
A Proactive Fault Tolerance Scheme for Large
Scale Storage Systems

Xinpu Ji, Yuxiang Ma, Rui Ma, Peng Li, Jingwei Ma, Gang Wang,
Xiaoguang Liu(B), and Zhongwei Li(B)

College of Computer and Control Engineering, Nankai University,
Tianjin 300350, China

{jixinpu,mayuxiang,marui,lipeng,mjwtom,wgzwp,liuxg,
lizhongwei}@nbjl.nankai.edu.cn

Abstract. Facing increasingly high failure rate of drives in data centers,
reactive fault tolerance mechanisms alone can hardly guarantee high reli-
ability. Therefore, some hard drive failure prediction models that can pre-
dict soon-to-fail drives in advance have been raised. But few researchers
applied these models to distributed systems to improve the reliability.

This paper proposes SSM (Self-Scheduling Migration) which can
monitor drives’ health status and reasonably migrate data from the
soon-to-fail drives to others in advance using the results produced by
the prediction models. We adopt a self-scheduling migration algorithm
into distributed systems to transfer the data from soon-to-fail drives.
This algorithm can dynamically adjust the migration rates according to
drives’ severity level, which is generated from the realtime prediction
results. Moreover, the algorithm can make full use of the resources and
balance the load when selecting migration source and destination drives.
On the premise of minimizing the side effects of migration to system ser-
vices, the migration bandwidth is reasonably allocated. We implement a
prototype based on Sheepdog distributed system. The system only sees
respectively 8 % and 13 % performance drops on read and write opera-
tions caused by migration. Compared with reactive fault tolerance, SSM
significantly improves system reliability and availability.

Keywords: Proactive fault tolerance · Distributed storage system ·
Priority scheduling · Data migration · Resource allocation

1 Introduction

With the development of information technology, the scale of the storage system
is increasing explosively. Drives are the most commonly replaced hardware com-
ponent in the data centers [1]. For example, 78% of all hardware replacements
were caused by hard drives in data centers of Microsoft [1]. Moreover, block and
sector level failures, such as latent sector errors [2] and silent data corruption
[3], cannot be avoidable when the capacity of the whole system becomes larger
and larger.
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part III, LNCS 9530, pp. 337–350, 2015.
DOI: 10.1007/978-3-319-27137-8 26

liuxg@nbjl.nankai.edu.cn



338 X. Ji et al.

Since drive failures have become a serious problem, lots of studies have been
focusing on designing erasure codes or replication strategies to improve stor-
age system reliability. They are typical reactive fault tolerance methods used
to reconstruct data after failures occur. However, due to the high cost, these
methods cannot meet the demands of the high service quality in data centers.

To reduce the reconstruction overhead and improve the system reliability,
proactive fault tolerance was proposed, which enables the actions to be taken
before failures happen. Hard drive failure prediction models are proposed firstly
as a typical proactive fault tolerance strategy. These models use some statistical
or machine learning methods to build prediction models based on the SMART
attributes [4]. Some of them have reached a good prediction performance. For
example, a model using classification Tree (CT) could predict over 95% of fail-
ures at a FAR under 0.1% on a real-world dataset containing 25,792 drives [5].

Although failure prediction is of great significance, the ultimate goal of pre-
diction is to adopt some reasonable strategies to handle the failure prediction
results. Recently, some studies applied failure prediction models to distributed
systems, such as Fatman [6] and IDO [7], but they simply migrated danger-
ous data by using prediction results without taking priority and the migration
impact on the system performance into consideration.

In this paper, we develop SSM (self-scheduling migration), which collects
drives’ status to determine their severity levels and uses a pre-warning handling
algorithm to protect the in danger data. There are several issues needed to be
addressed by the algorithm. How to fully use the system resources to migrate
the data as soon as possible. How to dispose the drives in different severity levels
differently. How to reduce the impact on the normal service. More importantly,
the algorithm also balances the migration load evenly to each drive, which guar-
antees a stable quality of service when data is scattered evenly.

In summary, our main contributions are:

– Design Monitor and Predictor module which can monitor drives’ health status
in distributed systems using prediction models and then determine drives’
severity levels.

– Propose an pre-warning handling algorithm to achieve high availability and
reliability.

– Apply SSM to Sheepdog and evaluate the benefit.

The rest parts of this paper are organized as follows. Section 2 surveys related
work of fault tolerance in storage systems. Section 3 illustrates the design of SSM.
We will present the experimental results in Sect. 4. Section 5 concludes the paper.

2 Related Work

Storage is a critical component in data centers and how to ensure their reliability
becomes a popular topic in the storage community. In the late 1980s, RAID tech-
nologies, such as RAID-1 and RAID-5, were firstly proposed as a fault tolerance

liuxg@nbjl.nankai.edu.cn



A Proactive Fault Tolerance Scheme for Large Scale Storage Systems 339

mechanism and have been widely used in the disk array [8]. Blaum et al. [9] pro-
posed EVENODD which is the first double-erasure-correcting parity array code
based on exclusive-OR operations. The computational complexity of this kind of
codes is far lower than that of RS code.

With the development of cloud storage, hard drive failures are common which
need to be handled. So the data recovery performance becomes increasingly
important. In cloud storage systems, network and disk I/O, have a great influ-
ence on the service. Consequently, recent research on reliability focused on how
to reduce I/O overhead incurred by data recovery. For example, Cidon et al.
proposed Copyset [10], which limits the data replicas within node groups rather
than over all storage nodes. This strategy reduces the data loss probability and
the recovery overhead effectively. Quite a few methods [11] are also proposed to
improve the recovery performance for cloud storage systems using erasure codes.
Weaver code [12] and Regenerating code [13] all reach a balance between space
utilization and disk/network I/O overhead.

Either replication or erasure coding are typical reactive fault tolerant tech-
niques. Even with aforementioned methods, they hardly can provide satisfac-
tory reliability and availability with low cost. On the contrary, proactive fault
tolerance can predict drive failures in advance and therefore provide enough
time for the operator to take actions before failures really occur. At present,
Self-Monitoring, Analysis and Reporting Technology (SMART) is implemented
inside of most hard drives [4]. The threshold-based method can only obtain a
failure detection rate (FDR) of 3–10 % with a low false alarm rate on the order
of 0.1 % [14]. So researchers have proposed some statistical and machine learning
methods to improve the prediction performance. Especially in [5], Li et al. pre-
sented hard drive failure prediction models based on Classification and Regres-
sion Trees, which perform better in prediction performance as well as stability
and interpretability.

Hard drive prediction models are intended to be used in real-world storage
systems to improve reliability and availability. However, only a few researchers
focused on how to use the predictions (pre-warnings) to improve the reliability of
the real storage systems. IDO can find the soon-to-fail disk, migrate proactively
data of hot zones to surrogate RAID set [7]. Once a disk fails, it reconstructs hot
data with surrogate set and recovers cold data with RAID mechanism on the
failed disk. However, IDO is not designed for distributed storage systems and
locality implementation needs information from the superior file system. RAID-
SHIELD [15] uses the threshold-based algorithm to predict single drive failures
and prioritizes the most dangerous RAID groups according to joint probability.

In this paper, we present SSM, which is an comprehensive system, employing
pre-warning handling algorithm combined with drive prediction models. More-
over, we apply the mechanism into Sheepdog to evaluate the effectiveness.

3 Architecture and Design

Figure 1 depicts the architecture of our proactive fault tolerant system, namely
SSM. It consists of five functional modules: Monitor, Collectors, Predictor,

liuxg@nbjl.nankai.edu.cn



340 X. Ji et al.

Trainer and Scheduler. Monitor is used to monitor the status of individual
drives. Collectors are responsible for collecting SMART information from Moni-
tor. Predictor assesses drives’ severity levels based on failure prediction models.
The function of Trainer is updating prediction models periodically to prevent
them from aging. Scheduler as the kernel module in SSM, manages and schedules
data migration tasks with different severity levels. It is composed of three parts:
priority-based scheduling, multi-source migration and bandwidth allocation.

Fig. 1. The architecture of SSM.

In order to achieve portability, Monitor, Collectors, Trainer and Predictor
are designed as four independent modules. They expose several interfaces (as
Table 1 shows) that can be used by other modules in the system. Due to their
independence, the interfaces also can be used in other distributed systems to
implement their own migration algorithm.

Table 1. The interfaces exposed by Monitors and Predictor.

Interface name Input Output

smart None SMART dataset

predict SMART dataset Severity level

feedback Prediction result Sample weight

predictor upd SMART samples New predictor

3.1 Monitor

Monitors are implemented to gather the SMART attributes from the drives in
SSM, which are required by Predictor to predict the health status of the drives.
Also, this information is used by Trainer to improve the prediction model (build
a new model). We employ multi-level Collectors to gather SMART samples.
The Collectors at the bottom use smart to gather information directly from
Monitors, then send it to the upper level Collectors regularly after necessary

liuxg@nbjl.nankai.edu.cn



A Proactive Fault Tolerance Scheme for Large Scale Storage Systems 341

pre-processing such as adding drive identification information and data nor-
malization. Collectors of each layer are selected according to the topological
structure of the storage system. If one Collector fails, a new Collector will be
elected to ensure the availability of SSM. Because the collection job is executed
per hour, it has little impact on system services. Once the root Collector has
accumulated enough samples, Predictor and Trainer will call the smart interface
to get SMART dataset.

3.2 Predictor

In general, hard drives deteriorate gradually rather than suddenly. Most previ-
ous works simply output a binary classification result which can not accurately
describe drives’ health status. On the contrary, the Regression tree (RT) model
proposed by [5] does not simply output good or failed, but a deterioration degree
which can be regarded as the health degree. This model can achieve a detection
rate above 96% and therefore most data from soon-to-fail drives can be protected
by SSM.

We want to deal with pre-warnings according to the level of urgency so that
the limited system resources can be effectively used to migrating dangerous data.
For this, a coarse gained severity level evaluation is enough. For example, con-
sidering a drive predicted to be failed 250 h later, we do not have to distinguish
it from the other one with a predicted remaining life of 249 h, but make sure to
prioritize the other one predicted to be failed within 150 h over it. Thus, we can
define k severity levels by dividing the domain of RT output values into k ranges.
In our prototype system, we use 5 equal length ranges. Level 5 represents the
healthy status and level 1 means the most urgent status. Predictor is responsible
for converting a continuous value output by the prediction model into a discrete
severity level. To verify how good our method evaluate the level of urgency, we
apply it to two real-world datasets. Dataset A is from [5] and dataset B is col-
lected from another data center. Figures 2 and 3 show the predicted results of
failed drives in the test sets, which are very close to the ground truth. There are
respectively 95% and 96% predicted results that are exactly equal to or one level
away from the ground truth on A and B. It is can concluded that our method
assesses the level of urgency effectively and can be used to prioritize migration
tasks (Table 2).

Table 2. Two dataset details.

Dateset name Good drive Failed drive (training/test)

A 22,790 434 (302/132)

B 98,060 243 (169/74)

The SMART attribute values of drives change over time, and failure reasons
vary as the environment changes. As a result, Predictor will become ineffective
as time goes by, and therefore Trainer updates the model periodically. It uses

liuxg@nbjl.nankai.edu.cn



342 X. Ji et al.

1 2 3 4 5

1

2

3

4

5

Expected Severity Level

P
re

di
ct

ed
 S

ev
er

ity
 L

ev
el

Predicted Result
Expected Result

Fig. 2. Predicted severity level versus
expected severity level in A.

1 2 3 4 5

1

2

3

4

5

Expected Severity Level

P
re

di
ct

ed
 S

ev
er

ity
 L

ev
el

Predicted Result
Expected Result

Fig. 3. Predicted severity level versus
expected severity level in B.

the updating strategies proposed in [5] to build new models using the old and/or
the new SMART samples. The predictor upd interface is invoked to replace the
old model by the new one, and then Predictor will use the new model so that
the good prediction performance is maintained. Though systems always try to
avoid missed alarms and false alarms, they are generally inevitable. When they
arise unfortunately, the system will catch them and send the wrong predicted
SMART samples to Trainer as the feedback. These samples will be used in model
updating to improve the accuracy of the model.

3.3 Self-Scheduling Migration

When an alarm arises in the system, the data on the soon-to-fail drive should be
effectively protected. A handling strategy can reasonably process multiple pre-
warnings according to the current health status and the redundancy layout of the
storage system. We design a self-scheduling migration algorithm, which migrates
data on the soon-to-fail drive as soon as possible. The migration algorithm has
three distinguished features. First, it uses a dynamic priority scheduling rather
than the traditional first come first service discipline when migrating data. Dif-
ferent levels of priority (severity) possess different migration rates. We also have
a good strategy to handle the priority changing with time. Second, we do not
simply use the soon-to-fail drive as the migration source. The healthy drives
containing the replicas of a dangerous data block may be selected as the source
to slow the deterioration of the soon-to-fail drive. Third, we try to reduce the
overhead of migration as much as possible. We measure the bandwidth required
by the normal service and then set a migration bandwidth to ensure the migra-
tion has a low impact on the system. As Fig. 1 shows, we design three modules,
priority based scheduling, multi-source migration and bandwidth allocation, in
Scheduler to implement these features. The detailed self-scheduling migration
algorithm is shown in Algorithm 1.

liuxg@nbjl.nankai.edu.cn



A Proactive Fault Tolerance Scheme for Large Scale Storage Systems 343

Algorithm 1. self-scheduling migration
Input: New soon-to-fail drives set W ′, current soon-to-fail drives set W
Output: none
1: Begin
2: W ← W ∪ W ′

3: q ← NULL � q: priority queue
4: for each drive d in W do
5: calculate score(d) using Eq. 1
6: for each unmigrated block b on d do
7: tb ←create a migration task for b
8: tb.prio ←(score(d), dr(b)) � dr: the number of dangerous replicas
9: q.insert(tb)

10: end for
11: end for
12: calculate the total relative severity score by a reduction operation
13: for each drive d in W do
14: calculate bt(d) using Eq. 2
15: c(d) ← 0 � c(d): bandwidth usage
16: end for
17: while q is not empty do
18: q.deletemax(tb)
19: select the source drive S and the destination drive D for b
20: if c(S) + m(b) < bt(S) then � m(b): bandwidth required to migrate b
21: copy b from S to D � perform migration
22: update b’s metadata and mark it as migrated
23: if all blocks on the same drive d have been migrated then
24: remove d from W
25: end if
26: end if
27: end while

Alarm Handling Mechanism. We introduce a drive alarm daemon (DAD)
to implement self-scheduling migration. When Predictor reports pre-warnings
(generally periodically), DAD will receive the alarms and perform the following
steps as Algorithm 1 shows: firstly, scan all the unmigrated blocks on the soon-
to-fail drives (line 4–12) and create a migration task for every block (line 7); sec-
ondly, allocate migration bandwidth for every drive (line 13–16); thirdly, select
the source and destination drives for each migration task (line 19); and finally,
perform migration tasks if there is enough migration bandwidth available and
update metadata (line 20–26).

Data consistency is a critical problem. When a block is being migrated, users
may update its content, where data inconsistency may occur. To address this
issue, we adopt a fine-grained locking mechanism. While a data block is being
migrated to a new drive, the system blocks write operations to it. Read oper-
ations are served as usual. Writes are unblocked after this migration task is
accomplished. Since the locking granularity is just a block, it will not cause
great impact on the system service.

liuxg@nbjl.nankai.edu.cn



344 X. Ji et al.

Priority-Based Scheduling. It is not rare that multiple drive failures occur
simultaneously in a large data center. Consequently, how to allocate reasonably
migration bandwidth to multiple pre-warnings is the key problem. A reasonable
strategy is to give more resources to the drives in higher severity levels. We
introduce a relative severity score as the priority to control bandwidth alloca-
tion. It takes both severity level s and migration progress p into account. The
migration progress is measured by the ratio of the number of migrated blocks to
the total number of ones on the soon-to-fail drive. Drives with higher severity
levels and lower migration ratios will be given a higher relative severity score
which implies a larger share of migration bandwidth. The relative severity score
of the ith drive is calculated as

score(i) =
1 − p(i)

s
(1)

Line 5 in Algorithm 1 calculates the relative severity score for every block
and line 8 uses the score as the priority of a block.

Multi-source Migration Algorithm. The fundamental difference between
pre-warning handling and failure handling is that the soon-to-fail drives are
still in operation. So an intuitive idea is to migrate data only from soon-to-
fail drives. However, it will be bound to put more pressure on the soon-to-fail
drives, which may accelerate their deterioration. SSM instead selects the source
drive for a block D to be migrated from all of the drives having D’s replicas,
which fully uses the bandwidth and balances the load. More specifically, SSM
selects the source drive by taking both load and health status of drives into
account: firstly, prefer drives with lower load. Secondly, when the soon-to-fail
drive deteriorates faster than ever, choose another source. Finally, when a source
drive is being offline, choose another one. Then the destination drive is selected
in the same way as normal replica creation except that the soon-to-fail drives are
not considered as candidates. This ensures good system reliability. By using this
multi-source strategy, we can achieve a better migration performance compared
with traditional reactive systems.

Migration Bandwidth Allocation. To reduce the impact of migration on
system service, we only allocate a proportion of available bandwidth to migration
tasks and reserve the rest to serve normal service. Let α denote the percentage
of allocated migration bandwidth in the total bandwidth and B denote the
total bandwidth. Migration task is executed on the basis of what migration
bandwidth is below αB. If the overload of migration tasks is below αB, they
will be scheduled normally.

A drive with a higher relative severity score should be allocated a higher
migration bandwidth on the basis of the same total migration bandwidth. We set
a migration threshold b(i) for every soon-to-fail drive i. The migration bandwidth
is allocated according to Eq. 2. For a block b on the drive i, the migration task is
performed if the migration rate of b’s source drive S does not exceed its migration
threshold b(S).

liuxg@nbjl.nankai.edu.cn



A Proactive Fault Tolerance Scheme for Large Scale Storage Systems 345

b(i) = αB ∗ score(i)∑n
i=1 score(i)

(2)

where n is the total number of soon-to-fail drives and score(i) is i’s current
relative severity score. Line 14 in Algorithm 1 calculates the migration threshold
for every soon-to-fail drive.

3.4 Reliability Analysis

Related researches [5] show that accurate detection rates of prediction models
can help increase the Mean Time To Data Loss (MTTDL) and thus improve
the reliability of storage systems greatly. However, the building of prediction
models is just the first step and far from enough. Our ultimate goal is to put
these models into practice by guiding system’s pre-warning process. Once the
Scheduler receives pre-warnings, it will trigger the recover process to migrate the
data on soon-to-fail drives in advance. As a result, by deploying the proactive
fault tolerance mechanism, we can shorten the system reconstruction time and
reduce the Mean Time To Repair (MTTR) as much as possible, which enhances
the reliability of system significantly. On the other hand, given plenty of time
for data migration, Scheduler can utilize system resources more efficiently. That
is, while the system is heavy loaded, a low bandwidth will be limited in the
migration process, whereas a high one can be adopted, which means side effects to
normal read and write performance are minimized dramatically while compared
with the original system without SSM.

4 Evaluation

In this section, we present the experimental results of SSM. We implement SSM
as a modified instance of Sheepdog which is an open source project of a dis-
tributed storage system. Sheepdog provides a high available block level storage
volumes and adopts a completely symmetrical architecture, which implies no
central control node. The nodes and data blocks are addressed by Distributed
Hash Table (DHT).

We set up a cluster comprising of 12 nodes to simulate a local part of a
large scale distributed storage system. Since a Sheepdog system is completely
symmetrical, experimental results on this local part can reflect the overall per-
formance. Each machine runs CentOS 6.3 on a quad-core Intel(R) Xeon(TM)
CPUs @ 2.80 GHz with 1 GB memory and a RAID-0 consisting of six 80 GB
SATA disks. The machines are connected by Gigabit Ethernet. SSM in Sheep-
dog takes three replicas as the redundance strategy and uses the default 4 MB
block size. Through the experiments, we try to show that (1) SSM is superior
than reactive fault tolerance and (2) migration scheduling algorithm is effective
in reducing the impact on system service.

liuxg@nbjl.nankai.edu.cn



346 X. Ji et al.

4.1 Proactive Fault Tolerance Versus Reactive Fault Tolerance

An important advantage of SSM over traditional reactive fault tolerant tech-
nologies is that it can achieve good reliability while remaining the quality of
service. In a reactive fault tolerant system, once a hard drive failure occurs, the
system must recover it as soon as possible. This “best effort” strategy implies
that the repair process will occupy a large part of the system resources which
will affect the performance of users’ read and write requests significantly. On the
other hand, the system certainly can guarantee QoS by limiting the resources
used by the repair process. However, that will lead to a much longer MTTR
which is detrimental to the reliability. In other words, a reactive fault tolerant
system cannot obtain both the reliability and QoS. In contrast, SSM can predict
drive failures several days even several weeks in advance. Therefore, even though
it only allocates a small share of disk and network bandwidth to the migration
process, it still can complete the migration before the failure actually occurs.
Since the state-of-art drive failure prediction method [5] maintains good predic-
tion accuracy, few missed failures will not defer SSM from obtaining both good
reliability and minimal impact on reading and writing service.

Table 3 compares degraded read and write throughput and MTTR (migra-
tion time) of SSM and RFT (reactive fault tolerance). SSM adopts multi-source
migration and bandwidth limitation to evaluate its performance. We assume
that 8 TB (typical per-node data volume in modern cloud storage systems) data
needs to be recovered (migrated). As expected, RFT with “best effort” repair
impacts normal read and write throughput (118 MB/s and 25 MB/s respec-
tively) seriously although it guarantee a short MTTR. Limiting repair bandwidth
(10 MB/s) in RFT (RFT(BL)) alleviates impact on QoS effectively but leads to
an unacceptable MTTR. In contrast, SSM remains good QoS and achieves a
short migration time (compared with the prediction time in advance). More-
over, we have enough space to further reduce migration bandwidth limitation
to obtain better QoS because there still a wide gap between the migration time
and the prediction time in advance.

Table 3. Reactive versus Proactive

Strategy Read (MB/s) Write (MB/s) MTTR (hours)

RFT 80 15 14.56

RFT (BL) 100 22 58.24

SSM 110 23 66.58

4.2 Evaluating Migration Performance

We manually simulated a drive with 20 GB data that is going to fail to trigger the
pre-warning and then the migration. The throughput of single-source migration
(SS), about 28 MB/s, is 16% slower than that of multi-source. Multi-source

liuxg@nbjl.nankai.edu.cn



A Proactive Fault Tolerance Scheme for Large Scale Storage Systems 347

migration (MS) dose not only improve the migration rate, but also achieves a
more balanced load by diverting the pressure to multiple drives. Replicas are
scattered well by the consistent hash algorithm.

Migration also affects the data access performance. We test the write per-
formances with migration using the following steps. First, we start a sequential
write job, then simulate a pre-warning to trigger the migration, and record the
running state trace of the system when write and migration exist simultaneously.
The test lasts 350 s which is long enough to reflect the correlativity between
data access and migration. Also, we evaluate the read performance by a similar
method. A pre-warning is triggered when the user requires a read service. More-
over, we implement MS to evaluate the read and write performance. In Fig. 4,
write throughout is about 26 MB/s without any migration, while it is reduced by
more than 80% with migration not limiting the bandwidth. Quality of normal
service drops down heavily when migration occupies lots of resources. We should
make effects to decrease the drops. DHT constructs a ring and each node covers
a part of the ring. Neighbors in the ring always have a higher similarity in data
and resource. We allocate migration bandwidth based on a concept of locality.
The ring are divided into many parts, and every part has their allocation band-
width. In the part consisting of 12 nodes, 10% (α) of the total bandwidth (B),
about 10 MB, is allocated to the migration job. With bandwidth limitation (BL),
the write throughout is only reduced by 13%. From Fig. 5, read throughout is
around 120 MB/s in normal condition through simulation of a disk drive failure.
It is decreased by 8%, namely about 110 MB/s in migration with bandwidth
limitation. While without bandwidth limitation, read rate is as low as 95 MB/s.
Since the system blocks write operations when the block is being migrated, write
rate decreased more than that of read. The degradation of write and read per-
formance are all acceptable for the system with bandwidth limitation.

We also explore read and write performance under four different strategies
and the results are shown in Fig. 6. Except for the fault-free configuration which
means no alarms nor migrations, SSM with BLMS has the best performance in
all other cases, which has the minimal impact on the users’ operations. Compared

W
ri

ti
ng

 r
at

e(
M

B
/s

)

Time(s)

Fig. 4. Write rate in fault-free, band-
width with limitation and without
bandwidth limitation. Migration job
has an great influence on write ser-
vices. The writing operation with BL
performs well.

R
ea

di
ng

 r
at

e(
M

B
/s

)

Time(s)

Fig. 5. Read rate in fault-free, band-
width limitation and without band-
width limitation conditions. Migration
job has an light influence on read ser-
vices. The reading operation with BL
performs well.

liuxg@nbjl.nankai.edu.cn



348 X. Ji et al.

with MS, the read throughput of BLSS is higher, which means BLSS can reduce
the impact on system performance more effective than MS. When using MS
without BLSS, there is a higher possibility that a write should wait for the lock
acquired by the migration process as more drives participate in the migration. So
the write performance of MS is worse than that of BLSS. In Subsects. 4.3 and 4.4,
we all adopt BLMS and allocate 10 MB as the migration bandwidth.

R
at

e(
M

B
/s

)

Fig. 6. Read rate and write rate of fault-free, BLSS, MS and BLMS.

4.3 Evaluating Priority-Based Scheduling

Our system migrates data according to the priority making drives with different
severity levels treated differently. We simulate a process with multiple warnings
in different severity levels. In Figs. 2 and 3, our proposed method that converts
health degrees to severity levels is proven to be reasonable. We trigger a pre-
warning with level 1 first, and the migration rate is about 30 MB/s. After 90 s, a
level 2 alarm arrives with a lower priority. At the same time, the migration rate
of the drive in level 1 decreases. Another pre-warning with the same severity
level appears at the 150th second and its migration rate is almost equal to the
first 2 warnings. At the 210th second, an alarm with severity level 4 was raised.
From the 210th second to the 630th second, as is detailed in Fig. 7, the four
migrations for the drive alarms run simultaneously. Migration for drives in level
1 has the maximal rate, the two warnings with level 2 have the middle rate and
the minimum rate is held by the warning with the drive in level 4. The migration
rate increases gradually on account of migration completing after 630 s.

4.4 Performance on Real-World Traces

SSM with BLMS has a very little influence on the normal operations in Sheepdog.
All of the above experiments use synthesized workload. Now we choose three real
traces (fileserver, webserver and netsfs) of Filebench to test our system. Figure 8
illustrates the throughout (Y-axis, IO/second) of the system. Compared with
the fault-free condition, the throughput of fileserver is decreased by 15%, that
of webserver is decreased by 10% and for the case of netsfs it decreases the least
for only 1%. SSM performs well with all the three cases.

liuxg@nbjl.nankai.edu.cn



A Proactive Fault Tolerance Scheme for Large Scale Storage Systems 349

0 120 240 360 480 600 720 840 960 1080
0

5

10

15

20

25

30

Time(s)

M
ig

ra
tio

n 
ra

te
(M

B
/s

)

level 1
level 2
level 2
level 4

200 300 400 500 600
5.2

5.4

5.6

5.8

6

Fig. 7. The change of migration rates as four alarms with different severity levels are
raised at different times.

fileserver webserver netsfs

IO
P

S

Fig. 8. IOPS of fault-free and pre-warning condition in the real workloads fileserver,
webserver and netsfs.

5 Conclusion

This paper provides a proactive fault tolerance mechanism for a typical dis-
tributed system, Sheepdog. In our method, we migrate data on the soon-to-fail
drives before disk failures really occur. By increasing the number of replicas
for the blocks on these soon-to-fail drives, the reliability of storage system gets
improved. When a failure happens, data reconstruction overhead will be signifi-
cantly reduced. Different severity levels are proposed for the health degree. We
introduce a relative severity score to evaluate the severity level. For a higher
relative severity score, data on this drive will be migrated as soon as possible
thus is given a high processing rate. On account of every block having several
replicas, we take some conditions into consideration to choose a proper source.
By combining fully multi-source migration and bandwidth limitation, SSM has
a little influence on the original distributed system.

Adding SSM to the distributed system, we handle threatened data before
failure, which will influence the original service. Migration rate is restricted to
reduce the impact on system. Every soon-to-fail drive has their own migration
mechanism to allocate migration bandwidth. As a result, the system only causes
respectively 8% and 13% performance drops on read and write operations. Com-
pared with traditional reactive fault tolerance, SSM significantly improves sys-
tem reliability and availability.

liuxg@nbjl.nankai.edu.cn



350 X. Ji et al.

Acknowledgments. This work is partially supported by NSF of China (grant num-
bers: 61373018, 11301288), Program for New Century Excellent Talents in University
(grant number: NCET130301) and the Fundamental Research Funds for the Central
Universities (grant number: 65141021).

References

1. Vishwanath, K.V., Nagappan, N.: Characterizing cloud computing hardware reli-
ability. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp.
193–204. ACM (2010)

2. Bairavasundaram, L.N., Goodson, G.R., Pasupathy, S., Schindler, J.: An analysis
of latent sector errors in disk drives. ACM SIGMETRICS Perform. Eval. Rev.
35, 289–300 (2007)

3. Bairavasundaram, L.N., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H., Goodson,
G.R., Schroeder, B.: An analysis of data corruption in the storage stack. ACM
Trans. Storage (TOS) 4(3), 8 (2008)

4. Allen, B.: Monitoring hard disks with smart. Linux J. (117), 74–77 (2004)
5. Li, J., Ji, X., Zhu, B., Wang, G., Liu, X.: Hard drive failure prediction using

classication and regression trees. In: DSN (2014)
6. Qin, A., Hu, D., Liu, J., Yang, W., Tan, D.: Fatman: cost-saving and reliable

archival storage based on volunteer resources. Proc. VLDB Endow. 7(13), 1748–
1753 (2014)

7. Wu, S., Jiang, H., Mao, B.: Proactive data migration for improved storage avail-
ability in large-scale data centers (2014)

8. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inexpen-
sive disks (RAID) 17(3), 109–116 (1988)

9. Blaum, M., Brady, J., Bruck, J., Menon, J.: Evenodd: an effcient scheme for
tolerating double disk failures in raid architectures. IEEE Trans. Comput. 44(2),
192–202 (1995)

10. Cidon, A., Rumble, S.M., Stutsman, R., Katti, S., Ousterhout, J.K., Rosenblum,
M.: Copysets: reducing the frequency of data loss in cloud storage. In: USENIX
Annual Technical Conference, pp. 37–48. Citeseer (2013)

11. Ford, D., Labelle, F., Popovici, F.I., Stokely, M., Truong, V.A., Barroso, L.,
Grimes, C., Quinlan, S.: Availability in globally distributed storage systems. In:
OSDI, pp. 61–74 (2010)

12. Hafner, J.L.: Weaver codes: highly fault tolerant erasure codes for storage systems.
In: FAST, vol. 5, pp. 16–16 (2005)

13. Papailiopoulos, D.S., Luo, J., Dimakis, A.G., Huang, C., Li, J.: Simple regener-
ating codes: network coding for cloud storage. In: INFOCOM, 2012 Proceedings
IEEE, pp. 2801–2805. IEEE (2012)

14. Murray, J.F., Hughes, G.F., Kreutz-Delgado, K.: Machine learning methods for
predicting failures in hard drives: a multiple-instance application. J. Mach. Learn.
Res. 6, 783–816 (2005)

15. Ma, A., Douglis, F., Lu, G., Sawyer, D., Chandra, S., Hsu, W.: Raidshield: char-
acterizing, monitoring, and proactively protecting against disk failures. In: Pro-
ceedings of the 13th USENIX Conference on File and Storage Technologies, pp.
241–256. USENIX Association (2015)

liuxg@nbjl.nankai.edu.cn


	Algorithms+and+Architectures+for+Paralle 374
	Algorithms+and+Architectures+for+Paralle 375
	Algorithms+and+Architectures+for+Paralle 376
	Algorithms+and+Architectures+for+Paralle 377
	Algorithms+and+Architectures+for+Paralle 378
	Algorithms+and+Architectures+for+Paralle 379
	Algorithms+and+Architectures+for+Paralle 380
	Algorithms+and+Architectures+for+Paralle 381
	Algorithms+and+Architectures+for+Paralle 382
	Algorithms+and+Architectures+for+Paralle 383
	Algorithms+and+Architectures+for+Paralle 384
	Algorithms+and+Architectures+for+Paralle 385
	Algorithms+and+Architectures+for+Paralle 386
	Algorithms+and+Architectures+for+Paralle 387



