
1324 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

Competitiveness of Dynamic Bin Packing for
Online Cloud Server Allocation

Runtian Ren, Xueyan Tang, Senior Member, IEEE, Yusen Li, and Wentong Cai

Abstract— Cloud-based systems often face the problem of
dispatching a stream of jobs to run on cloud servers in an online
manner. Each job has a size that defines the resource demand
for running the job. Each job is assigned to run on a cloud
server upon its arrival and the job departs after it completes.
The departure time of a job, however, is not known at the time of
its arrival. Each cloud server has a fixed resource capacity and the
total resource demand of all the jobs running on a server cannot
exceed its capacity at all times. The objective of job dispatching
is to minimize the total cost of the servers used, where the cost
of renting each cloud server is proportional to its running hours
by “pay-as-you-go” billing. The above job dispatching problem
can be modeled as a variant of the dynamic bin packing (DBP)
problem known as MinUsageTime DBP. In this paper, we study
the competitiveness bounds of MinUsageTime DBP. We establish
an improved lower bound on the competitive ratio of Any Fit
family of packing algorithms, and a new upper bound of µ + 3
on the competitive ratio of the commonly used First Fit packing
algorithm, where µ is the max/min job duration ratio. Our
result significantly reduces the gap between the upper and lower
bounds for the MinUsageTime DBP problem to a constant value
independent of µ, and shows that First Fit packing is near
optimal for MinUsageTime DBP.

Index Terms— Dynamic bin packing, online algorithm, com-
petitive ratio, cloud server allocation.

I. INTRODUCTION

DYNAMIC Bin Packing (DBP) is a long-established
combinatorial problem. The standard DBP problem [7]

considers a set of items, each having an arrival time and a
departure time. The items are to be packed into bins in an
online manner such that the total size of the items in each bin
does not exceed the bin capacity at all times. A bin is opened
when it receives the first item and is closed when all items
in the bin depart. The objective of DBP is to minimize the
maximum number of concurrently open bins in the packing
process.

In this paper, we consider a novel variant of the DBP
problem that focuses on the duration of each bin’s usage, i.e.,
the period from its opening to its closing. Our objective is

Manuscript received February 24, 2016; revised August 17, 2016 and
October 11, 2016; accepted October 27, 2016; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor Y. Bejerano. Date of publication
December 9, 2016; date of current version June 14, 2017. This work was
supported in part by the National Research Foundation, Prime Minister’s
office, Singapore, under its IDM Futures Funding Initiative, in part by the
Singapore Ministry of Education Academic Research Fund Tier 2 under
Grant MOE2013-T2-2-067, and in part by the NSF of China under
Grant 61602266. (Corresponding authors: Xueyan Tang; Yusen Li.)

R. Ren, X. Tang, and W. Cai are with the School of Computer Science and
Engineering, Nanyang Technological University, Singapore 639798 (e-mail:
renr0002@ntu.edu.sg; asxytang@ntu.edu.sg; aswtcai@ntu.edu.sg).

Y. Li is with the Department of Computer Science and Security, Nankai
University, China (e-mail: liyusen@nbjl.nankai.edu.cn).

Digital Object Identifier 10.1109/TNET.2016.2630052

to pack the items into bins to minimize the accumulated bin
usage time. We refer to this variant of the DBP problem as the
MinUsageTime DBP problem [17]. This problem is motivated
by the online job dispatching problem arising from many
cloud-based systems in which jobs may arrive at arbitrary
times. Each job needs some amount of resources for execution
and is assigned to run on a cloud server upon its arrival.
The departure time of the job, however, is not known at
the time of its arrival. The job is not reassigned to other
servers during execution due to reasons such as high migration
overheads and penalty. Each cloud server has a fixed resource
capacity that restricts the total amount of resources needed
by all the jobs running on the server at any time. The
objective of job dispatching is to minimize the total cost
of the servers used. The on-demand server instances (virtual
machines) rented from public clouds such as Amazon EC2
are normally charged according to their running hours by
“pay-as-you-go” billing [1]. Therefore, to minimize the total
renting cost, it is equivalent to minimize the total running
hours of the cloud servers. Such a job dispatching problem
can be modeled exactly by the MinUsageTime DBP problem
defined above, where the jobs and cloud servers correspond
to the items and bins respectively. MinUsageTime DBP is
related to interval scheduling for minimizing the busy times of
machines [8], [14], [20]. However, the latter assumes that job
durations are known whereas we assume that job durations are
unknown at their arrivals in MinUsageTime DBP.

A typical application of the preceding job dispatching
problem is cloud gaming. In a cloud gaming system, games are
run and rendered on cloud servers, while players interact with
the games via networked thin clients [11], [16]. Running each
game instance demands a certain amount of GPU resources.
When a play request is received by the cloud gaming provider,
it should be assigned to a cloud server that has enough GPU
resources to run the requested game instance. Several game
instances can share the same cloud server provided that the
server’s GPU resources are not saturated. Each game instance
keeps running on the assigned server until the player stops the
game. Migrating a game instance from one server to another
during execution is usually not allowed due to interruption
to game play. Cloud gaming providers such as GaiKai rent
servers from public clouds to run game instances [23]. Then,
a natural problem faced by the cloud gaming provider is how
to dispatch the play requests to cloud servers to minimize the
total renting cost of the servers used.

Besides economic benefits, scheduling jobs with minimum
server usage time also offers many advantages in other aspects.
For example, the power usage of a server typically follows a

1063-6692 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

REN et al.: COMPETITIVENESS OF DYNAMIC BIN PACKING FOR ONLINE CLOUD SERVER ALLOCATION 1325

linear model consisting of two components: a flat component
representing the power consumed by an idle server and a
variable component that is proportional to the server load [3].
While the aggregate amount of the variable components for all
servers is mostly fixed for processing a given workload, the
aggregate amount of the fixed components largely depends
on the durations for which the servers are used. As a result,
minimizing the server usage time implies minimizing the total
energy consumption of all servers.

A. Previous Work on MinUsageTime DBP
The MinUsageTime DBP problem was first proposed in our

earlier work [17], [18]. Any online bin packing algorithm can
be applied to the problem. In [17] and [18], we analyzed the
competitiveness of several classical bin packing algorithms,
including Any Fit family of algorithms (which open a new
bin only when no current open bin can accommodate an
incoming item), First Fit and Best Fit (which are two par-
ticular Any Fit algorithms). We proved that the competitive
ratio of any Any Fit packing algorithm cannot be better
than μ + 1, where μ is the ratio of the maximum item
duration to the minimum item duration. The competitive
ratio of Best Fit packing is not bounded for any given μ.
If all the item sizes are smaller than 1

β of the bin capac-
ity (β > 1 is a constant), the competitive ratio of First
Fit packing has an upper bound of β

β−1 · μ + 3β
β−1 + 1.

For the general case, the competitive ratio of First Fit
has an upper bound of 2μ + 7. We further proposed
a Hybrid First Fit algorithm that classifies and packs
items based on their sizes to achieve a competitive
ratio no larger than 8

7μ + 55
7 [17]. We also indicated

a lower bound of μ on the competitive ratio of any
online packing algorithm [17]. Kamali and López-Ortiz [13]
later presented a formal proof of this lower bound. They also
showed that Next Fit packing has a competitive ratio bounded
above by 2μ + 1.

B. Contributions of This Paper
In this paper, we significantly tighten the gap between the

upper and lower bounds for the MinUsageTime DBP problem,
reducing the gap to a constant value independent of μ. We first
establish an improved lower bound on the competitive ratio of
Any Fit family of packing algorithms for the MinUsageTime
DBP problem. Then, we develop new approaches to the
competitive analysis of the commonly used First Fit packing
algorithm for MinUsageTime DBP. In an earlier version of
this paper [25], we proved an upper bound of μ + 4 on
the competitive ratio of First Fit packing. This paper further
improves the analysis and establishes a new upper bound of
μ + 3 on the competitive ratio of First Fit packing. This new
bound is the current best upper bound for the MinUsageTime
DBP problem.1,2 While all the aforementioned upper bounds

1More precisely, our new upper bound µ+3 is better than the bound 2µ+1
of Next Fit when µ > 2.

2Hybrid First Fit and Next Fit packing algorithms that classify items based
on their sizes can achieve competitive ratios of µ + 5 [18] and µ + 2 [13]
respectively, but to do so, these algorithms require the max/min item duration
ratio µ to be known a priori and thus are semi-online in nature.

have multiplicative factors larger than 1 for μ, our new upper
bound has a multiplicative factor 1 for μ. Our result indicates
that First Fit packing is near optimal for the MinUsageTime
DBP problem.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III provides some prelim-
inaries. Section IV presents the improved lower bound on
the competitive ratio of Any Fit family of packing algo-
rithms. Section V carries out the competitive analysis of
First Fit packing. Section VI compares the competitiveness
of First Fit packing and Next Fit packing, and shows that the
later is inherently worse. Finally, Section VII concludes the
paper.

II. RELATED WORK

The classical bin packing problem aims to pack a set of
items into the minimum number of bins. It is well known that
even the offline version of classical bin packing is NP-hard [9].
In the online version, each item must be placed in a bin without
the knowledge of subsequent items. Once placed, the items are
not allowed to move to other bins. The competitive ratios of
various algorithms for classical online bin packing have been
extensively studied [2], [22].

Dynamic bin packing (DBP) is a generalization of the
classical bin packing problem [7]. In DBP, items may arrive
and depart at arbitrary times. The objective is to minimize
the maximum number of bins concurrently used in the pack-
ing. A large amount of research work has also been done
to analyze the competitive ratios of various algorithms for
DBP [5]–[7], [12]. However, standard DBP does not consider
the duration of bin usage. In contrast, the MinUsageTime DBP
problem we have defined aims to minimize the total amount
of time the bins are used [17].

Interval scheduling [15] is another problem related to our
MinUsageTime DBP problem. In the basic interval scheduling,
each job is associated with one or several alternative time
intervals for execution. The goal of scheduling is to maximize
the number of jobs executed on a server that can process only
a single job at any time [10], [24]. Recently, some works have
studied interval scheduling with bounded parallelism, where
each server can process multiple jobs simultaneously up to
a fixed maximum number [8], [20]. A server is considered
busy if at least one job is running on it. The objective is
to minimize the total busy time of all servers to complete
a given set of jobs. This target resembles the one we study
in this paper. However, there is a crucial difference between
interval scheduling and our MinUsageTime DBP problem.
The ending times of jobs are known in interval scheduling,
but the departure time of an item is not known at the time
of its packing in our problem. Moreover, jobs may have
arbitrary resource demands in our problem, so the maxi-
mum number of jobs that can run concurrently on a server
is not fixed. Recently, Khandekar et al. [14] proposed a
5-approximation offline algorithm for scheduling interval jobs
with arbitrary resource demands to minimize the total busy
time of servers and we further developed a 4-approximation
offline algorithm [21]. Maguluri and Srikant [19] conducted
stochastic analysis to study the throughput of processing

1326 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

Fig. 1. Span of an item list.

jobs with unknown durations assuming that there are a fixed
number of servers available and the jobs have a fixed set of
resource demand choices.

III. PRELIMINARIES

A. Notations and Definitions

We first define some key notations used in this paper. For
any time interval I , we use I− and I+ to denote the left
and right endpoints of I respectively. For technical reasons,
we shall view intervals as half-open, i.e., I = [I−, I+). Let
l(I) = I+ − I− denote the length of the time interval I .

For any item r, let I(r) denote the time interval from r’s
arrival to its departure. We say that item r is active during the
interval I(r), and we refer to I(r) as r’s active interval.
The length of I(r) is called the item duration. Let s(r) denote
the size of item r. For notational convenience, for a list of
items R, we also use s(R) to denote the total size of all the
items in R, i.e., s(R) =

∑
r∈R s(r). In addition, we refer to

the time duration in which at least one item in R is active
as the span of R and denote it by span(R) (see Figure 1).
When the context is clear, we also use span(R) to refer to
the time interval(s) in which at least one item is active.

B. Packing Algorithms

In the bin packing process, a bin is opened when it receives
the first item. When all the items in a bin depart, the bin is
closed. At any time, the total size of all the active items in an
open bin is referred to as the bin level.

Any Fit refers to a family of packing algorithms. An Any
Fit algorithm never opens a new bin for an incoming item if
the item can fit in any current open bin.

We shall focus on the following First Fit algorithm for
online bin packing, which is a particular Any Fit algorithm.
Each time when a new item arrives, if there are one or more
open bins that can accommodate the new item, First Fit places
the item in the bin which was opened earliest among these
bins. If no open bin can accommodate the new item, then a
new bin is opened to receive the item.

C. Competitive Ratio

The performance of an online algorithm is usually measured
by its competitive ratio, i.e., the worst-case ratio between
the solution constructed by the algorithm and an optimal
solution [4].

Without loss of generality, we assume that the bins all have
unit capacity. Given a list of items R, let OPT (R, t) denote

the minimum achievable number of bins into which all the
items active at time t can be repacked. Then, the total bin
usage time of an optimal offline adversary that can repack
everything at any time is given by

OPTtotal(R) =
∫

span(R)

OPT (R, t) dt.

As shown in our earlier work [17], [18], it is easy to obtain
the following lower bounds on OPTtotal(R):

Proposition 1: OPTtotal(R) ≥ ∑
r∈R

(
s(r) · l(I(r))

)
.

Proposition 2: OPTtotal(R) ≥ span(R).

The first bound is derived by assuming that no capacity of
any bin is wasted at any time, where s(r) · l(I(r)) is the time-
space demand of an item r. The second bound is derived from
the fact that at least one bin must be used at any time when
at least one item is active.

Let Atotal(R) denote the total bin usage time by applying
an online packing algorithm A to the list of items R. The
competitive ratio of algorithm A is the maximum ratio of
Atotal(R)/OPTtotal(R) over all instances of item lists R.

IV. A LOWER BOUND ON THE COMPETITIVE RATIO OF

ANY FIT FAMILY OF PACKING ALGORITHMS

In this section, we establish an improved lower bound on
the competitive ratio of Any Fit family of packing algorithms.
For any list of items R, let μ = maxr∈R l(I(r))

minr∈R l(I(r)) denote the
ratio of the maximum item duration to the minimum item
duration among all the items in R. Without loss of generality,
we shall assume that the minimum item duration is 1, and the
maximum item duration is μ. In [18], the competitive ratio
of any Any Fit packing algorithm is proved to have a lower
bound of μ + 1. Here, we introduce a new instance to show
that the competitive ratio of Any Fit packing is at least 4μ+3

μ+2

when 1 ≤ μ < 1+
√

5
2 and at least μ + 1 when μ ≥ 1+

√
5

2 .
Let n be an integer at least 3. At time 0, let (n−1) items of

size 1
n arrive, followed by (n−1) items of size n−1

n . As shown
in Figure 2(a), Any Fit packing needs to open n bins to pack
all these items. The first bin is used to pack the (n− 1) items
of size 1

n and the other (n − 1) bins are used to pack one
item of size n−1

n each. At time 1, let three items of size 2
3n

and (n−2) items of size 1
n arrive in sequence. Each open bin

has enough space left to pack only one of these items. Thus,
as shown in Figure 2(b), a new bin has to be opened at time
1 to pack the item arrived last (of size 1

n). As soon as these
(n + 1) items are placed in the bins, let all the items arriving
at time 0 depart (see Figure 2(c)). At time (μ + 1), let all the
items arriving at time 1 depart.

As shown in Figure 2, in the above packing process, n bins
are open from time 0 to 1, and (n + 1) bins are open from
time 1 to (μ + 1). Therefore, the total bin usage time of Any
Fit packing is AFtotal(R) = n+(n+1)·μ. On the other hand,
in the optimal packing, from time 0 to 1, every pair of items
with sizes 1

n and n−1
n can be packed into one bin so that only

(n− 1) bins are needed. From time 1 to (μ + 1), all the items
arriving at time 1 can be packed into one new bin since their
total size is 3· 2

3n+(n−2)· 1n = 1. Therefore, the total bin usage

REN et al.: COMPETITIVENESS OF DYNAMIC BIN PACKING FOR ONLINE CLOUD SERVER ALLOCATION 1327

Fig. 2. Bin levels by an Any Fit packing algorithm. (a) Period [0, 1). (b) At time 1. (c) Period [1, µ+1).

time of the optimal packing is OPTtotal(R) = (n − 1) + μ.
It follows that

AFtotal(R)
OPTtotal(R)

=
n + (n + 1) · μ
(n − 1) + μ

= μ + 1 − μ2 − μ − 1
n − 1 + μ

.

It is easy to see that when μ2 − μ − 1 < 0 (i.e., 1 ≤
μ < 1+

√
5

2), AFtotal(R)
OPTtotal(R) > μ + 1 and the ratio AFtotal(R)

OPTtotal(R)

decreases with n. When n is set to 3, the above ratio reaches
the maximum value at μ + 1 − μ2−μ−1

n−1+μ = 4μ+3
μ+2 .

When μ2−μ−1 ≥ 0 (i.e., μ ≥ 1+
√

5
2), AFtotal(R)

OPTtotal(R) ≤ μ+1

and the ratio AFtotal(R)
OPTtotal(R) increases with n. As n goes towards

infinity, the above ratio can be made arbitrarily close to μ+1.
Hence, we have the following conclusion.

Theorem 1: For the MinUsageTime DBP problem, the
competitive ratio of any Any Fit packing algorithm is at least
4μ+3
μ+2 when μ < 1+

√
5

2 and at least μ + 1 otherwise.

V. AN UPPER BOUND ON THE COMPETITIVE

RATIO OF FIRST FIT PACKING

We now analyze the competitive ratio of First Fit packing
for the MinUsageTime DBP problem. The main idea is to
divide the bin usage time resulting from First Fit packing into
two portions. The first portion is equal to the span of the
item list packed and is thus capped by the lower bound of
Proposition 2. The second portion consists of the bin usage
periods in which there are at least two open bins. According to
the First Fit packing rule, whenever a new bin is opened for an

incoming item r, the sum of r’s size and the level of any open
bin must exceed the bin capacity. Exploiting this observation,
we break the usage period of each bin into subperiods and
strategically charge the length of each subperiod to the time-
space demand of relevant items. In this way, we bound the
second portion of bin usage time with respect to the total time-
space demand of the item list packed and hence the lower
bound of Proposition 1. Combining the two portions of bin
usage time, we show that the competitive ratio of First Fit
packing is bounded by μ + 3.

Suppose a total of m bins b1, b2, . . . , bm are used by First
Fit packing to pack a list of items R. For each bin bk, let
Uk = [U−

k , U+
k) denote the usage period of bk, i.e., the period

from the time when bk is opened to the time when bk is
closed. Then, the total bin usage time of First Fit packing
is given by the total length of the usage periods of all the bins
used, i.e.,

FFtotal(R) =
m∑

k=1

l(Uk).

Without loss of generality, assume that the bins are indexed
in the chronological order of their openings, i.e., U−

1 ≤ U−
2 ≤

· · · ≤ U−
m. For each bin bk, let Ek be the latest closing

time of all the bins that are opened before bk, i.e., Ek =
max

{{U+
i |1 ≤ i < k} ∪ {U−

k }}. We divide the usage period
Uk of each bin into two parts: Vk and Wk. Vk is the period
[U−

k , min{U+
k , Ek}). Wk = Uk − Vk = [min{U+

k , Ek}, U+
k)

is the remaining period. Figure 3 shows an example of these
definitions.

1328 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

Fig. 3. An example of usage periods.

According to the definitions, we have l(Uk) = l(Vk) +
l(Wk). Clearly, for any two different bins bk1 and bk2 , Wk1 ∩
Wk2 = ∅. It is also easy to see that

span(R) = l
(m⋃

k=1

Wk

)
=

m∑

k=1

l(Wk).

Moreover, V1 = ∅ and hence l(V1) = 0. Therefore,

FFtotal(R) =
m∑

k=1

l(Uk)

=
(m∑

k=1

l(Vk)
)

+
(m∑

k=1

l(Wk)
)

=
(∑

k≥2

l(Vk)
)

+ span(R). (1)

For each k where 2 ≤ k ≤ m, let Rk denote the set of
all the items placed in bin bk by First Fit packing. Let R′

k be
a minimal subset of Rk such that the union of their active
intervals completely covers the period Vk. That is, any subset
of items Q ⊂ R′

k cannot fully cover the period Vk. It is easy
to see that all the items in R′

k must have distinct arrival times.
This is because if two items have the same arrival times, the
active interval of one item must be fully contained in that of
the other item and thus can be removed from R′

k, contradicting
that R′

k is minimal.
Let n(k) denote the number of items in R′

k and let rk,1,
rk,2, . . . , rk,n(k) be the items in R′

k sorted according to their
arrival times, i.e.,

I(rk,1)− < I(rk,2)− < · · · < I(rk,n(k))−.

Then, these items must satisfy the following properties. First,
it holds that

I(rk,1)+ < I(rk,2)+ < · · · < I(rk,n(k))+.

Otherwise, if I(rk,i)+ ≥ I(rk,j)+ for some i < j, the active
interval of item rk,j is fully contained in the active interval
of item rk,i, which contradicts the definition of R′

k. Second,
for each rk,i, we have I(rk,i)− < V +

k , i.e., rk,i arrives in the
period Vk. Otherwise, rk,i can be removed from R′

k without
compromising its coverage over Vk.

If Vk = ∅, we have R′
k = ∅. If Vk �= ∅, as shown in

Figure 4, we can split Vk into n(k) disjoint periods at the
arrival times of the items in R′

k:

X(rk,1) = [I(rk,1)−, I(rk,2)−),
X(rk,2) = [I(rk,2)−, I(rk,3)−),

.

X(rk,n(k)−1) = [I(rk,n(k)−1)−, I(rk,n(k))−),
X(rk,n(k)) = [I(rk,n(k))−, V +

k).

We refer to the above periods as the X-periods of items rk,1,
rk,2, · · · , rk,n(k) respectively. Obviously, the total length of
the X-periods is l(Vk), i.e.,

∑

r∈R′
k

l
(
X(r)

)
= l(Vk). (2)

We define

dk =
∑

r∈R′
k

s(r) · l(X(r)
)
.

Clearly, dk is a lower bound on the total time-space demand
of all the items placed in bin bk since the X-period of each
item is shorter than or equal to its active interval:

dk ≤
∑

r∈R′
k

s(r) · l(I(r)
)

≤
∑

r∈Rk

s(r) · l(I(r)
)
. (3)

Recall that each item r in R′
k is placed in bin bk in the

period Vk . By the definition of Vk , there must exist at least one
open bin with an index lower than k at time X(r)− = I(r)−

when r arrives. Among all the open bins with indices lower
than k at time X(r)−, we define the last opened bin (the
bin with the highest index) as the supplier bin of X(r). Note
that different items in R′

k may have different supplier bins
as shown in Figure 5. By the definition of First Fit packing,
the level of X(r)’s supplier bin at time X(r)− plus the size
of item r must be larger than 1 (the bin capacity). Let P (r)
be the set of all the active items already packed in X(r)’s
supplier bin at the arrival time of r. Then,

s(r) +
∑

r̂∈P (r)

s(r̂) > 1. (4)

We define

d∗ =
∑

k≥2

(∑

r∈R′
k

(∑

r̂∈P (r)

s(r̂) · l(X(r)
))

)

.

It then follows from (2) and (4) that
(∑

k≥2

dk

)
+ d∗

=
∑

k≥2

(∑

r∈R′
k

(
s(r) +

∑

r̂∈P (r)

s(r̂)
)
· l(X(r)

)
)

>
∑

k≥2

(∑

r∈R′
k

l
(
X(r)

)
)

=
∑

k≥2

l(Vk). (5)

REN et al.: COMPETITIVENESS OF DYNAMIC BIN PACKING FOR ONLINE CLOUD SERVER ALLOCATION 1329

Fig. 4. Splitting Vk for bin bk .

Fig. 5. An example of supplier bins.

Fig. 6. An example of P−1(r̂).

We next show that d∗ is bounded by (μ+1) ·∑r∈R
(
s(r) ·

l(I(r))
)
, where

∑
r∈R

(
s(r) · l(I(r))

)
is the total time-space

demand of all the items in R.
Proposition 3: d∗ ≤ (μ + 1) · ∑r∈R

(
s(r) · l(I(r))

)
.

Proof: We define

R̂ =
⋃

k≥2

(⋃

r∈R′
k

P (r)
)
.

Obviously, R̂ ⊆ R. For each item r̂ ∈ R̂, let P−1(r̂) denote
the set of all the items r in

⋃
k≥2 R′

k such that r̂ ∈ P (r).
Note that the items in P−1(r̂) may come from different bins.
Figure 6 shows an example of P−1(r̂).

We start by studying the X-period lengths of the items in
P−1(r̂). For each item r ∈ P−1(r̂), since item r̂ has already
been packed when r arrives, r̂ cannot arrive later than r.

Thus,

X(r)− = I(r)− ≥ I(r̂)−. (6)

By definition, I(r̂) overlaps with the X-period of each item
in P−1(r̂), which suggests that X(r)− < I(r̂)+. Recall that
each item has a duration at least 1 and at most μ. This implies
that

l(X(r)) ≤ l(I(r)) ≤ μ ≤ μ · l(I(r̂)).

Therefore,

X(r)+ = X(r)− + l(X(r))
≤ I(r̂)+ + μ · l(I(r̂)). (7)

We now show that all the X-periods of the items in P−1(r̂)
are disjoint. Consider any two items r1 and r2 in P−1(r̂).

1330 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 25, NO. 3, JUNE 2017

If r1 and r2 are placed in the same bin, by the definition of
X-periods, X(r1) cannot intersect with X(r2). If r1 and r2 are
placed in two different bins, without loss of generality, suppose
r1 and r2 are placed in bins bj1 and bj2 respectively where
j1 < j2. Note that X(r1) and X(r2) share the same supplier
bin that has an index lower than j1 and j2. According to the
definition of supplier bin, when r2 is packed into bin bj2 , bin
bj1 must be closed. Otherwise, r2’s supplier bin must have an
index at least j1, which leads to a contradiction. Since bj1 is
closed when r2 arrives, r1 must have departed when r2 arrives.
This suggests that X(r1) cannot overlap with X(r2).

Therefore, it follows from (6) and (7) that
∑

r∈P−1(r̂)

l
(
X(r)

) ≤ max
r∈P−1(r̂)

X(r)+ − min
r∈P−1(r̂)

X(r)−

≤ I(r̂)+ + μ · l(I(r̂)) − I(r̂)−

= (μ + 1) · l(I(r̂)).

Thus, we have

d∗ =
∑

k≥2

(∑

r∈R′
k

(∑

r̂∈P (r)

s(r̂) · l(X(r)
))

)

=
∑

r∈∪k≥2R′
k

(∑

r̂∈P (r)

s(r̂) · l(X(r))
)

=
∑

r̂∈ �R

(

s(r̂) ·
(∑

r∈P−1(r̂)

l
(
X(r)

))
)

≤
∑

r̂∈ �R

(
s(r̂) · (μ + 1) · l(I(r̂)

))

≤ (μ + 1) ·
∑

r∈R

(
s(r) · l(I(r))

)
.

Hence, the proposition is proven. �
Following from (1), (3), (5) and Proposition 3, the total bin

usage time of First Fit packing satisfies

FFtotal(R) =
(∑

k≥2

l(Vk)
)

+ span(R)

<
(∑

k≥2

dk

)
+ d∗ + span(R)

≤
∑

k≥2

(∑

r∈Rk

s(r) · l(I(r))
)

+(μ + 1) ·
∑

r∈R

(
s(r) · l(I(r))

)
+ span(R)

≤
∑

r∈R

(
s(r) · l(I(r))

)

+(μ + 1) ·
∑

r∈R

(
s(r) · l(I(r))

)
+ span(R)

= (μ + 2) ·
∑

r∈R

(
s(r) · l(I(r))

)
+ span(R)

≤ (μ + 2) · OPTtotal(R) + OPTtotal(R)
= (μ + 3) · OPTtotal(R),

where the last inequality follows from the bounds given in
Propositions 1 and 2. Thus, First Fit packing has a competitive
ratio at most μ + 3.

Fig. 7. Bin levels by Next Fit packing.

Theorem 2: First Fit packing is (μ + 3)-competitive for the
MinUsageTime DBP problem.

It has been proved that for MinUsageTime DBP, the com-
petitive ratio of any online packing algorithm cannot be better
than μ [17], [18]. Thus, the result of Theorem 1 indicates that
First Fit packing is near optimal for MinUsageTime DBP.

VI. COMPARISON BETWEEN FIRST FIT AND NEXT FIT

The Next Fit packing algorithm keeps exactly one bin
available for receiving new items at any time. If an incoming
item does not fit in the available bin, the available bin is
marked unavailable and a new bin is opened (and marked
available) to receive the new item. Unavailable bins are never
marked available again and are closed when all the items in
the bin depart.

Kamali and López-Ortiz [13] has shown that the competitive
ratio of Next Fit packing has an upper bound of 2μ+1 for the
MinUsageTime DBP problem. In this section, we show that
the competitive ratio of Next Fit has a lower bound of 2μ by
constructing an example. This implies that the multiplicative
factor 2 of μ is inevitable in the competitive ratio of Next Fit.
Therefore, First Fit is the only known packing algorithm so
far whose competitive ratio has a multiplicative factor 1 for μ.

Let n be an integer no less than 3. At time 0, let 2n pairs
of items arrive in sequence. The first item of each pair has a
size 1

2 and the second item has a size 1
2n . At time 1, let all

the items of size 1
2 depart. At time μ, let all the items of size

1
2n depart.

When Next Fit packing is applied, each pair of items are
placed in a separate bin because the first item of the pair
(of size 1

2) cannot fit in the previous open bin which has a
level 1

2 + 1
2n . Thus, as shown in Figure 7, 2n bins are opened

from time 0 to μ. Therefore, the total bin usage time of Next
Fit packing is 2nμ. On the other hand, in the optimal packing,
every two items of size 1

2 can be packed into one bin so that
only n bins are enough to store all the items of size 1

2 from
time 0 to 1. All the items of size 1

2n can be packed into only
one bin. Therefore, the total bin usage time of the optimal
packing is n + μ. The ratio between the bin usage times of
Next Fit packing and optimal packing is 2nμ

n+μ , which can be
made arbitrarily close to 2μ as n goes towards infinity. Thus,
the competitive ratio of Next Fit packing has a lower bound
of 2μ.

VII. CONCLUDING REMARKS

The MinUsageTime DBP problem models online job dis-
patching to cloud servers. In this paper, we have established
an improved lower bound on the competitive ratio of Any
Fit family of packing algorithms. We have developed new

REN et al.: COMPETITIVENESS OF DYNAMIC BIN PACKING FOR ONLINE CLOUD SERVER ALLOCATION 1331

approaches to analyze the competitiveness of the commonly
used First Fit packing algorithm for the MinUsageTime DBP
problem, and established a new upper bound of μ + 3 on
its competitive ratio, which is the current best upper bound
for the MinUsageTime DBP problem. Our result significantly
reduces the gap between the upper and lower bounds for
the MinUsageTime DBP problem to a constant independent
of μ, and indicates that First Fit packing is near optimal
for MinUsageTime DBP. One direction for future work is
to extend the MinUsageTime DBP problem to the multi-
dimensional version to model multiple types of resources (e.g.,
CPU and memory) for online cloud server allocation.

REFERENCES

[1] Amazon EC2 Pricing, accessed on Sep. 1, 2015[Online]. Available:
http://aws.amazon.com/ec2/pricing/

[2] J. Balogh, J. Békési, and G. Galambos, “New lower bounds for certain
classes of bin packing algorithms,” Approximation and Online Algo-
rithms (Lecture Notes in Computer Science), vol. 6534, pp. 25–36, 2011.

[3] L. A. Barroso and U. Hölzle, “The case for energy-proportional com-
puting,” Computer, vol. 40, no. 12, pp. 33–37, 2007.

[4] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis, vol. 53. Cambridge, U.K.: Cambridge Univ. Press, 1998.

[5] J. W.-T. Chan, T.-W. Lam, and P. W. Wong, “Dynamic bin packing of
unit fractions items,” Theor. Comput. Sci., vol. 409, no. 3, pp. 521–529,
2008.

[6] J. W.-T. Chan, P. W. H. Wong, and F. C. Yung, “On dynamic bin
packing: An improved lower bound and resource augmentation analysis,”
Computing and Combinatorics (Lecture Notes in Computer Science),
vol. 4112. 2006, pp. 309–319.

[7] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “Dynamic bin
packing,” SIAM J. Comput., vol. 12, no. 2, pp. 227–258, 1983.

[8] M. Flammini et al., “Minimizing total busy time in parallel scheduling
with application to optical networks,” in Proc. 23rd IEEE Int. Parallel
Distrib. Process. Symp. (IPDPS), May 2009, pp. 1–12.

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: Freeman,
1979.

[10] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs.
San Diego, CA, USA: Academic, 1980.

[11] C.-Y. Huang, K.-T. Chen, D.-Y. Chen, H.-J. Hsu, and C.-H. Hsu,
“GamingAnywhere: The first open source cloud gaming system,” ACM
Trans. Multimedia Comput., Commun., Appl., vol. 10, no. 1s, Jan. 2014,
Art. no. 10.

[12] Z. Ivkovic and E. L. Lloyd, “Fully dynamic algorithms for bin packing:
Being (Mostly) myopic helps,” SIAM J. Comput., vol. 28, no. 2,
pp. 574–611, 1998.

[13] S. Kamali and A. López-Ortiz, “Efficient online strategies for renting
servers in the cloud,” in SOFSEM, Theory and Practice of Com-
puter Science (Lecture Notes in Computer Science), vol. 8939. 2015,
pp. 277–288.

[14] R. Khandekar, B. Schieber, H. Shachnai, and T. Tamir, “Real-time
scheduling to minimize machine busy times,” J. Scheduling, vol. 18,
no. 6, pp. 561–573, 2015.

[15] E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, and D. B. Shmoys,
“Sequencing and scheduling: Algorithms and complexity,” Handbooks
Oper. Res. Manage. Sci., vol. 4, pp. 445–522, 1993.

[16] Y. Li, Y. Deng, R. Seet, X. Tang, and W. Cai, “MASTER: Multi-platform
application streaming toolkits for elastic resources,” in Proc. 23rd ACM
Int. Conf. Multimedia (MM), 2015, pp. 805–806.

[17] Y. Li, X. Tang, and W. Cai, “On dynamic bin packing for resource allo-
cation in the cloud,” in Proc. 26th ACM Symp. Parallelism Algorithms
Archit. (SPAA), 2014, pp. 2–11.

[18] Y. Li, X. Tang, and W. Cai, “Dynamic bin packing for on-demand cloud
resource allocation,” IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 1,
pp. 157–170, Jan. 2016.

[19] S. T. Maguluri and R. Srikant, “Scheduling jobs with unknown duration
in clouds,” IEEE/ACM Trans. Netw., vol. 22, no. 6, pp. 1938–1951,
Dec. 2014.

[20] G. B. Mertzios, M. Shalom, A. Voloshin, P. W. Wong, and S. Zaks,
“Optimizing busy time on parallel machines,” in Proc. 26th IEEE Int.
Parallel Distrib. Process. Symp. (IPDPS), May 2012, pp. 238–248.

[21] R. Ren and X. Tang, “Clairvoyant dynamic bin packing for job
scheduling with minimum server usage time,” in Proc. 28th ACM Symp.
Parallelism Algorithms Archit. (SPAA), 2016, pp. 227–237.

[22] S. S. Seiden, “On the online bin packing problem,” J. ACM, vol. 49,
no. 5, pp. 640–671, 2002.

[23] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui, “Cloud gaming: Architecture
and performance,” IEEE Netw., vol. 27, no. 4, pp. 16–21, Jul./Aug. 2013.

[24] F. C. R. Spieksma, “On the approximability of an interval scheduling
problem,” J. Scheduling, vol. 2, pp. 215–227, 1999.

[25] X. Tang, Y. Li, R. Ren, and W. Cai, “On first fit bin packing for
online cloud server allocation,” in Proc. 30th IEEE Int. Parallel Distrib.
Process. Symp. (IPDPS), May 2016, pp. 323–332.

Runtian Ren received the B.Sc. degree in mathe-
matics and applied mathematics from the University
of Science and Technology of China in 2014. He is
currently pursuing the Ph.D. degree with the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore.

Xueyan Tang received the B.Eng. degree in com-
puter science and engineering from Shanghai Jiao
Tong University in 1998, and the Ph.D. degree in
computer science from The Hong Kong University
of Science and Technology in 2003. He is currently
an Associate Professor with the School of Computer
Science and Engineering, Nanyang Technological
University, Singapore. His research interests include
distributed systems, cloud computing, mobile and
pervasive computing, and wireless sensor networks.
He has served as an Associate Editor of the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, and a
Program Co-Chair of the IEEE ICPADS 2012 and the IEEE CloudCom 2014.

Yusen Li received the Ph.D. degree from Nanyang
Technological University in 2014. He is currently
an Associate Professor with the Department of
Computer Science and Security, Nankai University,
China. His research interests include scheduling,
load balancing, and other resource management
issues in distributed systems and cloud computing.

Wentong Cai is currently a Professor with the
School of Computer Science and Engineering,
Nanyang Technological University, Singapore. His
expertise is mainly in the areas of modeling and
simulation and parallel and distributed computing.
He is an Associate Editor of the ACM Transactions
on Modeling and Computer Simulation and an Editor
of the Future Generation Computer Systems. He has
chaired a number of international conferences. Most
recent ones include the 2016 International ICST
Conference on Simulation Tools and Techniques, the

2015 IEEE/ACM Symposium on Distributed Simulation and Real Time Appli-
cations, and the 2014 IEEE International Conference on Cloud Computing
Technology and Science.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

