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Abstract—Recent years have witnessed the explosion of the
data universe. Facing the rapid growth of the data size, cloud
storage is proposed as an approach to provide cost-efficient and
reliable data storage service. As data size grows, data centers
providing cloud storage service need more storage resources
to meet the ever-increasing requirements. Data deduplication
is a technology aiming to remove redundant data blocks. It
has been used to reduce the storage footprint of backup and
archival systems. In this paper, we propose DedupeSwift, which
is based on OpenStack Swift, an open-source object-oriented
storage software widely used in public and private clouds. Data
deduplication is introduced to reduce the storage overhead. To
deal with the performance overhead brought by deduplication,
a lazy method is introduced to reduce the disk I/O bottleneck.
Compression and caching are also used in the system to improve
the read performance. Experimental results show that our pro-
posed DedupeSwift can reduce the storage overhead by 65.24%
and 89.84% on the two data sets with favorable upload and
download throughput.

I. INTRODUCTION

Cloud computing [1] has been a hot topic for years. It

provides the service in a pay-as-you-go manner, including

Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS)

and Infrastructure-as-a-Service (IaaS). The seemingly unlim-

ited virtual resources including network, server, operating sys-

tem are dynamically managed by the users without knowing

the details of the platform and implementation.

Cloud storage arises as one important component in cloud

computing. The rapidly developed technologies make it a good

way to supply cost-efficient and reliable storage service. With

the explosion of the data universe, the demands on storage

resources increase exponentially [2], [3], making cloud storage

more important. For example, the images in Facebook reached

260 billion in 2010 [4] and took over 20 petabytes. Also, the
IDC [3] shows that the universe of data will reach 44 zettabytes
by 2020.
Recently, many companies choose to store data in clouds

rather than maintain their own storage platforms [5]. This trend

makes cloud storage market increase fast. Cloud storage ser-

vice providers like Amazon Simple Storage Service (Amazon

S3) [6], Dropbox [7] offer both highly available and reliable

storage at relatively low costs.

Storage clusters, working in the background of cloud storage

systems, act as the physical storage platforms. Openstack [8]

is a set of open-source software helping people create high

performance private or public clouds. Swift [9] is the object-

oriented storage component of Openstack. It provides storage

service for static data such as virtual machine images, photo

storage, email storage, backup and archives.

With the explosive growth of the data volume, to make

data management scalable in cloud computing becomes a

challenge. Moreover, data redundancy has been revealed in

Virtual Machine [10], [11], enterprise [12], [13], [14], [15]

and High-Performance Computing [16], [17]. Cloud storage

systems have to compress the data in order to reduce the cost.

Data deduplication has been demonstrated to be an effective

approach in cloud backup and archival applications to reduce

the backup window, also to improve the storage efficiency and

network bandwidth utilization. It also has shown the ability

to reduce the footprint in the primary storage system. In this

paper, we proposed DedupeSwift to remove the redundant data

chunks stored in Swift.

Swift has an asymmetric structure, in which the proxy server

provides access authorization to the system. On write, the

proxy server mainly forwards the data to the object servers.

On read, the proxy server fetches data from the object servers

and transfers it to the client. The bottleneck is mainly on

network and disk I/O. This is a waste of ever-increasing

computing power. So we bring deduplication to reduce the

storage overhead by utilizing the computing resources.

Because the proxy server just forwards the data without

taking a glance at the contents of the data. It wastes a

lot of space, ignoring duplicate data blocks. Besides data

deduplication, commonly used compression is also combined

with data deduplication. However, the slow decompression can

negatively affect the read performance. So we use lz4hc [18]

to compress the unique data chunks since it has similar

compression rate with zlib [19] but the decompression speed is

several times faster. In addition, we also use the proxy server

as the cache for the data. When reading data from swift, the

cache reduces the retrieves from the object servers.

Our contributions include but not limit the follows.

• Propose and implement an exact deduplication based on

Opentack Swift object-oriented storage system.

• Eliminate the disk bottleneck by introducing the lazy

deduplication method [20].

• Introduce the cache module on the proxy server. With

fast decompression, it improves the read performance.

• Present an asynchronous compression scheme, which

further reduces the storage overhead with almost no

performance penalty.
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The rest of the paper is organized as follows. Section II

gives the related work. To have a better understanding of

the DedupeSwift, an outline of Openstack Swift is shown

in Section III. Section IV depicts how deduplication works

in DedupeSwift. Compression and Caching are illustrated

in Section V. We test the performance of DedupeSwift in

Section VI. Section VII summarizes the paper and suggests

future work.

II. RELATED WORK

Data deduplication has proven its effectiveness in storage

area. It is computationally intensive due to chunking, finger-

printing and compression. When the data size is very large, the

main memory is not able to hold all the fingerprints, so finger-

print identification needs many disk accesses (disk bottleneck).

As a consequence, data deduplication is also I/O intensive.

So researchers improve the deduplication performance either

by accelerating the computational tasks or eliminating the

fingerprint lookup disk bottleneck.

The calculation overhead can be reduced by using

GPU [21], [22] and co-processor [23]. Also, the disk access

is reduced by 99% taking use of the locality existing in the

data streams [24].

Today, SSDs have shown advantages in random read and

sequential operations over HDDs. Many researchers put the

fingerprint index on SSDs to improve the fingerprint lookup

performance. Due to the limited erasure time, the system needs

to avoid random writes. Dedupv1 [25] is designed to take the

advantage of the SSD technology. ChunkStash [26] also uti-

lizes the high random read performance to gain improvement

of fingerprint lookup. It uses Cuckoo Hashing [27] to resolve

the collisions.

Approximate deduplication methods make trade-off be-

tween deduplication factor and throughput. Sparse index-

ing [28], Extreme binning [29] and SiLo [30] are typical ap-

proximate deduplication methods, which fetch the fingerprints

that are the most likely to be identical with the new ones. As

they do not do on disk fingerprint comparison, the throughput

is high.

Single node deduplication systems are usually with limited

performance, so deduplication cluster is proposed to take use

of the parallel computing and I/O resources. The most gain can

be obtained when any chunk can, in principle, be compared

with any other chunk and be omitted if a match is found.

However, such complete matching is harder as the amount of

data and components in a large-scale storage system grow [31].

Partial-index strategy improves scalability. When each node

holds a part of the entire index, how to route the data becomes

the key issue. The locality in the streams again plays an

important rule in the routing algorithms.

Extreme binning [29] routes files according to the minimum

fingerprint of all the chunks in that file. Different versions of

the same file will be likely routed to the same node. Other than

file similarity, the locality is also used combined with stateless

or stateful routing mechanisms at superchunk granularity to

determine which node the chunks should be transferred [32].

Stateless strategy shares nothing and achieves lower space

saving while stateful method needs more CPU, RAM and

bandwidth. Σ-Dedupe [33] inspired by SiLo, uses handprinting
to detect the node with the most potential duplicate chunks.

It is possible to build exact deduplication cluster sharing

the fingerprint index. Clements et al. propose a decentralized

deduplication based on a SAN [11] cluster aiming to reduce

the space footprint of virtual machines. The deduplication runs

out of band to reduce the negative impact on the system. It
achieves 80% space saving with minor performance overhead.

Since all the nodes share the fingerprint index via the SAN

cluster, it achieves exact deduplication. Debar [34] is designed

to use two-phase deduplication scheme exploiting the memory

cache and the locality in data streams. It improves the per-

formance of both single deduplication server and distributed

implementations. Kaiser also presents an exact deduplication

in which all the data is shared via SAN cluster [35]. In that

system, the data chunks are not transferred on the network and

the bandwidth requirements are low.

Although data deduplication brings a lot of benefits, secu-

rity and privacy concerns arise. Traditional encryption, while

providing data confidentiality, is incompatible with data dedu-

plication. Li proposed several new deduplication constructions

supporting authorized deduplication [36]. Also, a new crypto-

graphic method based on the Merkle-based Tree is proposed

to solve the Proof of Ownership (PoW) problem [37].

In this paper, we also implement exact deduplication. In-

stead of storing the metadata on the SAN cluster, we just

use the SSD on the proxy server to accelerate the fingerprint

identification process.

III. ARCHITECTURE OF OPENSTACK SWIFT

A. Logical Structure

There are three levels in Swift to access an object and the

logical relationship of them is shown in Figure 1. Each layer

has its own type of server to control the access. A user needs

an account in order to get access to the objects. Under the

account, the user can create containers and each container is

able to hold unlimited number of objects. Users use a path like

“/account/container/object” to access the corresponding object.

Instead of directly using the path to access the object, swift

first calculates the hash value of the path with md5 algorithm.

Then it searches on the ring with the hash value and determines

which object server stores that object.

The primary job of the account server is to handle the

task of listing containers. It does not keep the positions

of the containers, but the ownership between accounts and

containers. Just like how swift determines the position where

the object is stored, it uses a ring to determine which account

server to connect and get the authorization. Physically, the

ownership information is stored in sqlite [38] database. Also,

there is some statistical information like the total number of

objects, and the usage of the storage space stored.

The container server works like the account server and it is

responsible for listings of objects.
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account

container containercontainer

objects objects objects

Fig. 1: Logical structure of the path.

The object server works like a blob storage server. It stores,

retrieves and deletes objects on local devices. Objects are

stored as binary files and the metadata is stored in the extended

attributes (xattrs). The physical storage path is determined by

hashing the logical path of an object and searching for it on

the ring.

B. Data access

Rings play an important role in swift since the proxy server

determines which node to send the requests and forward the

data by checking them. Each level has their own ring and

all the servers in the same level share the same ring. Figure 2

shows an example of the object ring. A server is mapped to one

positions on the ring. By hashing the node id, it is expected that

different nodes are mapped to different positions and all the

nodes are distributed on the ring evenly. A node covers an area

between it and the next node either clockwise or anticlockwise.

An object is also mapped on the ring within one area (by

hashing its path). The node covering that area will store the

object.

The account ring and container ring work the same way as

the object ring.

object

Fig. 2: Ring.

To keep the reliability of the objects, Swift chooses several

nodes to store one object. It either uses replication or erasure

coding to distribute the data of the object. 3-copies strategy is

chosen to store the objects by default, meaning an object are

stored in 3 different object servers. To improve the reliability,

the chosen nodes usually reside in different zones.

The data stream is shown in Figure 3. The client connects

to the proxy server via http. The proxy server calculates the

hash of the path in the request. According to the hash value,

the proxy server determines which object severs to store the

object. Then the proxy server reorganizes the data (coding or

copying) and forwards it to the nodes.

proxy server

object server object serverobject server

http REST access

authorization 

Fig. 3: Data stream.

IV. DEDUPLICATION

DedupeSwift is implemented based on Openstack Swift.

Therefore, it has the same architecture. In Swift, all the

clients wanting to access the data will communicate with the

proxy server first to get authorization. Also, all the data goes

through the proxy server, which gives the proxy server all the

information to reduce storage overhead by compressing the

data.

A. Exact Deduplication

Figure 4 shows the process of deduplication in Swift.

The original object is segmented into chunks. The chunk-

ing method is configurable. Users can choose fixed-size or

variable-size chunking method and in the variable-size chunk-

ing configurations, the expected size can be adjusted. The

system calculates a cryptographic hash as the fingerprint for

each chunk. In the system, md5 is used as the hash method.

After that, the fingerprint is checked to determine whether the

chunk is unique or not. The unique chunk will be put into

a chunk container. A chunk container is able to held 4096

chunks by default. When a chunk container is full, it is sealed

and compressed to further reduce the storage footprint. Then

the compressed chunk container is stored on disk. During the

process of deduplication, a file recipe is constructed. It consists

of the fingerprints of each chunk in that object.

The main deduplication work is done in the proxy server,

including chunking, fingerprint calculation and fingerprint

identification. After that, chunk containers are sent to the

object servers. File recipes are also sent to the object servers.

The object servers do not care about the contents and treat

each chunk container or each file recipe as an object.
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object

chunk chunk chunk

fingerprint fingerprint fingerprint

container

fingerprint 
lookup

chunking

fingerprinting

storing unique chunks

Fig. 4: Deduplication process.

Figure 5 depicts how the proxy server organize the fin-

gerprints and data chunks. As data deduplication searches

for fingerprints to find redundant chunks, the proxy server

keeps all the fingerprints on its local disk. The size of the

fingerprints is much smaller than that of the chunks. So this

will not consume much space. To accelerate the fingerprint

identification process, the proxy server keeps a fingerprint

cache in the memory. LRU eviction policy is used in the cache.

As we store all the chunk containers in the object servers,

they are regarded as the chunk store in the deduplication

system.

fingerprint 
index

fingerprint 
cache

chunk
cache

chunk store

client

Fig. 5: Proxy server with deduplication.

On read, the proxy server fetches the file recipe of that file.

According to the fingerprints in it, the proxy server retrieves

the chunks and reconstructs the object. As the chunks are

stored in the chunk container, the proxy server reads the entire

container from one object server and find the corresponding

chunk. The rest chunks in that container will be added into

the chunk cache. If the success chunks are found in the cache,

the retrieving time is saved for them.

To keep the reliability of the data. Both chunk containers

and file recipes are stored in 3 different object servers. The
proxy server uses a ring to choose the object servers just as

the original swift does.

One concern is that the system may lose the fingerprint

index if the proxy server fails. However, the system saves

chunk containers on object servers. The chunk containers store

all the fingerprints within the corresponding chunks. Once the

proxy server fails, the system can reconstruct the index from

the containers.

Here, we organize unique chunks into chunk containers. An-

other way is to send a chunk as the basic unit. In that way, the

system does not need to maintain the “fingerprint→container”
index. Because it can determine which object server the chunk

resides just according to the fingerprint of the chunk and

request the object server to see if the chunk has already been

there. However, this approach will introduce the fragmentation

problem and negatively impact the performance. The proxy

server needs to build one connection for each chunk to send

or retrieve it. The overhead for these operations will be huge.

On the object server side, there is small disk I/O, which will

involve many disk accesses and the throughput of the disk can

be very low.

Data deduplication introduces disk I/O to the proxy server

due to fingerprint identification, which negatively affects the

performance. However, swift provides service for large ob-

jects. This kind of applications show sensitiveness on the

throughput rather than the latency. Traditionally, when a

fingerprint is not found in the fingerprint cache, the system

will go and search for it on the disk. This means this search

process only identifies one fingerprint. The lazy method is

based on the observation that several fingerprint lookups need

to read the same disk areas to search for the fingerprints in it

but at different time points. We buffer the fingerprints rather

than search for it immediately.

Figure 6 depicts an example of the lazy method. There

are 3 fingerprints mapped to bucket #1. Normally, the system

issues 3 disk read operations for these 3 fingerprints. Here,

we buffer them until a threshold (3 in the example). Then

the system issues one disk read operation and searches for

all the corresponding buffered fingerprints. By merging the

disk accesses, it largely reduce the disk I/O overhead in data

deduplication.

V. COMPRESSION AND CACHING

Traditionally, the object server only store the objects. It uses

the ring to determine the position where the object should

be stored on the disk. So the disk is busy but the CPU is

always idle. Here we introduce compression to the object

server, which makes use of the idle CPU resource and reduces

the storage overhead. It is possible to compress the container

in the proxy server. However, this will consume the limited

computing resources on the proxy server.

Since we use 3-replica policy, the total data to be com-

pressed is 3 times more. However, there are much more object

servers than proxy server, meaning the total computing power

107310731073107310721072
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disk
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bucket 0 bucket 1 bucket n-1

Fig. 6: Lazy method.

on the object servers is several times higher than that of the

proxy server. Moreover, compressing the data on the proxy

server has to be done as soon as possible to keep the reliability

of the data. On the object server, the data can be compressed

at any time.

We propose an asynchronous compression strategy to com-

press the chunk containers and file recipes. From the view of

the object servers, they are just objects. Figure 7 describes

how the compression works. A compression thread pool and

a queue are constructed. On receiving an object, the object

server first stores the object on the disk, then it will insert

a message in the queue. A compression thread in the pool

can pick messages from the queue. Once it gets a message, it

will read the object and compress it. After compression, the

original object will be replaced by the compressed one. When

reads and writes the objects, the compression threads locks

the object. But when the object is being compressing, it can

be read by other process.

object server

obj

disk
obj

queue

obj

obj obj

obj

obj compression 
threads

Fig. 7: Asynchronous compression in object server.

DedupeSwift uses a chunk cache to improve the read

performance. As the containers are compressed, we divide the

chunk cache into two parts. One is used to cache the chunks

and the other is used to cache the compressed container. Both

of them use LRU eviction policy to replace the items. Due

to compression, the cache can hold much more chunks in the

compressed sub-cache with the same memory size. By default,

the compressed containers take 50% of the total cache space.

Figure 8 shows how the cache works. When a compressed

chunk container is retrieved from the object server, it is first

put in the compressed part. Then the system decompresses

it and puts all the chunks into the uncompressed part. The

compressed container remains in the cache until evicted. So

it is possible that a chunk resides both the uncompressed part

and the compressed part. If the system needs a chunk, it will

search for it in the uncompressed part, then the compressed

part. Only both cache misses happen in these two parts, the

system retrieves the corresponding compressed container from

an object server.

Because the cache does not benefit the write process, the

upper strategy is only used in the read process.

chunk

chunk

chunk

chunk

...

...

...

...

compressed 
container

compressed 
container

...

...

...

...

uncompress

chunks compressed 
containers

compressed 
container

compressed 
container

...

...

compressed 
container

compressed 
container

...

...

compressed 
container

compressed 
container

chunk store

Fig. 8: Chunk Cache.

As the system needs to decompress the data when gets

it from the object server or the compressed part of the

cache, the speed of decompression seriously affects the read

performance. So we choose lz4hc [18] algorithm to compress

the data. It has a very high decompression speed, which

benefits the read performance.

VI. EVALUATION

Table I details the hardware platform used during the tests.

All the nodes are connected via the gigabit switch. Since the

main bottleneck can be the proxy server. We use a much more

powerful node as the proxy server. The fingerprint index is

stored on the SSD to accelerate the fingerprint identification

process.

TABLE I: Platform.

proxy server storage servers and client

CPU 8 × Intel i7 930 @2.80GHz 4 × Intel Xeon @ 3.00GHZ

Disk
Seagate ST2000NM0011 (OS)
OCZ-AGILITY3 (dedupe data)

RAID5 HDD 300GB

Memory 6 × 2G 1GB
OS CentOS release 6.7 2.6.32-573.12.1
Network Gigabit switch

We select 2 data sets in the experiments shown in Table II.

107410741074107410731073



• Vm refers to pre-made virtual machine disk images from

VMware’s Virtual Appliance Marketplace [39], which is

used by Jin [10] to explore the effectiveness of dedupli-

cation on virtual machine disk images.

• Kernel refers to Linux kernel source files [40]. It is widely
used in deduplication systems. We choose the versions

from 3.9 to 4.5 in the tests.

TABLE II: Data sets.

total size file number

Vm 168.42GB 621
Kernel 174.40GB 359

As swift is designed to store large objects, we compact

each version of the kernel source code into a file by reading

out all the data and appending the index information at last.

During the tests, each file is regarded as an object, meaning

an uploaded/download operation uploads/downloads the entire

file. For the Vm data set, each image file is regarded as an

object since the file size is large enough.

We implement DedupeSwift based on Openstack Swift

2.2.2. MD5 is chosen as the fingerprint of each chunk. We

use CDC chunking method with 8KB target size on Kernel.
During the chunking process, Rabin fingerprint are calculated

as the hash value in the sliding window. Since it has been

proven in Jin’s paper that fixed-size chunking method even

has a better deduplication factor than variable-size chunking

approach for virtual machine images, we use 4KB fixed-size

chunking method for the Vm data set. One chunk container

is able to hold 4096 chunks. The fingerprint cache has the

capacity to cache 32 × 220 fingerprints and the chunk cache
is set to 8GB.

Python-swiftclient [41] acts as the client to upload and

downloads the objects. The client uploads all the files to

DedupeSwift then downloads the first 100 files. The tests

are focused on the space saving, read performance and write

performance.

To eliminate the impact of the cache in the file system,

we take the experiments bypass the file system, meaning the

proxy server directly read the index from the disk to check

the fingerprints.

A. Space Saving

In the system, both deduplication and compression are

introduced to reduce the space overhead. Table III reveals how

much space saved by each of them separately and also the

total space savings combing them. Deduplication alone saves

41.38% and 70.16% of the total space for Vm and Kernel.

Compression also can reduce over half of the space overhead.

Together, they can reduce 65.24% and 89.84% of the total

space. As deduplication generates file recipes, the total space

saving is not the product of these two factors. Moreover, since

both compression and deduplication reduce the data size by

replacing redundant data blocks, there are overlaps between

them. This also affects the compression ratio.

Vm does not have as many redundant chunks as Kernel.

Also, it has worse compression ratio. So applying data dedu-

plication and compression on it does not get as much space

saving as on Kernel. Another reason is it has smaller chunk

size, making the file recipes larger than that of Kernel.

TABLE III: Space savings.

deduplication alone compression alone together

Vm 41.38% 64.58% 65.24%
Kernel 70.16% 73.80% 89.84%

B. Asynchronous Compression

To show how the asynchronous compression improves

the performance, we test the write performance comparing

synchronous compression approaches with the asynchronous

strategy. Table IV illustrates the results. “Synchronous proxy”

means the chunk containers and file recipes are compressed

synchronously on the proxy server and “synchronous ob-

ject” indicates compression happens synchronously on the

object servers. “Asynchronous” is the proposed asynchronous

compression which compresses the chunk containers asyn-

chronously on the object servers. Since the proxy server

has a higher compression performance, it shows a higher

throughput when do synchronous compression. However, it

is still slower than the asynchronous compression. Therefore,

moving compression to the background effectively reduce the

impact of the compression on the write performance.

The system works better on Kernel since it has lager chunk

size and the fingerprint identification deals data in a larger

granularity. So the fingerprint identification shows smaller

effect on the performance.

TABLE IV: Write performance with different compression

approaches (MB/s).

synchronous proxy synchronous object asynchronous

Vm 8.91 7.89 10.54
Kernel 17.91 15.79 25.51

C. Advantage of lz4hc

To reveal how lz4hc outperforms other compression algo-

rithm in the system. We compare it with the commonly used

zlib compression method. A file from each data set is randomly

picked out and compressed. The compression algorithms are

directly applied on the raw data without deduplication.

Table V gives the compression/decompression speed and the

compression rate
(

compressed size
original size

)
. According to the results,

lz4hc and zlib have similar compression rate and compression

speed. However, the decompression speed of lz4hc is over 5.5
times faster on the proxy server and over 3.4 times faster on the
object server than that of zlib. The extreme fast decompression

speed benefits the read process.

107510751075107510741074



TABLE V: Compression/decompression performance on dif-

ferent nodes.

com. speed (MB/s) decom. speed (MB/s)
com. rate

proxy storage proxy storage

Vm
zlib 19.48 9.65 220.49 132.90 32.56%
lz4hc 24.31 11.82 1654.73 527.71 37.59%

Kernel
zlib 23.73 11.52 241.17 142.48 21.14%
lz4hc 27.26 12.64 1331.49 486.61 24.82%

D. Cache and Read
Fragmentation is the natural character of data deduplication.

So, this will seriously affect the performance. Here, we depict

how the cache and compression together improve the read

performance of data deduplication. When needing a chunk, the

system checks if it is in the uncompressed part of the cache.

On cache miss, the system searches for it in the compressed

part of the cache. If the chunk does not exist in the cache, the

corresponding chunk container is retrieved and all the chunks

in it are inserted into the uncompressed part of the cache while

the compressed container itself is added in the compressed part

of the cache.
To reveal how the cache help improve the read performance,

we give the cache hit rate in Table VI. From the table, we find

the cache is really effective since around 99% chunks will be

gotten from the cache. The high cache hit rate is due to the

spatial locality in the data stream. When one chunk is read,

the adjacent chunks will be read with high probability and the

adjacent chunks usually stored in the same chunk container.

The high cache hit rate saves a large amount of retrieves from

the object servers.

TABLE VI: Cache hit rate.

hit uncom. hit com.

Vm 99.88% 0.07%
Kernel 98.33% 0.94%

In order to show the advantage of lz4hc compression

algorithm, we also use zlib to compress the data and read it

out from the server. Table VII shows the results. As the cache

hit rate of Vm is really high, we do not see much difference

on read performance between the two methods, but lz4hc still

outperforms zlib. For kernel, as the cache hit rate is lower,

more data needs to be fetched from the object servers or the

compressed cache. The advantage is larger.

TABLE VII: Read Performance with different compression

algorithms (MB/s).

lz4hc. zlib.

Vm 24.65 23.35
Kernel 11.44 9.39

E. Summary
Here we summarize the overall performance and space

saving in Table VIII. DedupeSwift is able to save 65.24%

and 89.84% space overhead on Vm and Kernel respectively.

The write and read performance is not so high because the

tasks introduced by deduplication and compression in the IO

path. However, taking space savings into consideration, the

performance is still favorable.

TABLE VIII: Summary.

read (MB/s) write (MB/s) space saving

Vm 24.65 10.54 65.24%
Kernel 11.44 25.51 89.84%

VII. CONCLUDING REMARKS

In this paper, we propose an object-oriented storage system

based on data deduplication. It efficiently reduces the storage

overhead by eliminating redundant data chunks. On the two

data sets, the storage footprint can be reduced by 65.24% and

89.48%.

By carefully choosing the compression algorithm and intro-

ducing cache into the proxy server. The spatial locality of

the data streams is utilized and the read performance gets

improved.

The read and write performance is still not as good as the

original Openstack Swift. Because data deduplication brings

overheads like chunking, fingerprint calculation, fingerprint

identification and compression. Also, the fragmentation prob-

lems seriously affects the read performance. More works can

be done to reduce these overheads.
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