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ABSTRACT

Differentiating posed expressions from spontaneous ones is
a more challenging task than conventional facial expression
recognition. There are many methods proposed to differenti-
ate posed and spontaneous expression based on pixel level
information. However, these methods still have some limi-
tations : (1) Most of the studies use the difference between
onset (the early stages of an expression) and apex (the most
intense stages of an expression) raw images as inputs, while
the difference between the pixel-level images may not only
contain noisy information, but also lose some useful infor-
mation. (2) Many works use hand-crafted features designed
by rules, which suffer from inadequate capability of abstrac-
tion and representations. Considering the high-level image
representations usually have less noisy information, we pro-
pose a special layer named “comparison layer” for convo-
lutional neural network (CNN) to measure the difference of
high-level representations (instead of pixel-level difference)
between onset and apex images. We add the comparison lay-
er to a group of CNNs, and combine the learned represen-
tations from those CNNs as inputs of a classifier for dif-
ferentiating posed and spontaneous expressions. The exper-
iments on USTC-NVIE database (so far the largest database
for this task) show that our method significantly outperforms
the state-of-the-art methods (91.73% to 97.98%).

1. INTRODUCTION

Perceiving each other’s mood from their facial expressions is
beneficial to both sides of the communication. But, sometimes
people disguise their true feelings by pretending a posed ex-
pression, which is hard to recognize by ordinary people with-
out professional training. An automatic recognition system
for posed versus spontaneous expression has many potential
applications, such as human-computer interaction, polygraph
test and medical diagnose. For instance, police can use such
a system to detect deceptive facial expressions for analyz-
ing testimony. Psychological consultants can offer help to the
people under pressure or sadness but pretending to be fine.

Researchers have proposed various effective statistical

and machine learning methods based on analyzing data of
physiological indices such as blood pressure, pulse, respi-
ration and skin conductivity from sensing equipment. Fur-
thermore, a series of studies in psychology provide possibili-
ties of discriminating posed and spontaneous expressions us-
ing visual information. For example, posed smiles often in-
volve movement of the mouth while spontaneous smiles al-
so include movement of muscles surrounding the eyes [1].
The asymmetry of zygomatic majour actions occurs more
frequently in posed smiles than in spontaneous smiles [2].
Recently, pioneering studies focus on discriminating posed
and spontaneous expressions by a pure machine vision sys-
tem have been attracting more and more attentions. Compared
with the physiological indices based methods, a simple vision
system does not require various expensive external sensing e-
quipments except a video camera, which is easy to use and
embed to other systems.

Many vision based methods are proposed to distinguish
posed and spontaneous expressions. Among them, most
works use hand-crafted features designed by rules [7, 8, 9,
10], such as displacement of facial key points, which may
suffer from inadequate capability of abstraction and represen-
tations. Furthermore, compared with the conventional facial
expression recognition task, differentiating posed expressions
from spontaneous ones depends on subtler information, and
so it is more sensitive to noise. To relieve the impact of noise
such as appearance, background, lighting conditions, etc., it
is straightforward to make use of the difference between on-
set and apex images. A common practice is to take the pixel
difference of the onset and apex raw images as input features.
Doing so, however, a lot of useful information may get lost
and new noise would be introduced because the difference
images are directly computed based on low-level pixels with-
out further abstraction and processing.

Observing the outstanding performance of deep convolu-
tional neural networks in many vision tasks owing to their a-
bilities of learning high-level image representations from raw
pixels, we propose a deep convolutional neural network based
method to recognize posed and spontaneous expressions. By
using our proposed comparison layer after abstracting middle

978-1-5090-6067-2/17/$31.00 c©2017 IEEE



or high level features from raw images, the spatial changes
from onset to apex images are modeled and the noisy infor-
mation is eliminated in different abstraction levels. Our recog-
nition performance is further improved by combining all lev-
els of abstraction feature , which represent the spatial changes
from onset to apex images.

The main contributions of this paper resides in three folds:
(1) We successfully use automatically learned features from
CNNs rather than traditional hand-crafted features such as
displacement of facial key points. (2) We propose to mod-
el the differences of onset and apex images in different ab-
straction levels by applying comparison layers, rather than
simply using pixel level difference. (3) A series of experi-
ments validate the effectiveness of our proposed method, and
the recognition results on USCT-NVIE database (so far the
largest database for this task) and SPOS database significant-
ly exceed those of the state-of-the-art.

2. RELATED WORK

A series of studies in nonverbal behavior show that it is pos-
sible to discriminate posed and spontaneous expressions from
visual information [1, 2, 12, 13]. Inspired by that, some pi-
oneering studies in computer vision have investigated this
problem. These efforts mainly focus on smile [3, 4, 5, 14],
eyebrow action[15], and pain [6].

In the work of Dibeklioğlu, Salah and Gevers [5], the au-
thors proposed to track facial points to analyze the dynamic-
s of eyelid, check and lip corner movement for differentiat-
ing between posed and spontaneous smile. Valstar et al. [15]
distinguished between posed and spontaneous brow actions
using velocity, duration and order of occurrence. Littlewort,
Bartlett and Lee [6] investigated fake pain and real pain dis-
crimination by detecting facial actions using Gabor features
and employing a SVM classifier.

All of above researches only focus on one specific ex-
pression to recognize posed and spontaneous expressions. Re-
cently, several works tried to solve this problem on multiple
basic expressions (happiness, disgust, fear, surprise, sadness
and anger). In the work of Zhang et al. [7], SIFT and FAP
features are used to investigate the performance of a machine
vision system for discrimination between posed and sponta-
neous expressions of six basic emotions. In the work of Pfis-
ter et al. [8] a spatiotemporal local texture descriptor (CLBP-
TOP) was proposed to differentiates spontaneous from posed
expressions from both visible and infrared images. Wang et
al. [9] proposed a method to differentiate posed and spon-
taneous expressions by modeling their spatial patterns such
as facial shape and Action Unit variations. In their following
work[10], the displacements of facial feature points between
apex and onset images are extracted as features and two RB-
M models are trained for classification. In the work of Gan et
al. [11], the authors proposed to use pixel-wise difference be-
tween onset and apex images as input features of a two-layer

deep Boltzmann machine for differentiating posed and spon-
taneous expressions.

These pioneering works have explored this field in various
aspects, such as feature selection, model design and learn-
ing. The performance of posed and spontaneous recognition
has been improved a lot. By analyzing existing methods, we
found that hand-crafted features designed by rules are used
in most of the above studies [7, 8, 9, 10, 16] instead of au-
tomatically learned features, which may result in inadequate
capability of abstraction and representations. Besides, these
methods usually compute pixel level difference of onset and
apex images as input features to remove noise and useless in-
formation. In this way, however, a lot of useful information
may get lost and new noise would be introduced.

Recently, deep convolutional neural networks have
demonstrated outstanding performance in a variety of vision
tasks such as face recognition [17, 18] and object classifi-
cation [19, 20]. In this paper, we present a DCNN based
framework to automatically extract features and differenti-
ate between posed and spontaneous expressions. The spatial
changes from onset to apex images can be represented by our
proposed comparison layer for CNN in different levels.

3. MODEL

In this section, we describe our CNN based framework for
posed and spontaneous recognition. Since the posed and
spontaneous expressions differ in subtle way, the spatial fa-
cial change from the onset image to the apex image is impor-
tant for this task. A naive approach is to directly train a CNN
based on the difference image (see Figure 1 for an example)
between the onset image and the apex image. As aforemen-
tioned, such a difference image is usually noisy and may miss
useful information. Our proposal is to first abstract and pro-
cess the onset and apex images respectively to get high-level
feature representations and then compute the difference infor-
mation based on the abstracted feature representations using
a comparison layer.
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Fig. 1. The structure of DiffCNN, which directly uses differ-
ence images as input. The 3D convolution kernel sizes of the
convolutional layers are shown as the small cuboids inside the
feature maps. Neuron numbers of each fully connected layers
are marked beside each layer.

3.1. CNN with Comparison Layer

Our key idea is to add a special layer named “comparison
layer” into CNNs, which takes the abstracted feature repre-



sentations from the onset and apex images as inputs and ap-
plies a comparison operator to extract difference information
between the two images. The comparison operator f(·) takes
the two input feature maps X,Y from two images, and out-
puts feature map Z, where X,Y, Z ∈ RH×W×C with width
W , height H and the number of channels C , satisfying
Z = f(X,Y ). The comparison operator f(·) can take any
form that can compute the differences between two inputs. In
this paper, we explore two kinds of comparison operations:
• simple subtraction: Zr = Xr − Y r,
• linear combination: Zr =

∑C
k=1 α

r
k ·Xk +

∑C
k=1 β

r
k ·

Y k,
where r is used to index the channels of the feature map, α
and β ∈ RC×C are parameters to be learnt. The simple sub-
traction can be considered as a special case of linear combi-
nation where α = IC and β = −IC . IC is a C × C identity
matrix, with ones on the main diagonal and zeros elsewhere.
Simple subtraction explicitly computes the difference infor-
mation in high-level feature maps, while linear combination
can handle much more complicated relations beyond subtrac-
tion. After the comparison operation, a non-linear activation
function, max(0, ·) is operated element-wise on the output
feature maps. Neurons with such nonlinearities are called rec-
tified linear units [19].

Figure 2 shows the structure of one CNN with comparison
layer used in this paper. It contains six layers with weights.
The first three are convolutional layers and the remaining ones
are fully connected layers. A pair of fixed-size 44 × 44 gray
onset and apex images is taken as inputs of two-path convolu-
tional layers for extracting mid-level or high-level features. A
comparison layer lies after the first convolutional layer with
max-pooling of the two paths. It is applied to computing the
difference features followed by another convolutional layer
for further abstraction. Finally, the features generated from
convolutional layers pass two fully connected layers to the
top layer neurons to predict the high-level concept of whether
the expression is posed or spontaneous. Moreover, to prevent
overfitting, we use dropout in all max-pooling layers and first
two fully connected layers with rate of 0.05, 0.15, 0.25, 0.5,
0.25 respectively.
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Fig. 2. The structure of one CNN which applies compari-
son layer at the output of first convolutional layer with max-
pooling.

Moreover, weights of neurons (including convolution k-
ernels and biases) in the same level of the two paths of con-
volutional layers are shared. Sharing the same set of weights

between the convolutional layers of two paths allows the net-
work to learn facial features from onset and apex using the
same filters.

3.2. Combination of Multiple CNNs

As can be seen from Figure 2, the comparison layer trans-
forms two set of input feature maps (from two images) to a
set of output feature maps for further processing. A natural
question is where to put the comparison layer. It is possible
that putting it somewhere else could be better than after the
first convolutional layer. Different placement of the compar-
ison layer corresponds to different abstraction level of visu-
al difference representations between onset and apex, which
could be complementary to each other. So we try to leverage
all of these different abstraction level of visual representations
by combining the features extracted from all of the CNNs.

As shown in Figure 3, each CNN takes a pair of onset
and apex images as input and places the comparison layer
in different position. After training these CNNs, we extract
features from them (e.g. the outputs of the last hidden layer)
and train a final classifier through supervised learning.
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Fig. 3. Our framework for posed and spontaneous recognition
contains a group of deep CNNs. A pair of onset and apex im-
ages is taken as input for each CNN. The second layer of each
CNN is a two-way softmax to classify whether the input im-
age pair is posed or spontaneous. Comparison layer is applied
to the outputs of convolutional layers for different CNNs in
the group. Finally, the outputs of the second fully connect-
ed layer of each CNN are extracted as features to be fed to a
linear SVM for train a final classifier.

4. EXPERIMENTS

We conducted a set of experiments to test the effectiveness of
our proposed framework, and compared it with several state-
of-the-art methods.



4.1. Experimental Setup

We chose the USTC-NVIE database [21] and SPOS
database [8] to evaluate our method. USTC-NVIE database is
the largest database so far for this task and therefore is most
representative and reliable to test machine learning algorithm-
s. The USTC-NVIE database contains more than 100 subjects
while SPOS dataset only contains 7 subjects. The onset and
apex of an expression in USTC-NVIE database are manually
labeled in the visible facial videos. More details about these
two datasets can be found in appendix.

4.2. Experimental Results

We tested a set of CNN based methods.
(1) As a straightforward application of CNN for this task,

one can feed the difference image between the onset and apex
images to the CNN as input. We implemented a CNN with
three convolutional layers and two fully connected layers, as
shown in Figure 1 in Section Model. We call this baseline as
DiffCNN.

(2) For our proposed framework, we tested three ways of
adding the comparison layer into the CNN, i.e., placing the
comparison layer after the max-pooling of each convolutional
layer. The CNN with the comparison layer after the first con-
volutional layer is shown in Figure 2. Both simple subtraction
and linear combination operators for the comparison layer are
implemented. In total we got six modified CNNs, and we call
them CompCNN-Sub@i and CompCNN-Comb@i for short,
where i = 1, 2, 3.

(3) To make full use of the learned difference informa-
tion from middle level to high level between onset and apex
images, after training the three networks CompCNN-Sub@i,
we extracted their outputs of the second fully connected lay-
er and further trained a linear SVM based on those output-
s for the task of posed and spontaneous expression recogni-
tion. We call this model CompCNN-Sub-SVM. Similarly, we
got a model CompCNN-Comb-SVM using the three networks
CompCNN-Comb@i.

Since many previous works [9, 10, 11] conducted exper-
iments on a subset of the USTC-NVIE database, including
1028 expression samples from 80 subjects, for a fair compar-
ison, we first evaluate our methods on this subset. Following
the common practice [7, 8, 9, 10, 11], we conducted subject-
independent experiments on the subset of USTC-NVIE with
1028 samples. Subjects were divided into 10 groups and our
results were obtained through 10-fold cross validation on the
subjects. The experimental results are shown in Table 1.

We can find that all of the models with the comparison
layer outperform the model based on difference images (D-
iffCNN) except CompCNN-Sub@3, which indicate that con-
ducting comparison operations on middle or high level fea-
tures is better than on low level features (i.e., the raw im-
ages). The comparison layer in our models measures the dif-
ference between onset and apex after processing and abstract-

Table 1. Error rate of different methods on the USTC-NVIE
database and Full USTC-NVIE dataset.

Method Subset Full set

Zhang et al. 2011 [7] 20.57 -
Wu and Wang 2016 [10] 18.77 -
Wang, Wu and Ji 2016 [16] 10.99 -
Wang et al. 2015 [9] 8.37 -
Gan et al. 2015 [11] 8.27 20.30

DiffCNN 3.70 8.47

CompCNN-Sub@1 2.82 7.47
CompCNN-Sub@2 3.11 7.61
CompCNN-Sub@3 3.79 7.35
CompCNN-Sub-SVM 2.43 6.52

CompCNN-Comb@1 2.33 6.40
CompCNN-Comb@2 2.43 7.21
CompCNN-Comb@3 2.33 6.83
CompCNN-Comb-SVM 2.04 5.95

ing the pixel-level inputs by using convolutional layers and
max-pooling layers, which can remove the noise and retain
the key information. Since the comparison layer can be ap-
plied after the convolutional layer at different depths in the
network, the spatial changes from onset to apex images can
be modeled and the noisy information can be eliminated in
different semantic levels.

From the table, we also observe that using linear combina-
tion in the comparison layer can achieve better performance
than using simple subtraction. Simple subtraction is a spe-
cial case of linear combination. Linear combination is more
expressive and can learn much more complicate relations
from data than simple subtraction. Furthermore, we see that
CompCNN-Sub-SVM and CompCNN-Comb-SVM achieve
lower error rate than corresponding single CNN models. That
is, the combination of difference information between onset
and apex in different abstraction levels can achieve better per-
formance than abstraction in a single level.

We then compared our proposed models with several
state-of-the-art methods. In the work of Zhang et al. [7], they
selected 3572 posed and 1472 spontaneous apex images and
then used SIFT appearance based features and FAP features
to train their model. Since we do not know which images they
selected, we simply cite the numbers reported in [7] as a ref-
erence. The other four works use the same data and settings
as us. As can be seen from the table, our model improves
recognition accuracy of the state-of-the-art method by 6.23%,
reaching an accuracy of nearly 98%. We conducted a further
study to better understand our methods by visualizing the fea-
ture maps to check the internal states of CNNs with compari-
son layers in Appendix B.

Since the manually selected subset of the USTC-NVIE
database may be biased, we collected all the onset and apex
pairs of posed and spontaneous expressions from all subjects
and discarded the sample if an onset or apex image of a pair



is missing. Finally we got 4203 samples from 148 subjects in
total. We evaluate our method on this full database. As no pre-
vious work reports their performance on the full USTC-NVIE
database, we tested the performance of the state-of-the-art
method[11] on this database using source code provided by
the author. From Table 1 we can see that our models achieve
the best performance again.

We then conduct experiments on SPOS database, which is
relatively smaller than USTC-NVIE datbase. SPOS database
includes 84 posed expression samples and 150 spontaneous
expression samples from only 7 subjects. In order to compare
with other related works, leave-one-subject-out cross valida-
tion is used.

Table 2. Results on SPOS database. 1

Method Error Rate (%)

Wu and Wang 2016 [10] 25.64
Wang et al. 2015 [9] 25.21
Wang, Wu and Ji 2016 [16] 23.93
Pfister et al. 2011 [8] 21.80
Gan et al. 2015 [11] 18.38

DiffCNN 21.37

CompCNN-Sub@1 18.38
CompCNN-Sub@2 17.95
CompCNN-Sub@3 20.51
CompCNN-Sub-SVM 16.66
CompCNN-Comb@1 19.49
CompCNN-Comb@2 19.91
CompCNN-Comb@3 19.91
CompCNN-Comb-SVM 19.06

Experimental results are shown in Table 2. CompCNN-
Sub-SVM achieves the best performance. The performance
of CompCNN-Comb-SVM is not as good as CompCNN-Sub-
SVM on SPOS dataset. Our explaination is that it is more like-
ly to overfit on this small dataset because of its larger model
size. Impact of the size of training data is studied in next sec-
tion.

4.3. Impact of the Size of Training Data

In this section, we analysis how the size of training data in-
fluence the performance of our models. The recognition ac-
curacy of our methods with respect to different number of
training subjects on the full USTC-NVIE dataset is shown in
Figure 4. Note that in this study, we fixed the test set and only
changed the size of training data. The performances of DiffC-
NN, CompCNN-Sub-SVM and CompCNN-Comb-SVM are
compared.

1Error rate reported in [11] was 15.38%, which was got by training several
models using different random seeds and selecting the best model on test set.
Our model can got 13.25% in this way. However, we think doing so cannot
represent the real test accuracy. Instead, we report averaged performance over
those models with different random seeds.
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From the figure we have several observations. (1) When
the number of training subjects is small, e.g., less than 40,
the performances are heavily affected by model complexity,
e.g., number of parameters of a model. CompCNN-Sub-SVM
achieves the best performance for small training set because
of its smallest model size which is not likely to be overfitted
compared with CompCNN-Comb-SVM which has more pa-
rameters.(2) All the three models achieve steady performance
when the number of training subjects is more than 50. (3)
When the number of training subjects is large enough, mod-
els using comparison layers outperform the model using dif-
ference images since comparison layers can distinguish use-
ful information from noisy information through comparison
in abstraction levels. Linear combination based model per-
forms better than simple subtraction based model because it
is more expressive (due to more parameters) and can handle
more complicate relations than subtraction.

5. CONCLUSIONS AND FUTURE WORK

In this work, we have applied deep CNNs for posed and spon-
taneous expression recognition, and proposed to add a new
layer, the comparison layer, to CNNs, which can effectively
extract difference information between onset and apex images
by comparing their abstracted feature representations in mid-
dle and high levels.

There are several directions to explore in the future. First,
we have invested simple subtraction and linear combination
for the comparison operators. Nonlinear operators may fur-
ther improve the recognition accuracy. Second, in this work,
we have focused on the approach of using two images (onset
and apex) for the task. While this is a popular approach, an
alternative is to use the whole image sequence. We will study
how to apply the comparison idea to image sequences for the
task.
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