
540 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

Communication-Aware Container Placement
and Reassignment in Large-Scale Internet

Data Centers
Liang Lv, Yuchao Zhang , Yusen Li , Ke Xu, Senior Member, IEEE, Dan Wang, Senior Member, IEEE,

Wendong Wang, Member, IEEE, Minghui Li, Xuan Cao, and Qingqing Liang

Abstract— Containerization has been used in many applica-
tions for isolation purposes due to its lightweight, scalable, and
highly portable properties. However, to apply containerization in
large-scale Internet data centers faces a big challenge. Services
in data centers are always instantiated as a group of containers,
which often generate heavy communication workloads and there-
fore resulting in inefficient communications and downgraded
service performance. Although assigning the containers of the
same service to the same server can reduce the communication
overhead, this may cause heavily imbalanced resource utilization
since containers of the same service are usually intensive to the
same resource. To reduce communication cost as well as balance
the resource utilization in large-scale data centers, we further
explore the container distribution issues in a real industrial
environment and find that such conflict lies in two phases—
container placement and container reassignment. The objective
of this paper is to address the container distribution problem
in these two phases. For the container placement problem,
we propose an efficient communication aware worst fit decreasing

Manuscript received April 29, 2018; revised January 6, 2019; accepted
January 11, 2019. Date of publication January 31, 2019; date of current
version February 14, 2019. The work of L. Lv was supported by the
National Key Research and Development Program of China under Grant
2018YFB0803405. The work of Y. Zhang was supported in part by the
China Postdoctoral Science Foundation under Grant 2018M630117, in part
by the National Natural Science Foundation of China under Grant 61802024,
and in part by the Huawei Autonomous and Service 2.0 Project under
Grant A2018185. The work of Y. Li was supported in part by the Baidu
Songguo Plan, in part by NSF of China under Grant 61602266, and in part
by NSF of Tianjin under Grant 16JCYBJC41900. The work of K. Xu was
supported in part by the National Key Research and Development Program of
China under Grant 2018YFB0803405, in part by the China National Funds
for Distinguished Young Scientists under Grant 61825204, and in part by
the Beijing Outstanding Young Scientist Project. The work of D. Wang
was supported in part by PolyU G-YBAG. (Liang Lv and Yuchao Zhang
contributed equally to this work.) (Corresponding authors: Yusen Li; Ke Xu.)

L. Lv and K. Xu are with the Department of Computer Science
and Technology, Tsinghua University, Beijing 100084, China (e-mail:
lvl16@mails.tsinghua.edu.cn; xuke@tsinghua.edu.cn).

Y. Zhang is with the School of Software Engineering, Beijing Uni-
versity of Posts and Telecommunications, Beijing 100876, China (e-mail:
yczhang@bupt.edu.cn).

Y. Li is with the Department of Computer Science, Nankai University,
Tianjin 300071, China (e-mail: liyusen@nbjl.nankai.edu.cn).

D. Wang is with the Department of Computing, The Hong Kong Polytechnic
University, Hong Kong (e-mail: dan.wang@polyu.edu.hk).

W. Wang is with the State Key Laboratory of Networking and Switching
Technology, Beijing University of Posts and Telecommunications, Beijing
100876, China (e-mail: wdwang@bupt.edu.cn).

M. Li, X. Cao, and Q. Liang are with Baidu, Beijing 100094, China (e-mail:
liminghui@baidu.com; caoxuan@baidu.com; liangqingqing@baidu.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2019.2895473

algorithm to place a set of new containers into data centers.
For the container reassignment problem, we propose a two-
stage algorithm called Sweep&Search to optimize a given initial
distribution of containers by migrating containers among servers.
We implement the proposed algorithms in Baidu’s data centers
and conduct extensive evaluations. Compared with the state-of-
the-art strategies, the evaluation results show that our algorithms
perform better up to 70% and increase the overall service
throughput up to 90% simultaneously.

Index Terms— Container communication, multi-resource load
balance, large-scale data centers, container placement, container
reassignment.

I. INTRODUCTION

CONTAINERIZATION [1] has become a popular virtu-
alization technology due to many promising properties

such as lightweight, scalable, highly portable and good iso-
lation, and the emergence of software containerization tools,
e.g., docker [2], further allows users to create containers easily
on top of any infrastructure. Therefore, more and more Internet
service providers are deploying their services in the form of
containers in modern data centers.

Generally, each Internet service has several modules which
are instantiated as a set of containers, and the containers
belonging to the same service often need to communicate with
each other to deliver the desired service [3]–[6], resulting in
heavy cross-server communications and downgrading service
performance [3], [7]. If these containers are placed on the
same server, the communication cost can be greatly reduced.
However, the containers belonging to the same service are
generally intensive to the same resource (e.g., containers of the
big data analytics services [8]–[10] are usually CPU-intensive,
and containers of the data transfer applications [11]–[15] are
usually network I/O-intensive). Assigning these containers on
the same server may cause heavily imbalanced resource uti-
lization of servers, which could affect the system availability,
response time and throughput [16], [17]. First, it prevents
any single server from getting overloaded or breaking down,
which improves service availability. Second, servers usually
generate exponential response time when the resource uti-
lization is high [18], load balancing guarantees acceptable
resource utilizations for servers, so that the servers can have
fast response time. Third, no server will be a bottleneck under
balanced workload, which improves the overall throughput of
the system.

0733-8716 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6623-350X
https://orcid.org/0000-0002-0135-8915

LV et al.: COMMUNICATION-AWARE CONTAINER PLACEMENT AND REASSIGNMENT IN LARGE-SCALE INTERNET DATA CENTERS 541

Fig. 1. The conflict between container communication and server resource
utilization.

TABLE I

RESOURCE UTILIZATION IN A DATA CENTER FROM BAIDU1

Figure 1 shows an example. Suppose there are two services
(denoted by SA and SB) to be deployed on two servers.
Each service has two containers (CA1, CA2 and CB1, CB2,
respectively). The containers of SA are CPU-intensive while
the containers of SB are network I/O-intensive. Figure 1(a)
shows a solution which assigns one of SA’s containers and one
of SB’s containers on each server. This approach achieves high
resource utilization on both CPU and network I/O, but incurs
high communication cost between the two servers. Figure 1(b)
shows another solution where the containers of the same
service are assigned on the same server. The communication
overhead is thus significantly reduced, however, the utilization
of CPU and network I/O is highly imbalanced on the two
servers.

We further explore the conflict between container com-
munication and resource utilization in a data center with
5,876 servers from Baidu. According to our knowledge,
the containers of the same service in this data center are placed
as close as possible in order to reduce the communication cost.
Table I gives the top 1%, top 5% and top 10% CPU, MEM
(Memory) and SSD (Solid State Drives) utilization of servers
in this data center, which shows that the utilization of resources
is highly imbalanced among servers.

Reducing container communication cost while keeping bal-
anced server resource utilization is never an easy problem.
In this paper, we try to address such conflict in large-scale data
centers. Specifically, such conflict lies in two related phases
of an Internet service’s life cycle, i.e., container placement
and container reassignment, and we accordingly study two
problems. The first is Container Placement Problem, which
strives to place a set of newly instantiated containers into
a data center. The objective of this phase is to balance
resource utilization while minimizing the communication cost
of these containers after placement. The second is Container
Reassignment Problem, which tries to optimize a given place-
ment of containers by migrating containers among servers.

1http://www.baidu.com

Such reassignment approach can be used for online periodical
adjustment of the placement of containers in a data center.
We formulate these two problems as multi-objective optimiza-
tion problems, which are both NP hard.

For the Container Placement Problem, we propose an
efficient Communication Aware Worst Fit Decreasing (CA-
WFD) algorithm, which subtly extends the classical Worst Fit
Decreasing bin packing algorithm to container placement. For
the Container Reassignment Problem, we propose a two-stage
algorithm named Sweep&Search which can seek a container
migration plan efficiently. We deploy our algorithms in Baidu’s
data centers and conduct extensive experiments to evaluate the
performance. The results show that the proposed algorithms
can effectively reduce the communication cost while simul-
taneously balancing the resource utilization among servers
in real systems. The results also show that our algorithms
outperform the state-of-the-art strategies up to 90% used by
some top containerization service providers.

This paper is extended from [19] with significant improve-
ments including:

• We disclose a new problem (i.e., the Container Placement
Problem) that places a set of newly instantiated containers
into a data center, which is a necessary and important
phase in services’ life cycle.

• We propose the CA-WFD algorithm to solve the Con-
tainer Placement Problem and conduct extensive experi-
ments to evaluate the performance.

• We refine the algorithms proposed for the Container
Reassignment Problem, and significantly extend the
experimental study for this problem.

The rest of this paper is structured as follows. Section II
introduces the architecture of container group based services.
Definitions of Container Placement Problem and Container
Reassignment Problem are given in Section III. Our solutions
to the two problems are proposed in Sections IV and V,
respectively. Section VI compares our solutions with state-of-
the-art designs by extensive evaluations. We implement our
solutions in large-scale data centers of Baidu, and the details
are given in Section VII. Section VIII covers related work.
At last, Section IX concludes the paper.

II. CONTAINER GROUP BASED ARCHITECTURE

Containerization is gaining tremendous popularity recently
because of its convenience and good performance on deploy-
ing applications and services. First, containers provide good
isolations with namespace technologies (e.g., chroot [20]),
eliminating conflicts with other containers. Second, containers
put everything in one package (code, runtime, system tools,
system libraries) and do not need any external dependencies
to run processes [21], making containers highly portable and
fast to distribute.

To ensure service integrity, a function of a particular
application may instantiate multiple containers. For example,
in Hadoop, each mapper or reducer should be implemented
as one container, and the layers in a web service (e.g.,
load balancer, web search, backend database) are deployed
as container groups. These container groups are deployed in

542 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

cloud or data centers, and managed by orchestrators such as
Kubernetes [22] and Mesos [23]. Using name services, these
orchestrators can quickly locate the containers on different
servers, so application upgrade and failure recovery can be
well handled. As containers are easy to build, replace or delete,
such architecture makes it convenient to maintain container
group-based applications.

But the container group based architecture also introduces
side effects, i.e., the low communication efficiency. As the
functions deployed in the same container group belong to
the same service, they need to exchange control messages
and transfer data. Therefore, communication efficiency within
a container group greatly affects the overall service per-
formance [3]. However, simple consolidation strategies may
result in imbalanced utilization of multiple resources, because
containers of the same group are usually intensive to the
same resource. The above orchestrators provide the possibility
to leverage containers, but how to manage container groups
for reducing communication overhead and balancing resource
utilization is still a pending problem.

III. PROBLEM DEFINITION

In this section, we go into the above trade-off by analyzing
the overall costs under specified constraints. Let H denote
the set of servers in a data center. Each server has multiple
types of resources. Let R denote the set of resource types.
For each server h ∈ H, let P (h, r) denote the capacity of
resource r ∈ R. Let S denote the set of services. Each service
is built in a set of containers. Each container may have several
replicas. For a specific container c, let Dr

c denote its resource
requirement for resource r (r ∈ R). The set of containers to
be placed is denoted by C.

A. Objective

According to Section II, there are two aspects when quan-
tifying the total overhead of any distribution status, i.e., the
communication cost and the resource utilization (we consider
both in-use resources and residual resources).

1) Communication Cost: So far we can formulate the
overall communication cost as follows: for each container
c ∈ C, let H(c) denote the server that container c assigned
to. For a pair of containers ci and cj , let f(ci, cj) denote the
communication cost incurred by these two containers. Since
the communication overhead exists mainly in host networks,
if ci and cj are placed on the same server (H(ci) = H(cj)),
the communication cost is negligible, i.e., f(ci, cj) = 0. Thus,
the overall communication cost for the data center is the sum
of the communication cost produced by all possible container
pairs, which is given by

Ccost =
∑

∀ci,cj∈C,ci �=cj

f(H(ci), H(cj)). (1)

The next two metrics measure the resource utilizations of
servers, which are Resource Utilization Cost and Residual
Resource Balance Cost.

2) Resource Utilization Cost: If the resource utilization of
a server is much higher than others, it will easily become
the bottleneck of a service, seriously degrading the overall
performance. The ideal situation is that all servers enjoy equal
resource utilization. For each resource type r ∈ R, the resource
utilization cost for r is defined as the variance of resource
usage for r of all servers, i.e.,

∑

h∈H

[U(h, r)− Ū(r)]2

|H| , (2)

where U(h, r) denotes the utilization of resource r on server h,
Ū(r) is the mean utilization of resource r of all servers and
|H| is the number of servers. This metric can reflect whether
resource r is used in a balanced way among servers. The
total resource utilization cost for the data center is the sum
of the resource utilization cost of all resource types, which is
given by

Ucost =
∑

r∈R

∑

h∈H

[U(h, r)− Ū(r)]2

|H| , (3)

3) Residual Resource Balance Cost: Any amount of CPU
resource without any available RAM is useless for coming
requests, so the residual amount of multiple resources should
be balanced [16]. For two different resources ri and rj , let
t(ri, rj) represent the target proportion between resource ri

and resource rj . The residual resource balance cost incurred
by ri and rj is defined as

cost(ri, rj) =
∑

h∈H

max{0, A(h, ri)−A(h, rj)× t(ri, rj)}

(4)

where A(h, r) refers to the residual available resource r on
server h. This metric can reflect whether different types of
resources are used according to the expected proportion. The
total residual resource balance cost for the data center is
the sum of the residual balance cost of all possible pairs of
resource types, which is given by

Bcost =
∑

∀ri,rj∈R,ri �=rj

cost(ri, rj) (5)

Based on the above definitions, the overall resource uti-
lization of servers can be measured by the sum of the total
resource utilization cost and the total residual resource balance
cost. It is easy to see that smaller cost indicates more balanced
resource utilization among servers.

A commonly used approach to optimize multiple optimiza-
tion objectives is to transfer multiple objectives into a single
scalar [24]. We adopt this approach in this paper and define
the objective to be minimized as a weighted sum of all the
costs defined above, i.e.,

Cost = wU ∗ Ucost + wB ∗Bcost + wC ∗ Ccost. (6)

B. Constraints

To minimize the above cost, containers should be
placed or reassigned to the most suitable servers, but this
process should satisfy some strict constraints.

LV et al.: COMMUNICATION-AWARE CONTAINER PLACEMENT AND REASSIGNMENT IN LARGE-SCALE INTERNET DATA CENTERS 543

1) Capacity Constraint: First, the resource consumed by the
containers on each server cannot exceed the capacity of the
server for each resource type, i.e.,

∑

c∈C,H(c)=h

Dr
c ≤ P (h, r), ∀h ∈ H, ∀r ∈ R. (7)

2) Conflict Constraint: Second, as mentioned earlier, each
container may have several replicas for parallel processing
purpose. Generally, the replicas of the same container cannot
be placed on the same server. Let Γ(c, c�) denote whether c
and c� are the replicas of the same container, with Γ(c, c�) =
1 indicating yes and Γ(c, c�) = 0 otherwise. The Conflict
Constraint can be represented by

Γ(c, c�) = 1⇒ H(c) �= H(c�), ∀c, c� ∈ C, c �= c�. (8)

3) Spread Constraint: Third, a specific function in a high
performance application is usually implemented on multiple
containers to support concurrent operations. For example,
a basic search function in web services is usually instantiated
in different servers or even different data centers. As these
containers are sensitive to the same resource, they cannot be
put on the same server. Otherwise, there will be serious waste
of other resources like memory and I/O. Therefore, for each
service Si ∈ S, let M(Si) ∈ N be the minimum number
of different servers where at least one container of Si should
run, we can define the following Spread Constraint for each
service:
∑

hi∈H

min(1, |c ∈ Si ∈ S|H(c) = hi|) ≥M(Si), ∀Si ∈ S.

(9)

4) Co-Locate Constraint: Fourth, some services require
critical data transmission delay among containers. In order
to satisfy the latency requirement, the containers with critical
frequent interactions should be assigned to the same server. Let
Λ(c, c�) denote whether c and c� should be co-located on the
same server, with Λ(c, c�) = 1 indicating yes and Λ(c, c�) = 0
otherwise. The Co-locate Constraint can be represented by

Λ(c, c�) = 1⇒ H(c) = H(c�), ∀c, c� ∈ C, c �= c�. (10)

5) Transient Constraint: The Container Reassignment prob-
lem assumes a given placement of containers and tries to
further improve the initial placement by migrating containers
among servers. For each container c ∈ C, let H(c) and H �(c)
denote the original server and the new server (after migration)
that container c is assigned to. In order to guarantee service
availability, any migrated container cannot be destroyed at the
original server until the new instance is created on the new
server. Therefore, the resources are consumed at both origi-
nal server H(c) and the new server H �(c) during container
migration. This constraint can be represented by

∑

c∈C,H(c)=h
�

H�(c)=h

Dr
c ≤ P (h, r), ∀h ∈ H, ∀r ∈ R. (11)

Based on the above discussions, we formally define the
problems to be addressed in this paper.

• Container Placement Problem (CPP). Given a set of
new containers, to find the optimal placement of contain-
ers such that the total cost defined by (6) is minimized
while the constraints (7), (8), (9) and (10) are not violated.

• Container Reassignment Problem (CRP). Given an
initial placement of containers, to find the optimal new
placement of containers such that the total cost defined
by (6) is minimized while the constraints (7), (8), (9),
(10) and (11) are not violated.

IV. CONTAINER PLACEMENT PROBLEM

In this section, we firstly show that CPP is NP-hard and then
propose a heuristic algorithm called Communication Aware
Worst Fit Decreasing to approximate the optimal solution
of CPP.

A. Problem Analysis

To prove that CPP is NP-hard, let us consider the Multi-
Resource Generalized Assignment Problem [25] (MRGAP)
first. Given m agents {A = 1, 2, ..., m}, n tasks {T =
1, 2, ..., n} and l resources {R = 1, 2, ..., l}, each agent i has
capi,r units of resource r and each task j requires reqj,r units
of resource r. Assigning a task j to agent i induces a cost
costi,j . MRGAP tries to assign each task to exactly one agent
with the purpose of minimizing the total cost without violating
the resource constraints, i.e.,

min
∑

i∈T

costi,A(i)

s.t.
∑

j∈A,i∈T (j)

reqi,j,r ≤ capj,r, ∀r ∈ R (12)

where A(i) denotes the agent task i is assigned to, and T (j)
denotes the set of tasks on agent j.

It is widely accepted that the MRGAP is a strongly NP-
hard problem [26]. We note that MRGAP is essentially a
simplified version of CPP. Suppose we deploy service S
into some empty servers with only the capacity constraint
considered (i.e., we do not consider constraints (8), (9) and
(10)). Because the total cost is 0 before deploying S (note
that the servers are initially empty), we can denote the final
cost by

∑
c∈CS

ΔCostc, where CS denotes the set of containers

of service S, and ΔCostc denotes the increment in Cost
in Equation (6) by placing container c. This Simplified CPP
(SCPP) can be formulated as follows:

min
∑

c∈CS

ΔCostc

s.t.
∑

c∈CS,H(c)=h

Dr
c ≤ P (h, r), ∀h ∈ H, ∀r ∈ R. (13)

From Equations (12) and (13), it is easy to see that MRGAP
is equivalent to SCPP if we regard agents as servers and tasks
as containers. In other words, MRGAP is a special case of
CPP. Therefore, it follows that CPP is NP-hard.

Although MRGAP is a special case of CPP, there are
key differences between them, which make existing solutions
to MRGAP inapplicable for CPP. Firstly, there are more

544 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

Fig. 2. There are three services each with two containers: (a) the current
assignment; (b) the impractical reassignment; (c) the optimal solution.

constraints in CPP, thus feasible solutions to MRGAP may be
infeasible to CPP. Secondly, unlike in MRGAP, the assignment
cost in CPP (i.e., increment of Cost induced by an assignment)
is dependent upon assignment sequence, which could even be
negative (note that a proper placement can improve resource
utilization without increasing communication overhead and
thus decreases the overall cost).

B. CA-WFD Algorithm

As large-scale data centers usually have thousands of con-
tainers and servers, the approaches that try to find optimal
solutions are impractical for CPP due to the high computation
complexity. In this section, we propose a heuristic algorithm
to approximate the optimal solution to CPP, which is extended
from the Worst Fit Decreasing (WFD) [27] strategy.

The basic idea of WFD is to sort the items in a decreasing
order according to their sizes and each item is assigned to
the bin with largest residual capacity. WFD is widely used
for load balancing [28] because WFD tends to distribute slack
among multiple bins. However, we face several challenges to
apply WFD in CPP. The first is how to measure the sizes of
containers and the capacities of servers. A commonly used
approach is to transfer the multi-dimensional resource vector
into a scalar. Since different designs of the scaler may yield
different performances [29], we need to carefully scalerize
the resource vectors in CPP. Moreover, WFD is traditionally
applied for balancing resource utilization, so we have to
extend WFD to CPP, where both resource load balance and
communication overhead reduction are considered.

To measure the sizes of containers, we define the Dominant
Requirement of a container, i.e., the maximum requirement
on different resources, which is expressed as maxr∈R Dr

c .
We use the Weighted Sum of residual resources to measure the
available capacity of a server, which is defined as

∑
r∈R wr ∗

A(h, r), where wr refers to the weight of resource r. In fact,
motivated by prior researches [29], we proposed and tested
several designs based on real-world environments and finally
choose the two metrics.

To extend WFD to CPP, instead of simply picking the
server with the largest free space in WFD, we take two steps
to select a server for a new container. In the first step, we put
emphasis on load balance, where d candidate servers with
the most available resources are selected. In the second step,
to reduce communication overhead, we choose the server with
the most containers that belongs to the same service with the
new container.

We propose the Communication Aware Worst Fit
Decreasing (CA-WFD) algorithm shown in Algorithm 1.

Algorithm 1 CA-WFD
1: C← the set of new containers to be placed
2: H← the set of servers
3: Sort containers in C according to their sizes
4: while C �= ∅ do
5: Pick the container c ∈ C with the largest size
6: Pick d servers Hd with the largest available capacity that

can accommodate c without violating any constraint
7: Pick the server h ∈ Hd that accommodates the most

containers that belongs to the same service with c
8: Assign c to h
9: C← C\{c}

10: end while

The algorithm sorts the containers according to their sizes
(measured by Dominant Requirements) in line 3. Then,
it repeatedly assigns the largest container until all the
containers are assigned (lines 4-10). Each time the algorithm
picks the top d servers with the largest residual capacity
(measured by Weighted Sum of residual resources) and
chooses the one with the most containers that belongs to the
same service with c to minimize the increment of Ccost.

V. CONTAINER REASSIGNMENT PROBLEM

CRP aims to optimize a given initial placement of containers
by migrating containers among servers. As mentioned earlier,
all the constraints should be satisfied during the migrations
in order to guarantee the online services. Since containers are
already placed on servers initially, the residual capacities of
servers that can be utilized during migrations are quite limited,
making CRP challenging. Classical heuristic algorithms have
been used to solve similar problems [30]–[32]. However,
the existing approaches are inefficient to handle big containers
at the hot hosts due to transient constraints in CRP.

A. Problem Analysis

Figure 2 shows the additional constraint and challenge in
CRP, where single resource and homogeneous servers are
considered for simplicity. There are six containers which are
placed on three servers. Initially (as shown in Figure 2(a)),
three containers (CA1, CB1 and CC1) are placed on Server 1,
whose resource requirements are 20%, 20% and 30%, respec-
tively. Two containers (CA2 and CB2) are placed on Server 2,
whose resource requirements are both 50%. One container
(CC2) is placed on Server 3, whose resource requirement is
40%. Suppose the capacity of each server is 100%. Obviously,
the optimal placement of containers is as shown in Figure 2(c),
i.e., each server has two containers and the total resource
utilization is 70%. As illustrated in Figure 2(b), it is impossible
to get the optimal placement from the initial placement by
migrating containers concurrently. This is because in order
to achieve the optimal placement, we need to move CC1

from Server 1 to Server 3, and move CB2 from Server 2 to
Server 1. However, migrating CB2 from Server 2 to Server 1 is
infeasible since the transient constraint will be violated on

LV et al.: COMMUNICATION-AWARE CONTAINER PLACEMENT AND REASSIGNMENT IN LARGE-SCALE INTERNET DATA CENTERS 545

Server 1 (the sum of resource consumption on Server 1 will
exceed its capacity if CB2 is migrated).

For the above example, if we first move CC1 from
Server 1 to Server 3 and suppose the transient resource is
released on Server 1 after migration, then CB2 can be migrated
from Server 2 to Server 1 without violating any constraint.
Inspired by this observation, we propose a two-stage container
reassignment algorithm named Sweep&Search to solve the
problem.

B. Sweep&Search Algorithm

The Sweep&Search algorithm has two stages, which are
Sweep and Search. The Sweep stage tries to handle the large
containers on the hot servers, i.e., trying to migrate the large
containers to the expected locations. Based on the placement
produced by the Sweep stage, the Search stage adopts a
tailored variable neighborhood local search to further optimize
the placement of containers.

Note that, the Sweep&Search algorithm is only used to com-
pute the migration plan, i.e., which server each container will
be migrated to. So, all the placement changes (e.g., migrate,
shift, swap) in the algorithm description are hypothetical. After
the migration plan is figured out, the containers are physically
“migrated” to their target servers as follows: first, for each
container, a new replica of the container is constructed in
the target server; second, the workload mapped to the “old”
replica of the container is redirected to the new replica;
third, the old replica of the container is physically deleted.
The Sweep&Search algorithm has taken the transient resource
constraints into account when computing the migration plan,
so the resource constraints at both the original servers and the
target servers can be always satisfied during migration.

1) Sweep: Recall that one of our objectives is to balance
resource utilization among servers. The traditional approaches
for load balancing normally move workload directly from
servers with high resource utilization to servers with low
resource utilization. However, as shown in Figure 2, the large
containers are hard to migrate due to the transient resource
constraints. To address this issue, we propose a novel two
step approach in the Sweep stage. In the first step, we try to
empty the spare servers as much as possible by moving out
containers from the spare servers to other servers. This will
free up space for accommodating more large containers from
the hot servers. In the second step, we move large containers
from hot servers to spare servers so that resource utilization
among servers can be balanced.

The pseudo-code of Sweep is shown in Algorithm 2. The
algorithm first selects a set of hot servers (i.e., the servers
whose resource utilization is higher than a predefined safety
threshold). Suppose the number of hot servers is N . The
algorithm then tries to clear up N spare servers (i.e., the top
N servers with the lowest resource utilization). When working
on a spare server, the algorithm tries to migrate as many
containers as possible from the spare server to other servers
(lines 5-8). For a specific container c, the procedure FindHost
returns a normal server (i.e., neither a hot server nor a spare
server) that can accommodate c. After that, the resources

Algorithm 2 Sweep
1: Sort H in descending order according to the residual

capacity
2: Hhot ← {h|U(h) > safety threshold}
3: N ← the size of Hhot

4: Hspare ← top N spare servers
5: for each container c on h ∈ Hspare do
6: h� ← FindHost(c)
7: Migrate c from h to h�

8: end for
9: for each h ∈ Hhot do

10: while U(h) > Ū(h) do
11: pick a container c on h
12: pick a spare server h� ∈ Hspare that can accommodate

c without violating any constraint
13: Migrate c from h to h�

14: end while
15: end for

Fig. 3. Three kinds of moves Sweep&Search explores.

occupied by the containers which have been migrated can
be released on the spare servers. Then, the algorithm tries to
migrate containers from hot servers to spare servers to balance
the resource utilization (lines 9-15). Specifically, the algorithm
iterates over the hot servers and repeatedly migrates containers
from each hot server to spare servers until the resource
utilization of the hot server is below the average of all servers
if possible.

2) Search: The Sweep stage mainly focuses on balancing
the resource utilization among servers. However, the commu-
nication cost may still be high after the Sweep stage. The
Search stage will further optimize the solution produced by the
Sweep stage using a local search algorithm. The local search
algorithm incrementally adjust the placement through three
basic movements: shift, swap and replace.

A shift move is to reassign a container from one server to
another server (Figure 3(a)). It is the most simple neighbor
exploration that directly reduces the overall cost. For exam-
ple, reassigning a container from a hot server to a spare
server will reduce Ucost; moving a CPU-intensive container
from a server with little residual CPU will reduce Bcost;
moving a container nearer to its group members reduces Ccost.

A swap move is to exchange the assignment of two con-
tainers on two different servers (Figure 3(b)). It is easy to see
that the size of the swap neighborhood is O(n2), where n is
the number of containers. To limit the branch number, we cut
off the neighbors that obviously violate the constraints and
worsen the overall cost.

546 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

Algorithm 3 Search
1: Pcrt ← the initial container placement
2: repeat
3: Sort H by resource utilization
4: N ← H(Top(δ)) + H(Tail(δ))
5: Pshift ← shiftSearch(Pcrt, N)
6: Pswap ← swapSearch(Pcrt, N)
7: Preplace ← replaceSearch(Pcrt, N)
8: Pcrt ← arg min(Cost(P)), P ∈
{Pshift, Pswap, Preplace}

9: until Cost(Pcrt) < T
10: Pbest ← Pcrt

11: Output Pbest

The replace move is more complex than the shift move
and the swap move, which is to shift a container from one
server (the original server) to another server (the relay server)
and meanwhile shifts zombie containers on the relay server to
other servers (the target servers) (Figure 3(c)). A zombie con-
tainer is a container that was planned to move here (from other
servers) in the earlier search stage but the actual operation has
not been executed yet. We represent zombie containers with
dashed edges in the figure. Since the zombie containers have
not been migrated, it will not incur additional overhead if we
reassign them to other servers.

It is obvious that replace is more powerful than shift and
swap, but the overhead is much higher. This is because there
are so many potential movements for a zombie container and
replace should explore all the possible branches. Fortunately,
the overhead can be bounded. In each iteration of the Search
algorithm, one shift and one swap will be accepted, which
will generate 3 zombies. So there are 3 cases for the next
replace phase. In each branch, we try to move the zombie
container away from the assigned host, and this is another
shift operation. So in the ith iteration, there are at most 3i
zombie containers. If we assume the overhead of exploring a
shift neighbor is os, the total overhead of Sweep&Search is
linear to os.

The local search algorithm is described by Algorithm 3.
The algorithm repeats iteratively until the overall cost falls to
the pre-set threshold T . In each iteration, three procedures are
executed, namely shiftSearch, swapSearch and replaceSearch.

The shiftSearch procedure attempts to migrate containers
from hot servers to spare servers to reduce the total cost. It first
randomly selects a set of hot servers and a set of spare servers.
Then, it tries to shift a container on the selected hot servers to
one of the spare servers with the condition that the total cost
is reduced after the shift move.

The swapSearch procedure aims at reducing the total cost
through swapping the locations of containers. It first randomly
selects a set of hot servers and a set of non-hot servers. For
each container on the selected hot servers, the algorithm tries
to find a container on the selected non-hot servers such that
the total cost is reduced if the locations of the two containers
are swapped.

TABLE II

SERVER CONFIGURATION

TABLE III

SERVICE INFORMATION

The replaceSearch procedure tries to reduce the total cost
by reassigning a container from hA to hB under the premise
to move a zombie container from hB to hC . It firstly chooses
a set of hot servers as origin servers. For each container c on
the origin server h, it selects a set of non-hot servers as relay
servers. For each zombie container c� on the relay server h�,
replaceSearch tries to find a target server h�� from a set of
randomly selected spare servers, such that the overall cost is
reduced if reassigning c from h to h� meanwhile moving c�

from h� to h��.
In Appendix A, we give a detailed algorithm analysis

and prove that the deviation between Sweep&Search and the
theoretical optimal solution has an upper bound.

VI. EVALUATION

We have conducted extensive experiments with variant para-
meter settings in Baidu’s large-scale data centers to evaluate
CA-WFD and Sweep&Search. As we cannot deploy compari-
son systems in real data centers due to safety concerns, evalu-
ations are performed in two experimental data centers, where
there are 2,513 servers accommodating 10,000+ containers
of 25 services in DCA and 4,361 servers accommodating
25,000+ containers of 29 services in DCB .

The configurations of servers in the two data centers are
summarized in Table II. Resource requirements of typical
services in DCA (SAi) and DCB (SBi) are given in Table III.
The values in Table II and III are after normalization, where
the top server configuration of each dimension of resource
is normalized to 1. These real-world data show that both the
server configurations and resource requirement of containers
are significantly heterogeneous.

A. Performance of CA-WFD

1) Algorithm Performance: We consider such a scenario
where two new services (SA and SB) are being deployed into

LV et al.: COMMUNICATION-AWARE CONTAINER PLACEMENT AND REASSIGNMENT IN LARGE-SCALE INTERNET DATA CENTERS 547

TABLE IV

THE COSTS UNDER DIFFERENT PLACEMENT STRATEGIES

DCA and DCB , respectively. SA is instantiated as 2,000+
containers, and SB is instantiated as 5,000+ containers. These
containers have different resource requirements. In this set
of experiments, to deploy these newly instantiated containers
into data centers, CA-WFD is compared with four state-of-
the-art container distribution strategies that are used by top
container platform providers (e.g., Docker [33], Swarm [34]
and Amazon [35]).

• CA-WFD is the Communication Aware Worst Fit
Decreasing algorithm proposed in Section IV. In the
evaluation, we set d as 2 in line 6 of Algorithm 1, i.e., two
candidate servers are picked each time.

• Random assigns containers randomly. Random serves as
a baseline in the evaluation.

• HA (High Availability) selects the server with the fewest
containers of that service at the time of each container’s
deployment. HA is applied to optimize the load bal-
ance as well as service availability. However, it may
also induce heavy communication overhead, because the
containers spread over all the servers.

• ENF (Emptiest Node First) chooses the server with the
fewest total containers. ENF aims at balancing the load
of all the servers at a coarse granularity. Note that fewer
containers do not definitely mean less resource utilization,
since one big container (e.g., SB2 in Table III) can resume
more resource than several small containers (e.g., SB1

in Table III).
• Binpack assigns containers to the server with the least

available amount of CPU. Binpack tends to minimize the
number of servers used.

Table IV compares the total cost after placing the con-
tainers with different algorithms. For clarity, in this section,
the value of costs are after min-max normalization [36], and
the lower and upper bounds are normalized to 0 and 1,
respectively. The upper and lower bounds are calculated in
the ideal conditions. Take Communication Cost for example,
the upper bound of Ccost of a service is calculated when
all the containers of this service spread on as many servers
as possible, while the lower bound is calculated when these
containers are all placed in the same server or the nearest
servers (still under the Capacity Constraint, Conflict Constraint
and Spread Constraint). With respect to Resource Utilization
Cost (Ucost), CA-WFD performs overwhelmingly better than
the other algorithms up to 57.7% in DCA and up to 45.5%

TABLE V

THE COSTS UNDER DIFFERENT ALGORITHM VARIATIONS

in DCB . The second optimal algorithm is ENF, and the reason
is that both CA-WFD and ENF tend to assign containers to
servers with more free space, which benefits load balance.
However, ENF regards the server with least containers as the
“emptiest”, which is imprecise. Ucost of Binpack is almost two
times of CA-WFD, because Binpack assigns containers to least
servers, which harms load balance. CA-WFD also achieves
better or similar performance in both data centers in terms of
Residual Resource Balance Cost (Bcost) and Communication
Cost (Ccost), which confirms the effectiveness of CA-WFD.
HA performs obviously worse than other designs in terms of
Ccost, because HA spreads the containers among the servers
which induces more cross-server communications.

Figure 4 shows CDF of resource utilization of DCA servers.
The horizontal axis represents the 2513 servers in DCA and
the vertical axis represents the utilization of three different
resources. CA-WFD yields more balanced resource usages
than other algorithms, which is consistent with the results
in Table IV. As server resource utilization reflects the data
center performance under stress tests, i.e., when burst occurs,
we can expect better service throughput when placing contain-
ers by CA-WFD.

2) Algorithm Variations: As illustrated in Section IV,
CA-WFD uses dominant requirement and weighted sum of
residual resources to represent the “size” of containers and
servers, respectively. Motivated by Panigrahy et al. [29],
we evaluated several design choices in our experimental data
centers, and the results perfectly confirmed the effectiveness
of our design choice. In this section, we give the comparison
between CA-WFD and another two representative variants,
which run the same procedure as Algorithm 1 but with
different metrics.

• DR-WS (Dominant Requirement – Weighted Sum),
i.e., the design choice we adopt in Section IV.

• WS-DP (Weighted Sum – Dot Product) sorts the con-
tainers by the weighted sum of requirement vectors
(i.e.,

∑
r∈R

wr ·Dr
c), and selects the best server accord-

ing to dot product of the vector of container require-
ment and the vector of residual resource of server (i.e.,∑
r∈R

ar ·Dr
c · A(h, r)), where ar = exp(0.01 · avdemr),

and avdemr = 1
|R|

∑
r∈R

Dr
c . Simulations in [29] show that

WS-DP performs well in Vector Bin Packing [37].
• C-C (CPU – CPU) is a single-dimensional version Com-

munication Aware Worst Fit Decreasing strategy, which
only considers CPU utilizations when sorting and placing
containers.

548 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

Fig. 4. The resource utilization of servers in DCA under different placement strategies.

Fig. 5. The resource utilizations of servers in DCA under different reassignment strategies.

Table V compares the costs of CA-WFD and its variants.
DR-WS (i.e., our design choice in Section IV-B) outperforms
the other two designs in both data centers. A point worthing
to note is that WS-DP performs obliviously worse in DCB

than in DCA. We contribute this to WS-DP cannot effec-
tively capture the resource features in more heterogeneous
environments (note that in Table II, the server capacity of
DCA is more heterogeneous than that of DCB). C-C assigns
containers to the server with the maximum residual CPU,
hence containers tend to be packed on servers with high
end CPUs. This explains why it gains a slightly better result
for Ccost than DR-WS and WS-DP, but poor performance
for Ucost and Bcost. This implies that single-dimensional
placement strategy is insufficient in real-world environments,
because optimization of single resource easily brings poor
utilization of other resources.

In summary, compared with the state-of-the-art algorithms,
CA-WFD gains much balanced multi-resource utilization
without inducing heavy communication overhead, which fur-
therly yields a better performance of services.

B. Performance of Sweep&Search

1) Algorithm Performance: We compared Sweep&Search
with the following two alternative solutions, NLS and Greedy.
Again, we evaluate these algorithms in experimental data
centers for safety concerns.

• Sweep&Search (S&S) is the container reassignment
algorithm we propose in Section V. To speed up the
convergence of the Search procedure in Algorithm 3,
we empirically set wu, wb and wc in Equation (6) as 1,
1

|H| , and 1
|C|2 , respectively, so that the three components

of Cost (i.e., wu∗Ucost, wb∗Bcost, and wc∗Ccost) fall in
similar value ranges. Besides, we set δ in Sweep as 2%.

TABLE VI

THE COSTS UNDER DIFFERENT CONTAINER

REASSIGNMENT ALGORITHMS

• NLS is a noisy local search method, which is based on the
winner team solution for Google Machine Reassignment
Problem (GMRP) [16]. This method reallocates processes
among a set of machines to improve the overall efficiency.
In the evaluation, NLS adopts the same value of wu, wb

and wc as Sweep&Search in local searching.
• Greedy is a greedy algorithm, which tries to move

containers from the “hottest” server to the “sparest”
server each time. This algorithm reduces Ucost directly
in a straightforward way.

Table VI shows the total costs produced by Sweep&Search,
NLS and Greedy, separately. In DCA, compared with Greedy
(NLS), Sweep&Search achieves 40.4% (30.6%), 69.0%
(66.0%) and 9.1% (6.2%) better performance in terms of
Ucost, Bcost and Ccost, respectively. In DCB , the benefits are
33.9%(21.2%), 72.7%(80.4%) and 6.3%(3.8%), respectively.
The results show that Sweep&Search can jointly optimize
communication overhead and balance resource utilizations.

Figure 5(a) shows the CDF of CPU utilization of the
2,513 servers in DCA. The horizontal axis represents the
2513 servers in DCA and the vertical axis represents the CPU
utilization. There are about 330 servers whose CPU utilizations
exceed 60% under the greedy algorithm and 210 servers under

LV et al.: COMMUNICATION-AWARE CONTAINER PLACEMENT AND REASSIGNMENT IN LARGE-SCALE INTERNET DATA CENTERS 549

TABLE VII

AVERAGE CPU UTILIZATION OF BOTTLENECK SERVERS

TABLE VIII

THE COSTS UNDER DIFFERENT PARAMETER
SETTINGS OF SWEEP&SEARCH IN DCA

the NLS algorithm. But when leveraging Sweep&Search,
the highest CPU utilization falls down to 52%, which is much
better than Greedy and NLS.

For high performance network services, the overall through-
put of the system is generally determined by hot servers.
We collect the resource usages of the top 300 hot servers
produced by each algorithm, and the results are shown in
Figure 5. Taking SSD as an example, the average utilization of
the top 300 hot servers under greedy, NSL and Sweep&Search
are 97.71%, 93.15% and 81.33%, respectively. To clearly
show the quantified optimization results, the average CPU
utilization of the top hot servers is shown in Table VII. The
overall average CPU utilization of the 2,513 servers is 51.16%.
We can see that Sweep&Search’s performance is very close
to the lower bound, and outperforms Greedy and NSL by up
to 70%.

We attribute this to the following reasons. First, we take
Ucost and Bcost into consideration to minimize the differ-
ence in resource utilizations and balance residual multiple
resources. Second, the Sweep stage makes room for the
following search procedure, based on which the Search stage
could explore more branches to find better solutions.

2) Algorithm Efficiency: In this section, we show the effec-
tiveness of Sweep and then evaluate the impacts of different
parameter settings on the performance of Sweep&Search in
DCA. In the evaluation, we in turn set δ = 2%(10%, 20%),
which means that in each exploring iteration, we select
4%(20%, 40%) servers as the set of candidates from the
top 2%(10%, 20%) and the tail 2%(10%, 20%) and leverage
neighbor searching on these candidate servers.

Table VIII shows the costs under different parameter set-
tings. Ucost, Bcost and Ccost all benefit for a larger δ, which
is consistent with the analysis in Appendix A. Especially,
compared with 2%, by setting δ to 10% (20%), Bcost and
Ccost are improved by 65.3% (71.9%) and 37.4% (48.9%),
respectively. However, Ucost gains smaller improvement than
Bcost and Ccost, which implies that a small δ can produce a
good result in resource load balance. Note that although larger
δ yields a reduction in the total cost, it also spends more time
to sweep the servers in Algorithm 2.

VII. IMPLEMENTATION

In this section, we present the implementation of our
solutions in Baidu. All the proposed algorithms have been

Fig. 6. System performance before and after deploying our solution.

TABLE IX

SERVICE INFORMATION

implemented in a middleware product called FreeCon-
tainer [19], while FreeContainer is built in the data center
orchestrator system that manages virtualized services.

FreeContainer is deployed in an Internet data center with
6,000 servers, where 35 services are deployed together with
some other background services. To evaluate the performance
improvement of the data center after deploying our solution,
we conduct a series of experiments to measure the follow-
ing system features: response time, service throughput and
resource utilization.

A. Response Time

The service response time refers to the total response time
of a particular request. As each request would go through
multiple containers, an efficient container communication
scheme should give low network latency. We show the results
in Figure 6(a), where the small red (big blue) points denote
the request response time before (after) deploying our solution.
The average response times are 451 ms and 365 ms, respec-
tively. We can conclude that communication latency reduces
up to 20% by container distribution optimization.

B. Service Throughput

To validate the online performance of the proposed algo-
rithm, we perform stress test on this data center and measure
the throughput of 5 representative services. The representative
services are selected as follows. We classify the services into
three types, i.e., small, medium and large, with respect to the
number of containers and the mean number of replicas per
container, respectively. Table IX summarizes the types of the
services selected. Our intention is to cover as many service
types as possible. The service throughput before and after
deploying FreeContainer is shown in Figure 6(b). Taking S2

as an example, the maximum throughput before deploying
FreeContainer is 510,008 queries per second (qps), which
raises to 972,581 qps after implementing our algorithms

550 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

Fig. 7. (a) CDF of CPU utilizations of servers. (b) CDF of Memory utilization of servers. (c) CDF of SSD utilization of servers. (d) Impact of CPU utilization
on response time.

(with an increase of 90%). We also observe that for S5,
the throughput is improved from 295,581 qps to 384,761 qps,
with 30% increase. This is because there are only 588 inter-
active containers in S5 but 2,268 containers in S2. The results
imply that the benefit is more significant for the service with
more containers to communicate.

C. Resource Utilization

Resource utilization is another performance indicator.
If resource utilization are balanced among servers, the through-
put is generally also good. We measure resource utilizations
under stress tests and show the results in Figure 7 (CPU
in Figure 7(a), MEM in Figure 7(b) and SSD in Figure 7(c)).
From these figures we can see that our solution eliminates
the long tails of resource utilization. Taking CPU utilization
as an example, there are about 800 servers whose utilization
exceeds 80%. To show the influence caused by high resource
utilization, we classify the servers according to CPU utilization
(every 10 percent) and calculate the average response time of
queries on these classified servers. The results show that when
the average CPU utilization is below 60%, the latency keeps
below 50ms, but after that, the latency increases significantly
with the increasing CPU utilization. For the servers with CPU
utilization higher than 80%, the latency increases to 200ms,
and for the servers with CPU utilization higher than 90%,
the latency increases to 800ms (16 times longer than that
under 60% CPU utilization). Thus, the affected servers suffer
from long request latency due to CPU resource shortage, and
become the bottlenecks of the overall service performance.
From the above results, we can conclude that our solution can
lead to more balanced resource utilization.

VIII. RELATED WORK

In this section, we survey some problems that are related to
our problem, including Multi-Resource Generalized Assign-
ment Problem, Google Machine Reassignment Problem,
traffic-aware virtual machine placement Network Function
Placement and Container Deployment and Migration.

A. Multi-Resource Generalized Assignment
Problem (MRGAP)

MRGAP [25], [38] is an extension of the General-
ized Assignment Problem (GAP) [39], [40], where multiple

resources are associated with the items and bins. Solutions
to MRGAP usually contains two phases. The first phase
aims to obtain an initial feasible solution, and the second
phase attempts to further improve the solution. Gavish and
Pirkul [25] proposed two heuristics to generate the initial solu-
tion and a branch and bound algorithm to improve the solu-
tion. Privault and Herault [41] computed the initial solution
by the bounded variable simplex method and optimized the
solution by a simulated annealing algorithm. Mitrović-Minić
and Punnen [30] and Yagiura et al. [42] generated a random
initial solution in the first phase and adopted local searching
techniques in the second phase. Mazzola and Wilcox [43]
combined Pivot and Complement (P&C) and the heuristic
proposed in [25] to obtain high-quality solutions. Shtub and
Kogan [44] proposed a gradient descent based solution to the
Dynamic MRGAP (DMRGAP), where the resource require-
ments of items change over time and an item can be assigned
to several bins. Although we show that MRGAP is equivalent
to the simplified CPP in Section IV-A, we emphasize that
CPP and CRP are more complex than MRGAP because of
the containerization-specific constraints (i.e., Conflict, Spread,
Co-locate and Transient Constraints), which makes above
solutions inapplicable in our scenarios.

B. Google Machine Reassignment Problem (GMRP)

GMRP was formulated by the Google research team as a
subject of ROADEF/EURO Challenge, which aims to maxi-
mize the resource usage by reassigning processes among the
the machines in data centers. Gavranović and Buljubašić [16]
proposed the winner solution Noisy Local Search (NLS),
which combines local searching techniques and noising strat-
egy in reallocation. Different from NLS, we depart the reas-
signment into two steps, namely Sweep and Search. With the
help of Sweep, we mitigate the hot hosts and obtain better
initial conditions for the following local searching procedure.
The evaluation result in Section VI shows that Sweep&Search
yields significantly better results than directly applying local
searching techniques.

C. Traffic-Aware Virtual Machine Placement

Like containerization, Virtual Machine (VM) is also a
popular virtualization technique, where isolated operation sys-
tems run above a hypervisor layer on bare metals. Since
each VM runs a full operating system [45], VMs usually

LV et al.: COMMUNICATION-AWARE CONTAINER PLACEMENT AND REASSIGNMENT IN LARGE-SCALE INTERNET DATA CENTERS 551

have bigger sizes and consumes more power than contain-
ers. Hence, traditional VM placement mainly concerns about
optimization of energy consumption, resource utilizations
and VM migration overhead [46]. Since the pioneer work
of Meng et al. [47], many efforts have been made to miti-
gate inter-server communications by traffic-aware VM place-
ment [48]–[57]. Meng et al. [47] defined the Traffic-aware
VM Placement Problem and proposed a two-tier approximate
algorithm to minimize inter-VM communications. Choreo [49]
adopts a greedy heuristic to place VMs to minimize appli-
cation completion time. Li et al. [50] proposed a series of
traffic-aware VM placement algorithms to optimize traffic
cost as well as single-dimensional resource utilization cost.
Rui et al. [55] adopt a system optimization method to re-
optimize VM distributions for joint optimization of resource
load balancing and VM migration cost. Different from these
work, we optimize both communication overhead and multi-
resource load balancing. Besides, since containers can be
deployed in VMs instead of physical machines, the solutions
proposed in our paper are orthogonal to these VM place-
ment strategies. Therefore, VM resource utilization and inter-
VM communications could be optimized by container place-
ment/reassignment, and that of physical machines could be
optimized by VM placement.

D. Network Function Placement

Network Function Virtualization (NFV) has recently gained
wide attention from both industry and academia, mak-
ing the study of their placement a popular research topic
[17], [58]–[71]. Wang et al. [17] studied the flow-level multi-
resource load balancing problem in NFV and proposed a
distributed solution based on the proximal Jacobian ADMM
(Alternating Direction Method of Multipliers). Marotta and
Kassler [61] proposed a mathematical model based on
the Robust Optimization theory to minimize the power
consumption of the NFV infrastructure. In [65], an affinity-
based heuristic is proposed to minimize inter-cloud traf-
fic and response time. Zhang et al. [66] proposed a Best
Fit Decreasing based heuristic algorithm to place network
functions to achieve high utilization of single dimensional
sources. Taleb et al. [67] studied the network function place-
ment problem from many aspects, including minimizing path
between users and their respective data anchor gateways,
measuring existing NFV placement algorithms [67], placing
Packet Data Network (PDN) Gateway network functionality
and Evolved Packet Core (EPC) in the cloud [68], [69],
[71], and modeling cross-domain network slices for 5G [70].
Since network functions work in chains and containers are
deployed by groups, the communication patterns are totally
different between the two systems. Hence, the communication
optimization solutions in NFV is non-applicable to container
placement. Besides, none of these work aims at the joint
optimization of communication overhead and multi-resource
load balancing in data centers.

E. Container Deployment and Migration

A lot of work has been studied to deploy containers among
virtual machines or physical machines for various optimization

purposes. Zhang et al. [72] proposed a novel container
placement strategy for improving physical resource utiliza-
tion. The works [73]–[75] studied the container placement
problem for minimizing energy consumption in the cloud.
Mao et al. [76] presented a resource-aware placement scheme
to improve the system performance in a heterogeneous cluster.
Nardelli et al. [77] studied the container placement problem
for optimizing deployment cost. However, none of the above
work considers the communication cost among containers.

The container migration issues also have been extensively
studied in the literature. The first part of the related works
concentrate on developing container live migration techniques.
The works [78], [79] proposed solutions for live migrating
Linux containers, while Pickartz et al. [80] proposed the tech-
niques for live migrating Docker containers. The prior works
[81]–[83] further optimized the existing container migration
techniques for reducing migration overhead. The second part
of the related works focused on the container migration
strategies. Li et al. [84] aimed to achieve load balancing
of cloud resources through container migration. Guo and
Yao [85] proposed a container scheduling strategy based on
neighborhood division in micro service, with the purpose of
reducing the system load imbalance and improve the overall
system performance. Kaewkasi and Chuenmuneewong [86]
applied the ant cology optimization (ACO) in the context of
container scheduling, which aimed to balance the resource
usages and achieve better performance. Xu et al. [87] proposed
a resource scheduling approach for the container virtualized
cloud environments to reduce response time of customers jobs
and improve resource utilization. Again, none of the above
work considers communication cost among containers.

IX. CONCLUSION

More and more Internet service providers deploy their
services in containers due to the promising properties of
containerization. However, applying containerization in large-
scale Internet data centers faces the trade-off between com-
munication cost and multi-resource load balance.

In this paper, we go into the container distribution problem
in large-scale data centers and break it down into two stages,
i.e., Container Placement Problem and Container Reassign-
ment Problem, which are both NP-hard. For Container Place-
ment, we propose an efficient heuristic named Communication
Aware Worst Fit Decreasing which extends WFD to CPP
by considering both multiple resource load balance as well
as communication overhead reduction. For Container Reas-
signment Problem, we design a two-stage algorithm called
Sweep&Search to re-optimize the container distribution, which
firstly handles overloaded servers and then optimizes the
objectives by local search techniques.

Extensive experiments have been conducted to evaluate
our algorithms. The results show that our algorithms out-
perform the state-of-the-art solutions up to 70%. We further
implemented our solutions in a data center with more than
6,000 servers and 35 services, and the measurements indicate
that our solutions can effectively reduce the communication
overhead among interactive containers while simultaneously
increasing the overall service throughput up to 90%.

552 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

APPENDIX A
APPROXIMATION ANALYSIS OF SWEEP&SEARCH

In this section, we would like to prove that the output of
Sweep&Search is (1 + �, θ)-approximate to the theoretical
optimum result P ∗ (for simplification, we use P̂ instead of
Pbest in the subsequent analysis), where � is an accuracy
parameter, and θ is a confidence parameter that represents
the possibility of that accuracy [88]. More specifically, this
(1 + �, θ)-approximation can be formulated as the following
inequality:

Pr[|P̂ − P ∗| ≤ �P ∗] ≥ 1− θ. (14)

If � = 0.05 and θ = 0.1, it means that the output of
Sweep&Search P̂ differs from the optimal solution P ∗ by
at most 5% (the accuracy bound) with a probability 90% (the
confidence bound).

Sweep introduces no deviation, so the deviation of P̂ and
P ∗ mainly comes from the Search stage which consists of two
parts: one is to select a subset of host set H to run Search,
the other is the stopping condition. Specifically, the core idea
of the search algorithm is to select some candidate hosts
from H, expand to search three kinds of neighbors for a few
iterations and generate an approximate result in each iteration.

Let bi be the branch that is explored on hi and xi be
the minimum cost of bi. Assume there are n branches in
total, a fact that can be easily seen is that the optimal
result (minimum cost) is Q∗ = min{x1, ..., xn}. Given an
approximation ratio �, we would like to prove that the output
of Sweep&Search P̂ with cost Q̂ meets |Q̂−Q∗| ≤ �Q∗ with
a bounded probability. We split the total error � into two parts
and try to bound the above two errors separately.

A. Bound the Error From Stopping Conditions

In each iteration, we explore 2δ branches. Let Q̂iter =
min{min{x1, ..., x2δ}, (1−�)Q∗

iter

2 }, which means that the
stopping condition is a balance of the following two: 1) the
minimum cost on these branches reaches the best result; and
2) the threshold 1−�

2 is reached.
Lemma 1: The output Q̂iter in each iteration satisfies
|Q̂iter −Q∗

iter| ≤ �
2Q∗

iter

Proof: There are two parts: 1) If the minimum cost on
these 2δ branches reaches the current best one, then Q̂iter =
Q∗

iter; 2) If the minimum cost on these branches is greater
than the current best, then Q̂iter = 1−�

2 Q∗
iter.

Overall, |Q̂iter − Q∗
iter | ≤ |1−�

2 Q∗
iter − Q∗

iter| = �
2Q∗

iter,
so the deviation is bounded by �

2 .

B. Bound the Error From Subset Selection

We now try to prove that we can bound |Q̂ − Q∗| by
exploring 2δ hosts in each iteration.

Before giving the proof, we first introduce the Hoeffding
Bound:

Hoeffding Inequality: There are k random identical and
independent variables Vi. For any ε, we have

Pr[|V − E(V)| ≥ ε] ≤ e−2ε2k. (15)

With this Hoeffding Bound, we have the following lemma:
Lemma 2: There is an upper bound for Pr[|Q̂ − Q∗| ≤

�
2Q∗] when exploring 2δ hosts in each iteration.

Proof: Assume the minimum cost of all branches is in
uniform distribution (range from a to b), so we have Q̂ =
(min{x1, ..., x2δ}) and E(Q̂) = (1 − xi

b−a)2δ . Let Yi = 1 −
xi

b−a , and Y =
∏2δ

i=1 Yi, we have

E(Q̂) = Y < Y
n
2δ . (16)

As Y is associated with Q̂ and the expectation of the
minimum Yi is associated with Q∗, so Q̂ and Q∗ are linked
together. More specifically, E(Y) = E(Yi)2δ , E(Yi) =
E(Y)

1
2δ . Thus, we have

E(Q∗) = (1− xi

b− a
)n = E(Yi)n = E(Y)

n
2δ (17)

and

Pr[|E(Q̂)− E(Q∗)| ≥ �

2
] < Pr[|Y n

2δ − E(Y)
n
2δ | ≥ �

2
].

(18)

Through the above Hoeffding Bound (Inequation 15),
we have

Pr[|Y n
2δ − E(Y)

n
2δ | ≥ �

2
] ≤ e−2(�

2)2∗2δ. (19)

Finally,

Pr[|E(Q̂)− E(Q∗)| ≥ �

2
] ≤ e−�2δ. (20)

Now we can combine the above two errors: the error rate
from stopping condition is within �

2 and the error rate from
subset selection is also bounded to �

2 within a probability.
So we can propose the whole theorem as follows.

Theorem: Let Q∗ be the theoretical optimal result (with the
minimum overall cost) of the container group reassignment
problem, Sweep&Search can output an approximate result Q̂
where |Q̂−Q∗| ≤ �Q∗ with probability at least e−�2δ.

As a conclusion, we can give an upper bound to the
deviation and the possibility is associated with the number
of selected hosts in each searching iteration. With a given
accuracy, we can further improve that probability by exploring
more hosts.

ACKNOWLEDGMENTS

This work was partly done during Liang Lv and Yuchao
Zhang’s internship in Baidu.

REFERENCES

[1] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors,” in Proc. ACM SIGOPS/EuroSys
Eur. Conf. Comput. Syst., 2007, pp. 275–287.

[2] (2016). Docker. [Online]. Available: http://www.docker.com/
[3] T. Yu, S. A. Noghabi, S. Raindel, H. Liu, J. Padhye, and V. Sekar,

“FreeFlow: High performance container networking,” in Proc. ACM 15th
ACM Workshop Hot Topics Netw., 2016, pp. 43–49.

[4] B. Burns and D. Oppenheimer, “Design patterns for container-based
distributed systems,” in Proc. 8th USENIX Workshop Hot Topics Cloud
Comput. (HotCloud), 2016, pp. 1–6.

[5] Y. Zhang, K. Xu, H. Wang, Q. Li, T. Li, and X. Cao, “Going fast and
fair: Latency optimization for cloud-based service chains,” IEEE Netw.,
vol. 32, no. 2, pp. 138–143, Mar./Apr. 2018.

LV et al.: COMMUNICATION-AWARE CONTAINER PLACEMENT AND REASSIGNMENT IN LARGE-SCALE INTERNET DATA CENTERS 553

[6] M. Shen, B. Ma, L. Zhu, R. Mijumbi, X. Du, and J. Hu, “Cloud-based
approximate constrained shortest distance queries over encrypted graphs
with privacy protection,” IEEE Trans. Inf. Forensics Security, vol. 13,
no. 4, pp. 940–953, Apr. 2018.

[7] Y. Zhang, K. Xu, H. Wang, and M. Shen, “Towards shorter task
completion time in datacenter networks,” in Proc. IEEE 34th Int.
Perform. Comput. Commun. Conf. (IPCCC), Dec. 2015, pp. 1–8.

[8] G. Ananthanarayanan et al., “Reining in the outliers in map-reduce
clusters using Mantri,” in Proc. OSDI, vol. 10, no. 1, 2010, pp. 265–278.

[9] M. Li et al., “Scaling distributed machine learning with the parameter
server,” in Proc. 11th USENIX Symp. Operating Syst. Design Implement.
(OSDI), 2014, pp. 583–598.

[10] X. Wu, X. Zhu, G.-Q. Wu, and W. Ding, “Data mining with big data,”
IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 97–107, Jan. 2014.

[11] Y. Zhang, K. Xu, G. Yao, M. Zhang, and X. Nie, “PieBridge: A cross-
DR scale large data transmission scheduling system,” in Proc. Conf.
ACM SIGCOMM Conf., 2016, pp. 553–554.

[12] Y. Zhang et al., “BDS: A centralized near-optimal overlay network for
inter-datacenter data replication,” in Proc. ACM 13th EuroSys Conf.,
2018, Art. no. 10.

[13] K. Xu et al., “Modeling, analysis, and implementation of universal
acceleration platform across online video sharing sites,” IEEE Trans.
Services Comput., vol. 11, no. 3, pp. 534–548, May/Jun. 2018.

[14] H. Wang et al., “Toward cloud-based distributed interactive applications:
Measurement, modeling, and analysis,” IEEE/ACM Trans. Netw., vol. 26,
no. 1, pp. 3–16, Feb. 2018.

[15] Y. Zhang, K. Xu, X. Shi, H. Wang, J. Liu, and Y. Wang, “Design,
modeling, and analysis of online combinatorial double auction for
mobile cloud computing markets,” Int. J. Commun. Syst., vol. 31, no. 7,
p. e3460, 2018.

[16] H. Gavranović and M. Buljubašić, “An efficient local search with noising
strategy for Google machine reassignment problem,” Ann. Oper. Res.,
vol. 242, pp. 19–31, Jul. 2014.

[17] T. Wang, H. Xu, and F. Liu, “Multi-resource load balancing for virtual
network functions,” in Proc. IEEE Int. Conf. Distrib. Comput. Syst.,
Jun. 2017, pp. 1322–1332.

[18] Y.-J. Hong and M. Thottethodi, “Understanding and mitigating the
impact of load imbalance in the memory caching tier,” in Proc. ACM
4th Annu. Symp. Cloud Comput., 2013, Art. no. 13.

[19] Y. Zhang et al., “A communication-aware container re-distribution
approach for high performance VNFs,” in Proc. IEEE Int. Conf. Distrib.
Comput. Syst., Jun. 2017, pp. 1555–1564.

[20] (2016). Freebds.chrootcfreebdsmanpages. [Online]. Available: http://
www.freebsd.org/cgi/man.cgi

[21] W. Felter, A. P. Ferreira, R. Rajamony, and J. C. Rubio, “An updated
performance comparison of virtual machines and linux containers,” in
Proc. IEEE Int. Symp. Perform. Anal. Syst. Softw. (ISPASS), Mar. 2015,
pp. 171–172.

[22] (2016). Kubernetes. [Online]. Available: http://kubernetes.io/
[23] B. Hindman et al., “Mesos: A platform for fine-grained resource sharing

in the data center,” in Proc. NSDI, 2011, pp. 295–308.
[24] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization

methods for engineering,” Struct. Multidisciplinary Optim., vol. 26,
no. 6, pp. 369–395, Apr. 2004.

[25] B. Gavish and H. Pirkul, “Algorithms for the multi-resource generalized
assignment problem,” Manage. Sci., vol. 37, no. 6, pp. 695–713, 1991.

[26] S. Sahni and T. Gonzalez, “P-complete approximation problems,”
J. ACM, vol. 23, no. 3, pp. 555–565, 1976.

[27] D. S. Johnson, “Fast algorithms for bin packing,” J. Comput. Syst. Sci.,
vol. 8, no. 3, pp. 272–314, 1974.

[28] K. Lakshmanan, D. de Niz, R. Rajkumar, and G. Moreno, “Resource
allocation in distributed mixed-criticality cyber-physical systems,” in
Proc. IEEE 30th Int. Conf. Distrib. Comput. Syst., Jun. 2010,
pp. 169–178.

[29] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for vector
bin packing,” Microsoft Res., Silicon Valley, CA, USA, Tech. Rep.,
Jan. 2011.

[30] S. Mitrović-Minić and A. P. Punnen, “Local search intensified: Very
large-scale variable neighborhood search for the multi-resource general-
ized assignment problem,” Discrete Optim., vol. 6, no. 4, pp. 370–377,
2009.

[31] J. A. Dıaz and E. Fernández, “A Tabu search heuristic for the generalized
assignment problem,” Eur. J. Oper. Res., vol. 132, no. 1, pp. 22–38, 2001.

[32] R. Masson et al., “An iterated local search heuristic for multi-capacity
bin packing and machine reassignment problems,” Expert Syst. Appl.,
vol. 40, no. 13, pp. 5266–5275, 2013.

[33] (2017). Container Distribution Strategies. [Online]. Available: https://
docs.docker.com/docker-cloud/infrastructure/deployment-strategies/

[34] (2017). Docker Swarm Strategies. [Online]. Available: https://docs.
docker.com/swarm/scheduler/strategy/

[35] AEC Service. (2017). Amazon ECS Task Placement Strategies.
[Online]. Available: https://docs.aws.amazon.com/AmazonECS/latest/
developerguide/task-placement-strategies.html

[36] J. Han, Data Mining: Concepts and Techniques. San Mateo, CA, USA:
Morgan Kaufmann, 2005.

[37] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali, “Approximation and
online algorithms for multidimensional bin packing: A survey,” Comput.
Sci. Rev., vol. 24, pp. 63–79, May 2017.

[38] H. Pirkul, “Computer and database location in distributed computer
systems,” Ph.D. dissertation, Eastman School Music, Univ. Rochester,
Rochester, NY, USA, 1983.

[39] G. T. Ross and R. M. Soland, “A branch and bound algorithm for
the generalized assignment problem,” Math. Program., vol. 8, no. 1,
pp. 91–103, Dec. 1975.

[40] T. Öncan, “A survey of the generalized assignment problem and its
applications,” Inf. Syst. Oper. Res., vol. 45, no. 3, pp. 123–141, 2007.

[41] C. Privault and L. Herault, “Solving a real world assignment prob-
lem with a metaheuristic,” J. Heuristics, vol. 4, no. 4, pp. 383–398,
Dec. 1998.

[42] M. Yagiura, S. Iwasaki, T. Ibaraki, and F. Glover, “A very large-
scale neighborhood search algorithm for the multi-resource generalized
assignment problem,” Discrete Optim., vol. 1, no. 1, pp. 87–98, 2004.

[43] J. B. Mazzola and S. P. Wilcox, “Heuristics for the multi-resource
generalized assignment problem,” Nav. Res. Logistics, vol. 48, no. 6,
pp. 468–483, 2001.

[44] A. Shtub and K. Kogan, “Capacity planning by the dynamic multi-
resource generalized assignment problem (DMRGAP),” Eur. J. Oper.
Res., vol. 105, no. 1, pp. 91–99, 1998.

[45] P. Sharma, L. Chaufournier, P. Shenoy, and Y. C. Tay, “Containers
and virtual machines at scale: A comparative study,” in Proc. Int.
MIDDLEWARE Conf., 2016, Art. no. 1.

[46] Z. Á. Mann and M. Szabó, “Which is the best algorithm for virtual
machine placement optimization?” Concurrency Comput. Pract. Exper.,
vol. 29, no. 10, p. e4083, 2017.

[47] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data
center networks with traffic-aware virtual machine placement,” in Proc.
IEEE INFOCOM, Mar. 2010, pp. 1–9.

[48] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “FairCloud: Sharing the network in cloud computing,”
ACM SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp. 187–198,
2012.

[49] K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan, “Choreo: Network-
aware task placement for cloud applications,” in Proc. Conf. Internet
Meas. Conf., 2013, pp. 191–204.

[50] X. Li, J. Wu, S. Tang, and S. Lu, “Let’s stay together: Towards
traffic aware virtual machine placement in data centers,” in Proc. IEEE
INFOCOM, Apr./May 2014, pp. 1842–1850.

[51] T. Ma, J. Wu, Y. Hu, and W. Huang, “Optimal VM placement for traffic
scalability using Markov chain in cloud data centre networks,” Electron.
Lett., vol. 53, no. 9, pp. 602–604, 2017.

[52] Y. Zhao, Y. Huang, K. Chen, M. Yu, S. Wang, and D. Li, “Joint VM
placement and topology optimization for traffic scalability in dynamic
datacenter networks,” Comput. Netw., vol. 80, pp. 109–123, Apr. 2015.

[53] A. Rai, R. Bhagwan, and S. Guha, “Generalized resource allocation for
the cloud,” in Proc. ACM Symp. Cloud Comput., 2012, Art. no. 15.

[54] L. Wang et al., “GreenDCN: A general framework for achieving energy
efficiency in data center networks,” IEEE J. Sel. Areas Commun., vol. 32,
no. 1, pp. 4–15, Jan. 2014.

[55] R. Li, Q. Zheng, X. Li, and J. Wu, “A novel multi-objective optimization
scheme for rebalancing virtual machine placement,” in Proc. IEEE Int.
Conf. Cloud Comput., Jun./Jul. 2016, pp. 710–717.

[56] L. Gu, D. Zeng, S. Guo, Y. Xiang, and J. Hu, “A general communication
cost optimization framework for big data stream processing in geo-
distributed data centers,” IEEE Trans. Comput., vol. 65, no. 1, pp. 19–29,
2015.

[57] M. Shen, K. Xu, F. Li, K. Yang, L. Zhu, and L. Guan, “Elastic
and efficient virtual network provisioning for cloud-based multi-tier
applications,” in Proc. IEEE 44th Int. Conf. Parallel Process. (ICPP),
Sep. 2015, pp. 929–938.

[58] T. Taleb, M. Bagaa, and A. Ksentini, “User mobility-aware virtual
network function placement for virtual 5G network infrastructure,” in
Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 3879–3884.

554 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 37, NO. 3, MARCH 2019

[59] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in Proc. IEEE Int. Conf. Cloud Netw.,
Oct. 2014, pp. 7–13.

[60] K. Kawashima, T. Otoshi, Y. Ohsita, and M. Murata, “Dynamic place-
ment of virtual network functions based on model predictive control,”
in Proc. IEEE/IFIP Netw. Oper. Manage. Symp. (NOMS), Apr. 2016,
pp. 1037–1042.

[61] A. Marotta and A. Kassler, “A power efficient and robust virtual
network functions placement problem,” in Proc. Teletraffic Congr., 2017,
pp. 331–339.

[62] B. Addis, D. Belabed, M. Bouet, and S. Secci, “Virtual network
functions placement and routing optimization,” in Proc. IEEE Int. Conf.
Cloud Netw., Oct. 2015, pp. 171–177.

[63] F. Wang, R. Ling, J. Zhu, and D. Li, “Bandwidth guaranteed virtual
network function placement and scaling in datacenter networks,” in Proc.
IEEE Int. Perform. Comput. Commun. Conf., Dec. 2015, pp. 1–8.

[64] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in Proc. IEEE
Int. Conf. Cloud Netw., Oct. 2015, pp. 255–260.

[65] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan,
“Optimal virtual network function placement in multi-cloud service
function chaining architecture,” Comput. Commun., vol. 102, pp. 1–16,
Apr. 2017.

[66] Q. Zhang, Y. Xiao, F. Liu, J. C. S. Lui, J. Guo, and T. Wang, “Joint
optimization of chain placement and request scheduling for network
function virtualization,” in Proc. IEEE Int. Conf. Distrib. Comput. Syst.,
Jun. 2017, pp. 731–741.

[67] A. Laghrissi, T. Taleb, M. Bagaa, and H. Flinck, “Towards edge
slicing: VNF placement algorithms for a dynamic & realistic edge
cloud environment,” in Proc. IEEE Global Commun. Conf., Dec. 2017,
pp. 1–6.

[68] J. Prados-Garzon, A. Laghrissi, M. Bagaa, and T. Taleb, “A queuing
based dynamic auto scaling algorithm for the LTE EPC control plane,”
in Proc. IEEE Global Commun. Conf., Dec. 2018, pp. 1–6.

[69] M. Bagaa, T. Taleb, and A. Ksentini, “Service-aware network function
placement for efficient traffic handling in carrier cloud,” in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Apr. 2014, pp. 2402–2407.

[70] M. B. D. D. R. A. Addad, T. Taleb, and H. Flinck, “Towards modeling
cross-domain network slices for 5G,” in Proc. IEEE Global Commun.
Conf., Dec. 2018, pp. 1–6.

[71] M. Bagaa, T. Taleb, A. Laghrissi, and A. Ksentini, “Efficient virtual
evolved packet core deployment across multiple cloud domains,” in Proc.
IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–6.

[72] R. Zhang, A.-M. Zhong, B. Dong, F. Tian, and R. Li, “Container-
VM-PM architecture: A novel architecture for docker container place-
ment,” in Proc. Int. Conf. Cloud Comput. Seattle, WA, USA: Springer,
Jun. 2018, pp. 128–140.

[73] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, “A frame-
work and algorithm for energy efficient container consolidation in cloud
data centers,” in Proc. IEEE Int. Conf. Data Sci. Data Intensive Syst.
(DSDIS), Dec. 2015, pp. 368–375.

[74] Z. Dong, W. Zhuang, and R. Rojas-Cessa, “Energy-aware scheduling
schemes for cloud data centers on Google trace data,” in Proc. IEEE
Online Conf. Green Commun. (OnlineGreenComm), Nov. 2014, pp. 1–6.

[75] T. Shi, H. Ma, and G. Chen, “Energy-aware container consolidation
based on PSO in cloud data centers,” in Proc. IEEE Congr. Evol.
Comput. (CEC), Jul. 2018, pp. 1–8.

[76] Y. Mao, J. Oak, A. Pompili, D. Beer, T. Han, and P. Hu, “DRAPS:
Dynamic and resource-aware placement scheme for docker containers
in a heterogeneous cluster,” in Proc. IEEE 36th Int. Perform. Comput.
Commun. Conf. (IPCCC), Dec. 2017, pp. 1–8.

[77] M. Nardelli, C. Hochreiner, and S. Schulte, “Elastic provisioning of
virtual machines for container deployment,” in Proc. 8th ACM/SPEC
Int. Conf. Perform. Eng. Companion, 2017, pp. 5–10.

[78] Y. Qiu, “Evaluating and improving LXC container migration between
cloudlets using multipath TCP,” Ph.D. dissertation, Dept. Elect. Comput.
Eng., Carleton Univ., Ottawa, ON, Canada, 2016.

[79] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live
service migration in mobile edge clouds,” IEEE Wireless Commun.,
vol. 25, no. 1, pp. 140–147, Feb. 2018.

[80] S. Pickartz, N. Eiling, S. Lankes, L. Razik, and A. Monti, “Migrating
LinuX containers using CRIU,” in Proc. Int. Conf. High Perform.
Comput. Frankfurt, Germany: Springer, Jun. 2016, pp. 674–684.

[81] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient live migration of edge
services leveraging container layered storage,” IEEE Trans. Mobile
Comput., to be published, doi: 10.1109/TMC.2018.2871842.

[82] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers
via docker container migration,” in Proc. 2nd ACM/IEEE Symp. Edge
Comput., Oct. 2017, Art. no. 11.

[83] S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager: Complete
container state migration,” in Proc. IEEE 37th Int. Conf. Distrib.
Comput. Syst. (ICDCS), Jun. 2017, pp. 2137–2142.

[84] P. Li, H. Nie, H. Xu, and L. Dong, “A minimum-aware container
live migration algorithm in the cloud environment,” Int. J. Bus. Data
Commun. Netw., vol. 13, no. 2, pp. 15–27, 2017.

[85] Y. Guo and W. Yao, “A container scheduling strategy based on neigh-
borhood division in micro service,” in Proc. IEEE/IFIP Netw. Oper.
Manage. Symp. (NOMS), Apr. 2018, pp. 1–6.

[86] C. Kaewkasi and K. Chuenmuneewong, “Improvement of container
scheduling for docker using ant colony optimization,” in Proc. IEEE
9th Int. Conf. Knowl. Smart Technol. (KST), Feb. 2017, pp. 254–259.

[87] X. Xu, H. Yu, and X. Pei, “A novel resource scheduling approach in
container based clouds,” in Proc. IEEE 17th Int. Conf. Comput. Sci. Eng.
(CSE), Dec. 2014, pp. 257–264.

[88] Z. Han, M. Hong, and D. Wang, Signal Processing and Networking for
Big Data Applications. Cambridge, U.K.: Cambridge Univ. Press, 2017.

Liang Lv received the B.S. and M.S. degrees from
the School of Computer, National University of
Defense Technology, Hunan, China, in 2008 and
2010, respectively. He is currently pursuing the
Ph.D. degree with the Department of Computer
Science and Technology, Tsinghua University. His
research interests include network virtualization and
resource management.

Yuchao Zhang received the B.S. degree in com-
puter science and technology from Jilin University
in 2012 and the Ph.D. degree from the Computer
Science Department, Tsinghua University, in 2017.
She is currently with the Beijing University of
Posts and Telecommunications. Her research inter-
ests include large-scale datacenter network, content
delivery network, data-driven network, and edge
computing.

Yusen Li received the Ph.D. degree in computer
science from Nanyang Technological University
in 2013. He is currently an Associate Professor with
the College of Computer Science, Nankai University,
China. His research interests include resource allo-
cation and scheduling issues in distributed systems
and cloud computing.

Ke Xu (M’02–SM’09) received the Ph.D. degree
from the Department of Computer Science and
Technology, Tsinghua University. He is currently a
Full Professor with the Department of Computer
Science and Technology, Tsinghua University. His
research interests include next-generation Internet,
P2P systems, Internet of Things, network virtual-
ization, and network economics. He is a member of
ACM. He serves as an Associate Editor for the IEEE
INTERNET OF THINGS JOURNAL. He has guest
edited several special issues in IEEE and springer
journals.

http://dx.doi.org/10.1109/TMC.2018.2871842

LV et al.: COMMUNICATION-AWARE CONTAINER PLACEMENT AND REASSIGNMENT IN LARGE-SCALE INTERNET DATA CENTERS 555

Dan Wang (S’05–M’07–SM’13) received the B.Sc.
degree in computer science from Peking Univer-
sity, Beijing, China, the M.Sc. degree in computer
science from Case Western Reserve University,
Cleveland, OH, USA, and the Ph.D. degree in
computer science from Simon Fraser University,
Vancouver, BC, Canada. He is currently an Associate
Professor with the Department of Computing, The
Hong Kong Polytechnic University, Hong Kong. His
current research interests include Internet architec-
ture and QoS, smart buildings, and green computing.

Wendong Wang (M’05) received the B.E. and
M.E. degrees from the Beijing University of Posts
and Telecommunications, China, in 1985 and 1991,
respectively. He is currently a Full Professor with
the State Key Laboratory of Networking and
Switching Technology, Beijing University of Posts
and Telecommunications. He has published over
200 papers in various journals and conference pro-
ceedings. His current research interests are the next-
generation network architecture, network resources
management and QoS, and mobile Internet. He is a
member of the IEEE.

Minghui Li received the M.S. degree from Zhejiang
University, Zhejiang, China. He is currently a Site
Reliability Engineer with Baidu. His research inter-
ests include large-scale distributed system and site
reliability engineering.

Xuan Cao received the M.S. degree from the
Nanjing University of Science and Technology,
Nanjing, China. He is currently a Software Engineer
with Baidu. His research interests include large-scale
distributed system and site reliability engineering.

Qingqing Liang received the M.S. degree from the
Nanjing University of Posts and Telecommunica-
tions, Nanjing, China. His research interests include
large-scale distributed system and site reliability
engineering.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

