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Abstract. In addition to the traditional reactive fault-tolerant tech-
nologies, such as erasure codes and replication, proactive fault tolerance
can be used to improve the system’s reliability significantly. To the best
of our knowledge, however, there is no previous publications on the relia-
bility of such a cloud storage system except for those on RAID systems.
In this paper, several Markov-based models are respectively proposed
to evaluate the reliability of the cloud storage systems with/without
proactive fault tolerance from the system perspective. Since proactive
measure should be coupled with some reactive measure to ensure the
systems reliability, the reliability model for such a system will be very
intricate. To facilitate model building, we propose the basic state transi-
tion unit (BSTU), to describe the general pattern of state transition in
the proactive cloud storage systems. BSTU serves as the generic “brick”
for building the overall reliability model for such a system. Using our
models, we demonstrate the benefits that proactive fault tolerance has
on a system’s reliability, and also estimate the impacts of some system
parameters on it.

Keywords: Cloud storage system · Proactive fault tolerance · Reactive
fault tolerance · Global reliability model · Rack aware replication

1 Introduction

Replication and erasure codes are the traditional means by which cloud stor-
age systems are made reliable. If some replicas are lost due to node failures,
other survived replicas can be used to restore them to maintain the same level
of reliability. This is a typical reactive fault-tolerant manner. Recently, some
researchers have proposed deploying proactive fault tolerance on storage sys-
tems [1–7], which undertakes to predict failures and handle them in advance.
The main advantage of proactive fault tolerance is the early head start for the
rebuild while the dying drive/node is still alive.
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At present, the research work on the reliability for cloud storage system,
has mainly been focused on a single file or an independent peer, and does not
consider the rack aware placement strategy which is common in the current
systems. Moreover, as said in [8], since proactive fault tolerance can not avoid
failure completely, it is also necessary to be coupled with a reactive fault tolerance
measure to ensure a system’s reliability. Therefore the state transitions of the
system are very intricate. So far, there is no relevant research on reliability for
such a cloud storage system except for those on RAID-5/6 systems [7,8].

In this work we use Markov chain based methods to respectively present
several global reliability evaluation models for the cloud storage systems with/
without proactive fault tolerance. To construct the complex and intractable reli-
ability models for systems with proactive fault tolerance, we propose a generic
“brick” – basic state transition unit (BSTU), to describe the fundamental laws of
state transitions in the model. Using our reliability models, we deduce the actual
reliability gaps between systems with different replication factors, demonstrate
the effects that proactive fault tolerance has on the reliability of a system given
a parameterized sensitivity, and also estimate the impacts of other system para-
meters.

2 Related Work

Many studies [9,10] were on the distributed file system based on P2P networks,
but their focuses were on the reliability of a single file or an independent peer,
rather than on the systematic study of data reliability. Based on Markov model,
Lian et al. [11] provided an analytical framework to reason and quantify the
impact of replica placement policy on storage system reliability. However they
did not consider the real placement strategy that replicas are random distributed
across racks and nodes. And, a few studies had used probabilistic methods [12,13]
to estimate the reliability of the system, however, the probability of data loss in
these works took into account only the time spent by the system in failure-free
state and ignored the rebuild times, which made their results not reflecting a
realistic picture of the system’s reliability. Moreover, KK Rao et al. [14] presented
Markov models to determine the reliability of the high-end enterprise storage
systems, which were realized through networked storage nodes. Our work is
similar to KK Rao’s, however we focus on the effect of failure prediction for
rack aware replication, which is a common placement policy used in the current
systems.

For storage systems with proactive fault tolerance, there are only few studies
focusing on their reliability. Eckart et al. [8] first used Markov models to rigor-
ously demonstrate the effects that failure prediction has on a system’s MTTDL
(mean time to data loss). They only devised models for a single hard drive,
RAID-1, and RAID-5 systems. In our previous work [7], we extended this study
into RAID-6 systems. However, to our best knowledge, there is no study on such
cloud storage systems based on replication schemes.
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3 Reliability Models for Reactive Cloud Storage Systems

Assuming independent exponential probability distributions for failure and repair
of individual storage nodes, we build the Markov reliability evaluation models
for traditional reactive cloud storage systems.

Consider cloud storage systems with r racks and each rack having n nodes,
replicas of each data block are spread across nodes and racks. The systems are
block-based storage systems, and maintain two invariants: first, no two replicas
of a data block are stored on the same node; and second, replicas of a data block
must be found on at least two racks. We use c to denote storage capacity of each
node, λ to denote failure rate of a node, and μ to denote rebuild rate of a failure.

3.1 Reactive with Replication Factor Two

In a system with replication factor 2, every user data block is replicated 2 times
and the 2 replicas must be stored on two separate racks. We assume that there
have been enough data blocks in the system and they are fully dispersed, such
that any pair of nodes from different racks share at least one data block. A system
with replication factor 2 can tolerate any single node failure and a portion of t
node failures for 2 ≤ t ≤ n. System data loss occurs if and only if node failures
occur on two or more racks.

We build the reliability model for a system with replication factor 2 as shown
in Fig. 1. In this model, there are n+2 states in total, which fall into three types:
(1) S0 represents a completely healthy state, during which there is no node failure
at all; (2) Si, where 1 ≤ i ≤ n, represent the degraded states, during which i
nodes have already failed and all the i failures are on the same rack; (3) DL
represents the absorbing state at which point true data loss occurs.

The system begins in the healthy state S0, and will transfer to state S1

with the rate of rnλ, when a storage node failure occurs. During the state S1,
the system initiates a rebuild process to repair the failure, then the system can
transfer to any one of three states: S0, with the rate of μ, if the failure has been

S0 S1 S2 SnS3

DL

rn (n-1) (n-2)

2 3

(r-1)n

(r-1)n (r-1)n
(r-1)n

Fig. 1. Markov model for replication
factor two without failure prediction.
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Fig. 2. Markov model for replication
factor three without failure prediction.
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repaired at rate μ; S2, with the rate of (n − 1)λ, if another failure occurs on the
same rack with the existing one before the rebuild process is finished; or DL,
with the rate of (r − 1)nλ, if a new failure occurs on the other rack before the
rebuild process is finished, and at this point, since there have happened some
node failures on two different racks, the system goes into data loss state.

Similarly, during the state Si (1 < i < n), the system can transfer to any
one of three states: Si−1, with the rate of iμ, if one of the i failures has been
repaired; Si+1, with the rate of (n− i)λ, if a new failure occurs on the same rack
with the existing ones; or DL, with the rate of (r − 1)nλ, if a new failure occurs
on a previously healthy rack. During the state Sn, when all nodes on some rack
have failed, the system is already in the critical condition and can transfer to
either of two states: Sn−1, with the rate of nμ, if one of the n failures has been
repaired; DL, with the rate of (r − 1)nλ, if a new failure occurs.

3.2 Reactive with Replication Factor Three

In a system with replication factor 3, every user data block is replicated 3 times,
and then the 3 replicas need to be stored in some 3 nodes out of which 2 nodes
are on a same rack and 1 node is on another rack. We assume that there have
been enough data blocks in the system and they are fully dispersed, such that
any set of 3 nodes, in which 2 nodes are on a single rack and 1 node is on another
rack, shares replicas of at least one data block.

The system can tolerate more than 2 failures without data loss in the follow-
ing two cases: first, all the node failures happen to be on a single rack; or second,
all the node failures are on different racks which means that there is up to one
node failure on each rack. Therefore, the system can tolerate all the single and
double node failures and a portion of t node failures for 3 ≤ t ≤ max(n, r).

We construct the reliability model for systems with replication factor 3 as
shown in Fig. 2. In this model, there are r + n + 2 states in total, which can
be classified into five types: (1) S0 represents a completely healthy state; (2) S1

denotes the degraded system state, during which 1 node has already failed; (3)
SAi, where 2 ≤ i ≤ r, denote the degraded system states, during which i nodes
have already failed and they are separately on i different racks; (4) SBi, where
2 ≤ i ≤ n, denote the degraded system states, during which i nodes have already
failed and all of them are on a single rack; (5) DL is the absorbing state at which
point data loss occurs.

The system begins in the healthy state S0, and can transfer to state S1 with
the rate of rnλ, when a node failure occurs in the system. During the state S1,
the system can transfer to any one of three states: S0, with the rate of μ, if the
failure has been repaired; state SA2, with the rate of n(r − 1)λ, if a new failure
occurs on the other rack; or SB2, with the rate of (n−1)λ, if a new failure occurs
on the same rack with the existing one.

During the state SAi, the system can transfer to any of three states: state
SA(i+1), with the rate of n(r−i)λ, if a new failure occurs on a completely healthy
rack; state SA(i−1), with the rate of iμ, if one of the i failures has been repaired;
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or DL, with the rate of i(n − 1)λ, if any one of the i racks, which have already
a node failure on them, generates a new failure.

During the state SAr, when each rack in the system has had one failure on it,
the system is already in the critical condition and can transfer to either of two
states: SA(r−1), with the rate of rμ, if one of the r failures has been repaired; or
DL, with the rate of r(n − 1)λ, if a new failure happens.

During the state SBi, the system can transfer to either of two states: SB(i+1),
with the rate of (n − i)λ, if a new node failure occurs on the same rack with
the existing ones; SB(i−1), with the rate of iμ, if one of the i failures has been
repaired; or DL, with the rate of n(r−1)λ, if a new failure occurs on a previously
healthy rack.

During the state SBn, when all nodes on some rack have failed, the system is
already in the critical condition and can transfer to either of two states: SB(n−1),
with the rate of nμ, if one of the n failures has been repaired; or DL, with the
rate of n(r − 1)λ, if a new failure happens.

4 Reliability Models for Systems with Proactive
Fault Tolerance

In addition to the assumption of independent exponential probability distribu-
tions for failure and repair of individual storage nodes, we also assume indepen-
dent exponential probability distributions for node warnings and their repairs,
and then construct the Markov reliability models for the proactive cloud storage
systems.

4.1 Basic State Transition Unit (BSTU)

Since no node failure predictor can guarantee 100 % accuracy, it is necessary to
combine the proactive and reactive fault-tolerant measures to ensure reliability.
Therefore, the state transitions in the reliability model for such a system are
very intricate. One could not describe the model easily in the traditional way.
Therefore, we design a generic “brick” – basic state transition unit (BSTU), by
composing which we can derive the complex and intractable reliability models
for cloud storage systems with proactive fault tolerance.

Using the BSTU shown in Fig. 3, we want to describe the fundamental laws
of state transitions in the Markov models. The symbol p represents the failure
detection rate of predictors deployed in the systems, γ represents the failure rate
of a node warning, and μ represents the rebuild rate of a node failure/warning.

We use Pij to represent the degraded states during which i nodes have actu-
ally failed and j nodes are currently predicted imminent failures. The symbol
Aij is used to represent the probability that the system can tolerate the (i+1)-th
node failure without data loss and the new failure occurs on a previously com-
pletely healthy node. We use Bij to represent the probability that the system
can survive from the (i + 1)-th node failure and the new failure evolves out of a
warning. And Cij is used to represent the probability that the (i + 1)-th failure
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Fig. 3. Basic state transition unit
(BSTU) for cloud storage systems with
proactive fault tolerance.
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Fig. 4. A reliability model composed
by BSTUs for a proactive cloud stor-
age system.

induces system data loss. For simplicity sake, we only draw the outgoing edges
and the corresponding transition rates for state Pij , and its incoming edges and
their transition rates can be drawn similarly. We can calculate the values of Aij ,
Bij and Cij for each Pij in some system using combinatorial analyses.

In addition to the basic internal states Pij , there are some boundary states,
the transitions of which are similar to the BSTU except for missing some incom-
ing and outgoing edges. For cloud storage systems with proactive fault tolerance,
we can construct their reliability models by combining a large number of internal
and boundary BSTUs. For example, Fig. 4 is a simple diagram for a reliability
model composed by 25 BSTUs for a proactive system, in which the state of data
loss is omitted.

Based on Fig. 4, we want to explain some concepts used in the following.
The BSTUs numbered 1–7 make up the upper boundary of the model. The
ones numbered 1, 8, 14, 19, 23 make up the left boundary. The ones numbered
7, 13, 18, 22, 25 make up the right boundary. The ones numbered 23–25 make
up the lower boundary. For the proactive systems with replication factor two,
the ones numbered 9–12, 15–17, 20, 21 are the internal states. For the proactive
systems with replication factor three, the ones numbered 8–13 make up the
second layer of the model, and the ones numbered 15–17, 20, 21 are the internal
states.

The systems with proactive fault tolerance have the same fault tolerance and
characteristics as the traditional reactive systems except for having the ability
of failure prediction and pre-warning treatment.

4.2 Proactive with Replication Factor Two

There are five types of state transition units at all, by combining which we
can construct the overall reliability model for the proactive storage system with
replication factor two.

The model is composed mainly of intact BSTUs, namely internal states.
During an internal state Pij (0 < i < n and 0 < j < nr − i), the system can
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transfer to any one of six states: (1) state P(i−1)j with the rate of iμ, if one of
the i node failures has been repaired; (2) state Pi(j−1) with the rate of jμ, if
one of the j node warnings has been repaired; (3) state P(i+1)j with the rate of
(nr− i− j)(1−p)Aijλ, if a healthy node fails, and fortunately it does not induce
system data loss; (4) state Pi(j+1) with the rate of (nr − i − j)pλ, if a healthy
node is predicted to be facing an impending failure; (5) state P(i+1)(j−1) with
the rate of jBijγ, if a warning node does not be repaired timely and actually
fails at last, however it does not induce system data loss fortunately; (6) state
DL with the rate of Cij , if a new failure does induce system data loss.

The value of Aij can be calculated by counting the proportion of healthy-to-
fail transitions occurring on the faulty rack. We use x to denote the number of
warnings which are on the same rack with the i failures. For some x, (n − i −
x)Cx

n−iC
j−x
n(r−1) is the number of cases for which one healthy node on the faulty

rack fails. The formula (nr − i − j)Cj
nr−i is the number of cases for which a

healthy node in the system fails. So the value of Aij can be calculated as:

Aij =

∑min(n−i−1,j)
x=0 (n − i − x)Cx

n−iC
j−x
n(r−1)

(nr − i − j)Cj
nr−i

. (1)

We calculate Bij by counting the proportion of warning-to-fail transitions
occurring on the faulty rack. We use x to denote the similar thing as in (1). For
some x, xCx

n−iC
j−x
n(r−1) is the number of cases for which a previously warning

node on the faulty rack fails. And, jCj
nr−i is the number of all cases for which a

previously warning node in the system fails. So the value of Bij can be calculated
as:

Bij =

∑min(n−i,j)
x=1 xCx

n−iC
j−x
n(r−1)

jCj
nr−i

. (2)

The Cij represent the probability that the new failure is not on the faulty
rack and incurs system data loss. The formula (1 − p)λ(nr − i − j)(1 − Aij)
denotes the probability that a failure occurring on a previously healthy node is
not predicted by the predictor and induces the system data loss. So the value of
Cij can be calculated as:

Cij = (1 − p)λ(nr − i − j)(1 − Aij) + jγ(1 − Bij). (3)

Besides the internal states, there are other four types of boundary states.
They are similar to the intact BSTUs, except for missing some transitions:

(1) when i = 0 and 0 < j < rn: states Pij make up the upper boundary
of the model, during which no node failure happens and just j warnings
are predicted by the predictor. Since i = 0, there is no state P(i−1)j and
transition Pij −→ P(i−1)j ; since the system can tolerate any single-failure,
there is no transition Pij −→ DL.
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(2) when j = 0 and 0 < i < n: states Pij make up the left boundary of the model,
during which i node failures have happened and no warning is predicted.
Accordingly, there is neither Pij −→ Pi(j−1) nor Pij −→ P(i+1)(j−1) transition.

(3) When i = n and 0 < j < (r − 1)n: states Pij make up the lower boundary
of the model, during which all nodes on some rack have failed already and j
warnings are also predicted. Since the system can tolerate at most n failures,
there is neither Pij −→ P(i+1)j nor Pij −→ P(i+1)(j−1) transition.

(4) when j = nr− i and 0 < i < n: states Pij make up the right boundary of the
model, during which i node failures have happened and all the rest nodes in
system are also predicted to be soon-to-fail. Since there is no healthy node
left, neither Pij −→ Pi(j+1) nor Pij −→ P(i+1)j exists.

4.3 Proactive with Replication Factor Three

There are six types of state transition units in the reliability model for the
proactive cloud storage systems with replication factor three.

Similarly, most states are intact BSTUs, namely internal states Pij , where
1 < i < max(n, r) and 0 < j < nr − i. They are basically the same as those in
the model for replication factor two, except for the values of Aij , Bij and Cij .
Accordingly, we only discuss how to calculate the three probabilities here.

There are two cases for which the system survives from i node failures, where
2 < i ≤ min(n, r): first, all the i node failures are on a single rack; or second,
the i node failures are respectively on i different racks. We use qi to represent
the proportion of the first case in the both, and the value of qi can be calculated
as:

qi =
rCi

n

(rCi
n + niCi

r)
. (4)

The proportion of the second case is 1 − qi. When min(n, r) < i ≤ max(n, r),
the value of qi is equal to either 0 or 1.

For the case that the system tolerates the (i+1)-th failure which occurs on
a previously healthy node, we use Ns to denote the number of cases for which
the new failure is on the same rack with the existing i failures, and use Nd to
denote the number of cases for which the new failure is on a previously healthy
rack. The value of Ns can be calculated as:

Ns =
min(n−i−1,j)∑

x=0

(n − i − x)Cx
n−iC

j−x
n(r−1) (5)

where x denotes the number of warnings which are on the same rack with the i
failures.

The value of Nd can be calculated as:

Nd =
min(n(r−i)−1,j)∑

x=0

(n(r − i) − x)Cx
n(r−i)C

j−x
i(n−1)) (6)

where x denotes the number of warnings which are on the healthy racks.
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Then the value of Aij can be calculated as:

Aij =
(qiNs + (1 − qi)Nd)
(nr − i − j)Cj

nr−i

(7)

Similarly, for the case that the system tolerates the (i+1)-th failure which
evolves out of a warning, we use N ′

s to denote the number of cases for which a
warning on the same rack with the existing failures fails, and use N ′

d to denote
the number of cases for which a warning on a previously healthy rack fails. The
value of N ′

s can be calculated as:

N ′
s =

min(n−i,j)∑

x=1

xCx
n−iC

j−x
n(r−1) (8)

where x denotes the similar thing as in (5).
The value of N ′

d can be calculated as:

N ′
d =

min(n(r−i),j)∑

x=1

xCx
n(r−i)C

j−x
i(n−1) (9)

where x denotes the similar thing as in (6).
Then the value of Bij can be calculated as:

Bij =
(qiN ′

s + (1 − qi)N ′
d)

jCj
nr−i

. (10)

And, the value of Cij can be calculated as:

Cij = (1 − p)λ(nr − i − j)(1 − Aij) + jγ(1 − Bij). (11)

Besides the internal states, there are other five types of boundary states.
They are similar to the intact BSTUs, except for missing some transitions:

(1) when i = 0 and 0 < j < rn: states Pij make up the upper boundary
of the model, during which no node failure happens and just j warnings
are predicted by the predictor. Since i = 0, there is no state P(i−1)j and
transition Pij −→ P(i−1)j ; since the system with replication factor 3 can
tolerate any double-failure, there is no transition Pij −→ DL.

(2) when i = 1 and 0 < j < rn − 1: states Pij make up the second layer of
the model, during which only 1 node failure happens and j warnings are
predicted by the predictor. There is no transition Pij −→ DL either.

(3) when j = 0 and 0 < i < max(n, r): states Pij make up the left boundary
of the model, during which i node failures have happened and no warning is
predicted. Accordingly, there is neither Pij −→ Pi(j−1) nor Pij −→ P(i+1)(j−1)

transition.
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(4) when i = max(n, r) and 0 < j < rn − i: states Pij make up the lower
boundary of the model, during which the system is already in the critical
condition and j warnings are also predicted. Since the system can tolerate at
most max(n, r) failures, there is neither Pij −→ P(i+1)j nor Pij −→ P(i+1)(j−1)

transition.
(5) when j = nr − i and 0 < i < max(n, r): states Pij make up the right bound-

ary of the model, during which i node failures have happened and all the
rest nodes in system are predicted to happen impending failure. Since there
is no healthy node left, neither Pij −→ Pi(j+1) nor Pij −→ P(i+1)j transition
exists.

5 Experiment and Analyses

Table 1 shows the values of parameters used in our experiments. Typical values
for practical systems are used for all parameters, except the sensitivity of node
failure predictors, which have not been really used in systems. In our previous
work [7], our classification tree prediction models can achieve the failure detec-
tion rate (FDR) of 95% with the mean time in advance (TIA) of near 360 h,
and can maintain a FDR above 90% for the long-term use and for both drive
families. In this paper, we have chosen a relatively conservative prediction sensi-
tivity (the FDR of 80% and the TIA of 360 h) for the failure predictors. Unless
otherwise stated, we keep these settings unchanged in the following experiments.

Limited by the memory and computing ability, it is difficult to use Markov
models to obtain the reliability values at a large data center scale, even using the
best matrix algorithm. Therefore, to obtain the reliability of large scale storage
systems (Sect. 5.2), we run simulations of systems using Monte Carlo methods, in
which the chronological behavior of a system is simulated [15]. For each setting,
we run simulation 100 times, and finally the bootstrap 95% confidence interval
for the time to data loss is computed. However, since the error margins are nearly
10 times less than the average values, to make the compared results more clearly,
we only draw the average values of simulations on the figures.

We compare systems with the same effective storage space (excluding the space
for redundant data). And, We transform the MTTDL to a useful measure – the

Table 1. The value of system parameters used in our experiments.

Parameter Meaning Range

c storage capacity of each node 12 TB

n the number of nodes on each rack 15

1/λ mean time to failure of storage nodes 100000 h

1/μ mean time to repair a failure/warning 24 h

p failure detection rate of failure predictors 80 %

1/γ mean time in advance of a node warning 360 h
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expected number of data lost event per usable petabyte within one year, by which
ones can better understand the reliability gaps between different cloud storage
systems.

5.1 Sensitivity of Node Reliability

We assume that there are 40 racks in the systems with replication factor 2, and
60 racks in the systems with replication factor 3, which means that the systems
can respectively store 3600 TB user data. Unless otherwise stated, we keep this
assumption in the following experiments.

Fig. 5. The change of the reliability
of systems with replication factor 2
according to the node reliability.

1.00E 07

1.00E 06

1.00E 05

1.00E 04

1.00E 03
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1.00E 01

0 20 40 60 80 100

Fig. 6. The change of the reliability
of systems with replication factor 3
according to the node reliability.

We can see from Figs. 5 and 6, with the different node MTTF, Markov-based
results have a perfect match with the simulation-based values, which verifies the
accuracy of our reliability models and the Monte Carlo simulations. In addition,
we can learn about the following: first, all the four systems’ reliability have
be improved hardly with the enhanced node MTTF, which demonstrates the
great value of redundancy distributed within nodes; second, the systems with
replication factor 3 yield larger gains than the ones with replication factor 2 with
the enhanced node MTTF. Specifically, when the node MTTF is doubled with
other parameters constant, the reliability of systems with replication factor 2 will
decline by three-quarters and the reliability of systems with replication factor 3
will decline by seven-eighths; and third, having the predictor with the FDR of
80%, both the systems with replication factor 2 and 3 can reduce redundancy
within their nodes to decrease the node MTTF nearly by three-quarters, while
the reliability of them remain the same.

5.2 Sensitivity of System Size

Figure 7 shows the change of systems reliability, as the effective storage space is
varied. We can adjust the storage space size by changing the number of racks in
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system. Three observations are evident from Fig. 7: first, for all the four systems,
the reliability will be reduced by less than a half for each doubling in capacity
and these decrease taper off as systems grow larger; second, having a predictor
with the FDR of 80%, the reliability of system with replication factor 2 can
be improved by more than one order of magnitude and the reliability of system
with replication factor 3 can be improved by nearly two orders of magnitude;
and third, providing the same effective storage space, the system with replication
factor 3 requires 50% more storage nodes and achieves the reliability two orders
of magnitude higher than that with replication factor 2.

1.00E 04

1.00E 03

1.00E 02

1.00E 01

1.00E+00

1.00E+01

0 36 72 108 144 180

Fig. 7. The change of systems reliabil-
ity according to the effective space size.

Fig. 8. The change of systems reliabil-
ity according to the rebuild time.

5.3 Sensitivity of Rebuild Time

Figure 8 shows how the reliability of systems changes according to the rebuild
time. We can also learn about that: first, the systems with replication factor
3 are more sensitivity to the rebuild time than the systems with replication
factor 2. Specifically, when the rebuild time for a failure/warning is doubled
with other parameters constant, the reliability of systems with replication factor
2 will decline by half and the reliability of systems with replication factor 3 will
decline by three-quarters; second, having a predictor with the FDR of 80%, both
the systems can reduce the bandwidth available for rebuild process to extend the
rebuild time seven times longer (by which systems can reserve more bandwidth
to serve user requests), while the reliability of them remain the same.

5.4 Sensitivity of Failure Detection Rate (FDR)

We compare the reliability as the FDR is varied. The results are shown in Fig. 9.
We can learn about the following: first, it’s clear that the more accurate are
the predictors the more reliable are the systems; second, for the system with
replication factor 2, when the FDR of predictor is higher than 70%, its reliability
is more sensitivity to the capability of failure prediction and can be improved
by 1 ∼ 2 orders of magnitude with other system parameters constant; third,
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for the system with replication factor 3, when the FDR is higher than 60%, its
reliability is more sensitivity to the capability of failure prediction and can be
improved by 1 ∼ 3 orders of magnitude with other system parameters constant;
and third, when the FDR achieves 97%, the proactive system with replication
factor 2 can achieve the same level of reliability as the reactive system with
replication factor 3, which demonstrates the great value of the proactive fault
tolerance mechanism.

Fig. 9. The change of proactive sys-
tems reliability according to the failure
detection rate of predictors.

Fig. 10. The change of proactive sys-
tems reliability according to the mean
time in advance of predictors.

5.5 Sensitivity of Time in Advance

Figure 10 shows the effect of TIA on the reliability of proactive systems. The
systems reliability is significantly improved as the increase of TIA. Beyond that,
both the curves are relatively flat after the TIA of 180 h, which denotes that the
TIA of 180 h is the borderline between prominent and non-prominent influence
on the reliability of systems. This observation can guide designers to build a
appropriate predictor for cloud storage systems. Note that, this borderline is
drawn given the rebuild time of 24 h for a node warning, and a longer rebuild
time may induce a higher borderline.

6 Conclusion

In this paper, we present several Markov-based reliability models for cloud stor-
age systems with/without proactive fault tolerance respectively, by which one
can systematically analyze the reliability of systems. To describe and compute
the intricate reliability models for proactive cloud storage systems, we propose
a generic “brick” – basic state transition unit (BSTU), to describe the general
pattern of state transitions in the reliability models. Using our models, we evalu-
ate the influences of some system parameters such as the sensitivity of predictor,
node MTTF, rebuild time, and system size on the reliability of cloud storage sys-
tems. We wish that our models could serve as a guideline for system designers
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and administrators, who are not reliability experts, to decide system parameters
when building cloud storage systems. For example, to ensure the system avail-
ability, users will want to take up as less bandwidth as possible for the rebuild
process, which induces a long time to repair the failure or warning. However,
as shown in Fig. 8, the increasing of the rebuild time will significantly decrease
the reliability. Therefore, using our models, users can choose the proper rebuild
bandwidth to coordinate the availability and reliability.

However, the Markov models are build by the assumptions that node failures
and rebuild time follow an exponential distribution, which have been contested
by recent empirical studies of real world storage systems. Therefore in the future
work, we want to extend our methods to support non-exponential distributions.
Moreover, it is an important work of further investigation to take into account the
behavior of correlated failures to understand cloud storage system’s reliability.
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