from 2 to 3 and we
call it Baseline-RNN-deep. From Table 5 we can see that
the model sizes of Baseline-RNN-large and Baseline-RNN-
deep are almost the same as our best model, MC-RNN-3,
while there is no significant improvement of performance.
These observations demonstrate that the better performance
of our MC-RNN is caused by model design rather than larger
model size.

Table 5: BLEU scores on IWLST 2014 De-En dataset with differ-
ent model sizes.

Methods Params BLEU
Baseline-RNN 25M 31.03
Baseline-RNN-large 29M 30.93
Baseline-RNN-deep 29M 30.98
MC-RNN-2 28M 31.98
MC-RNN-3 29M ?32.23
MC-RNN-4 31M 32.09

In terms of computation, the proposed model is more ex-
pensive compared to conventional RNNs. However, most
parts of MC-RNN can be implemented in parallel, result-
ing in a practical time close to conventional RNN (i.e. O(n)
where n is sentence length). First, different channels can be
computed in parallel. Thus, the time cost of multiple chan-
nels is the same as that of one channel plus communication
cost. Second, for time step twithin a single channel, i.e. Eqn.
2, skt−1 can also be implemented in mk

t parallel matrix mul-
tiplications of Wjmh

k
t−j , leading to similar time cost to one

matrix multiplication. Thus, MC-RNN can achieve almost
the same time cost as the conventional RNN.

6 Conclusion and Future Work
In this work, we proposed a new RNN model with multi-
channel multi-block structure to better capture and utilize
local patterns in sequential data for language-related tasks.
Experiments on machine translation, abstractive summariza-
tion, and language modeling validated the effectiveness of
the proposed model. We achieved new state-of-the-art re-
sults on Gigaword on text summarization and Penn Tree-
bank on language modeling. For the future work, we will
apply our model to more tasks, such as question answering,
image captioning and so on.

7 Acknowledgement
We sincerely thank Tao Qin for his constructive suggestions
during the work and his guidance on writing.

This work is partially supported by NSF of China
(61602266, 61872201, U1833114), Science and Technology
Development Plan of Tianjin (17JCYBJC15300, 16JCY-
BJC41900) and the Fundamental Research Funds for the
Central Universities and SAFEA: Overseas Young Talents
in Cultural and Educational Sector.



References
Asri, L. E.; He, J.; and Suleman, K. 2016. A sequence-
to-sequence model for user simulation in spoken dialogue
systems. arXiv preprint arXiv:1607.00070.
Bahdanau, D.; Brakel, P.; Xu, K.; Goyal, A.; Lowe, R.;
Pineau, J.; Courville, A.; and Bengio, Y. 2017. An actor-
critic algorithm for sequence prediction. ICLR.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural ma-
chine translation by jointly learning to align and translate.
ICLR.
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Daniluk, M.; Rocktäschel, T.; Welbl, J.; and Riedel, S. 2017.
Frustratingly short attention spans in neural language mod-
eling. ICLR.
Flick, C. 2004. Rouge: A package for automatic evalua-
tion of summaries. In The Workshop on Text Summarization
Branches Out, 10.
Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; and Dauphin,
Y. N. 2017. Convolutional sequence to sequence learning.
arXiv preprint arXiv:1705.03122.
Graff, D.; Kong, J.; Chen, K.; and Maeda, K. 2003. English
gigaword. Linguistic Data Consortium, Philadelphia.
Huang, G.; Liu, Z.; Weinberger, K. Q.; and van der Maaten,
L. 2016. Densely connected convolutional networks. arXiv
preprint arXiv:1608.06993.
Huang, P.-S.; Wang, C.; Zhou, D.; and Deng, L. 2018. Neu-
ral phrase-based machine translation. ICLR.
Inan, H.; Khosravi, K.; and Socher, R. 2017. Tying word
vectors and word classifiers: A loss framework for language
modeling. ICLR.
Kim, Y.; Denton, C.; Hoang, L.; and Rush, A. M. 2017.
Structured attention networks. ICLR.
Koutnı́k, J.; Greff, K.; Gomez, F.; and Schmidhuber, J. 2014.
A clockwork rnn. Computer Science 1863–1871.
Liu, Y., and Lapata, M. 2017. Learning structured text rep-
resentations. Transactions of the Association for Computa-
tional Linguistics.
Maillard, J.; Clark, S.; and Yogatama, D. 2017. Jointly learn-
ing sentence embeddings and syntax with unsupervised tree-
lstms. arXiv preprint arXiv:1705.09189.
Melis, G.; Dyer, C.; and Blunsom, P. 2018. On the state of
the art of evaluation in neural language models. ICLR.
Merity, S.; Keskar, N. S.; and Socher, R. 2018. Regularizing
and optimizing lstm language models. ICLR.

Mikolov, T.; Karafiát, M.; Burget, L.; Cernockỳ, J.; and Khu-
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