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Abstract—Some statistical and machine learning methods
have been proposed to build hard drive prediction models based
on the SMART attributes, and have achieved good prediction
performance. However, these models were not evaluated in the
way as they are used in real-world data centers. Moreover, the
hard drives deteriorate gradually, but these models can not
describe this gradual change precisely.

This paper proposes new hard drive failure prediction mod-
els based on Classification and Regression Trees, which perform
better in prediction performance as well as stability and
interpretability compared with the state-of the-art model, the
Backpropagation artificial neural network model. Experiments
demonstrate that the Classification Tree (CT) model predicts
over 95% of failures at a false alarm rate (FAR) under 0.1%
on a real-world dataset containing 25,792 drives. Aiming at
the practical application of prediction models, we test them
with different drive families, with fewer number of drives,
and with different model updating strategies. The CT model
still shows steady and good performance. We propose a health
degree model based on Regression Tree (RT) as well, which
can give the drive a health assessment rather than a simple
classification result. Therefore, the approach can deal with
warnings raised by the prediction model in order of their health
degrees. We implement a reliability model for RAID-6 systems
with proactive fault tolerance and show that our CT model can
significantly improve the reliability and/or reduce construction
and maintenance cost of large-scale storage systems.

Keywords-Hard drive failure prediction; SMART; CART;
Health degree

I. INTRODUCTION

Storage systems are growing larger quickly with the
rapid development of information technology. Although hard
drives are reliable in general, they are believed to be the
most commonly replaced hardware components [1], [2]. It
is reported that 78% of all hardware replacements were for
hard drives in the data centers of Microsoft [1]. Moveover,
with the increase of single drive and whole system capacity,
block and sector level failures, such as latent sector errors [3]
and silent data corruption [4], can not be ignored anymore.
For instance, in RAID-5 systems, one drive failure with any
other sector error will result in data loss, which may be a
disaster to data centers.

A lot of researchers focus on designing erasure codes to
improve storage system reliability. This is a typical reactive
fault-tolerant technique which is used to reconstruct data

when drive failure occurs. By contrast, predicting drive
failures before they actually occur can inform us to take
actions in advance. At present, Self-Monitoring, Analysis
and Reporting Technology (SMART) is implemented inside
most of the modern hard drives [5]. However, as reported
in [6], this can not reach a desirable prediction performance.
To improve failure prediction accuracy, some statistical and
machine learning methods have been proposed to build
prediction models based on the SMART attributes [6], [7],
[8], [9], [10], [11], [12], [13]. Although these methods have
reached good prediction performance, there are some prob-
lems with them. Firstly, the models are black boxes, such as
the artificial neural networks. Therefore, they do not perform
well on interpretability as well as stable performance, and
it is hard to adjust their prediction performance. Secondly,
the prediction models were not evaluated in the way they
are used in real-world data centers. Thirdly, they do not
pay attention to the changing process of a drive’s SMART
attributes during its deterioration. They can not rate a drive’s
health degree nicely, but merely label it to good or failed.

In this paper, we explore building hard drive failure
prediction models based on classification and regression
trees (also referred to as decision trees), which have high
accuracy, ease of interpretability, and stable performance.
On a dataset coming from a real-world data center, our
Classification Tree (CT) model can predict over 95% of
failures at a false alarm rate (FAR) below 0.1%, which
outperforms the state-of the-art model, the Backpropagation
artificial neural networks (BP ANN) model. We simulate the
practical use of our model in real-world data centers - being
used with different drive families, being used in small-scale
data centers, and being updated periodically. Our model still
performs well. Besides the CT binary classifier model, we
also present a Regression Tree (RT) model to evaluate the
health degree (or fault probability). As a result, deploying the
RT model in a storage system, we can deal with warnings in
order of their health degrees to reduce processing overhead.
We develop a Markov model for RAID-6 systems to evaluate
how our prediction models benefit the reliability of large-
scale systems. Reliability analysis shows that our CT model
can significantly improve reliability and/or reduce cost.

The rest of the paper is organized as follows: In Section II,



we survey related work of hard drive failure prediction using
SMART attributes. Section III is the introduction of our
modeling methodologies for failure prediction. Section IV
gives a description of our dataset and the preprocessing
of this dataset for building models. We present the experi-
mental results in Section V. In Section VI, we discuss the
improvement of reliability if our prediction models are used,
followed by conclusions and future work in Section VII.

II. RELATED WORK

SMART is a standard hard disk drive condition mon-
itoring and failure warning technology in industry since
1995 [8]. However, hard drive manufacturers estimate that
the threshold-based algorithm implemented in drives can
only obtain a failure detection rate (FDR) of 3−10% with a
low false alarm rate on the order of 0.1% [6]. The reason is
that, to avoid heavy false alarm cost, they set the thresholds
conservatively to keep the FAR to a minimum at the expense
of failure detection rate.

Hamerly and Elkan [7] employed two Bayesian approach-
es to predict hard drive failures based on SMART attributes.
Firstly, they used a cluster-based model named NBEM. The
second approach was a supervised naive Bayes classifier.
Both algorithms were tested on a dataset from Quantum
Inc. concerning 1,927 good hard drives and 9 failed drives.
They achieved prediction accuracy of 35−40% for NBEM
and 55% for naive Bayes classifier with about 1% FAR.

Hughes et al. [8] proposed two statistical methods to
improve SMART prediction accuracy. Since they found
that many of the SMART attributes are non-parametrically
distributed, this observation led them to use Wilcoxon rank-
sum test. They proposed two different strategies: multivariate
rank-sum test and OR-ed single variate test. Both methods
were tested on 3,744 drives containing two different models
of which only 36 drives were failed. They achieved failure
detection rate of 60% at 0.5% false alarm rate.

Murray et al. [9] compared the performance of SVM,
unsupervised clustering, and two non-parametric statistical
tests (rank-sum and reverse arrangements test). Dataset was
collected from 369 hard drives of the same model of which
good and failed drives are about half and half. Surprisingly,
they found that the rank-sum method achieved the best
prediction performance (33.2% detection rate at 0.5% FAR).
In their subsequent work [6], a new algorithm based on
the multiple-instance learning framework and the naive
Bayesian classifier (named mi-NB) was developed. They
found that, on the same dataset as [9], the nonparametric
rank-sum test outperformed SVM for certain small set of
SMART attributes (28.1% failure detection at 0% FAR).
When all selected 25 features were used, SVM achieved
the best performance of 50.6% detection and 0% FAR.

Zhao et al. [10] employed Hidden Markov Models (H-
MMs) and Hidden Semi-Markov Models (HSMMs) to pre-
dict hard drive failures. They treated the observed SMART

attributes as time series data. Experimental results (on the
same dataset as that used in [9], [6]) showed that these
methods outperformed other methods that paid no attention
to the relationship of attribute values over time. Using
the best single attribute, the HMM and HSMM models
achieved detection rates of 46% and 30% with no false
alarm, respectively. When combining the best two attributes,
the HMM model reached a FDR of 52% at 0% FAR.

Wang et al. [12] proposed a strategy for drive anomaly
prediction based on Mahalanobis distance (MD). Testing on
the same dataset used in [9], they demonstrated that the
method with prioritized attributes selected by FMMEA (Fail-
ure Modes, Mechanisms and Effects Analysis) performed
better than the one with all attributes. In their subsequent
study [13], the minimum redundancy maximum relevance
(mRMR) was used to remove the redundant attributes from
the attribute set selected by FMMEA. Then, they built up
a baseline Mahalanobis space using the good drive data of
the critical parameters. This model could detect about 67%
of the failed drives with zero FAR. 56% of the failed drives
could be detected about 20 hours in advance.

The prediction performance of models mentioned above is
unsatisfactory. One possible reason is that the datasets used
by them are relatively small, which do not contain enough
SMART information to build effective prediction models.
The dataset provided by Murray et al. [9] is used in several
literatures. However, it contains 369 drives of which good
and failed are about half and half. This is not conformed
with the case in real-world data centers. Moreover, it was
collected before 2003. The SMART information format is
not consistent with the current SMART standard. These
factors undermine the practicability of models.

In our previous work [11], we explored the ability of
Backpropagation artificial neural networks to predict drive
failures based on SMART attributes. A real-world dataset
concerning 23,395 drives was used to evaluate prediction
models. We proposed several training and detection strate-
gies to improve prediction accuracy. The BP ANN model
could reach a excellent failure detection rate which was
up to 95% while with a reasonable low FAR. However,
this model does not perform well on performance stability
as well as interpretability. Moreover, it is hard to adjust
prediction performance.

In this paper, we hope to improve the prediction per-
formance by employing decision trees which have good
interpretability and stable performance, and evaluate them
on a large real-world dataset.

III. CLASSIFICATION AND REGRESSION TREE MODELS

As mentioned in the last section, the approaches explored
in previous researches do not provide an understanding of
events which explain the decision given by them. In this
paper, we explore the ability of classification and regression



trees [14] to predict hard drive failure based on SMART at-
tributes. Besides high prediction accuracy, they have crucial
advantages of yielding stable interpretable results. Users can
find out the significant attributes inducing drive failure by
analyzing the output regulations of the tree.

A. Classification Tree Model
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Figure 1. A simplified classification tree for hard drive failure prediction.
“POH” denotes the SMART attribute “Power On Hours”, “RUE” denotes
“Reported Uncorrectable Errors”, “TC” denotes “Temperature Celsius”,
“SUT” denotes “Spin Up Time” and “SER” denotes “Seek Error Rate”.

Figure 1 is a simplified classification tree for hard drive
failure prediction. It starts with a single root (node 1) which
contains all of the data denoted by the percentage 100%
at the bottom of the node. The fractions of 0.05 and 0.95
represent the probability distributions of the failed and good
samples at that node, respectively. The root node is labeled
as good (denoted by a white node) with the majority vote of
the data contained at it. This node is split based on the value
of a SMART attribute “Power On Hours”. If the value is less
than 90, those samples are put in the first terminal node or
called leaf node, denoted by node 2, which contains only
one class or do not have enough data to be split. Node 2
contains 3% of all samples of which failed samples make up
100%, and it is labeled as failed denoted by a shaded node.
The remain 97% of all samples, whose value of “Power On
Hours” is equal or greater than 90, are placed in node 3
labeled as good for good samples making up 98%. Node 3
continues to be split into two child nodes based on the value
of “Reported Uncorrectable Errors”. The process continues
until there are no more nodes which can be split. Each leaf
node is labeled with the majority class of the samples at it.

We use the Information Gain as the splitting function in
our models. The split procedure searches through all values
of the input SMART attributes to find out the best partition
variable which maximizes the gain in information. For a
binary target, assuming node D is split into child nodes

D1 and D2 based on feature (SMART attribute) vi, We can
calculate the Information Gain for this split as

gain(D,vi) = in f o(D)− in f o(D,vi) (1)

where in f o(D) is the information entropy at node D, and
in f o(D,vi) is the sum of information entropy of child nodes
after this split. The information entropy is calculated as

in f o(D) =−plog2(p)−qlog2(q) (2)

where p, q are constrained by p+ q = 1, denoting proba-
bility distributions of the two classes samples at node D,
respectively. The sum of information entropy of child nodes
is calculated as

in f o(D,vi) =
|D1|
|D|

in f o(D1)+
|D2|
|D|

in f o(D2) (3)

where |D| denotes the total number of samples contained
at node D. We can learn from formula (2) that the entropy
reaches its maximum value 1 when the probability distri-
bution is uniform to 0.5, and reaches its minimum value 0
when p = 1 or p = 0. The concept of information entropy
implies how bias the dataset is in relation to the value
of the target. If the dataset contains samples belonging to
only one class, then there is zero entropy which means no
further split needed. Hence, a larger bias in the distribution
generates a smaller entropy. At each step of tree building,
the CT algorithm calculates the information gain for each
possible split, and then chooses the split which provides
the greatest information gain. Therefore we can increase the
homogeneity of each class of the samples in relation to the
target value every step.

The classification tree is fully grown by recursive par-
titioning approach, until the node does not satisfy the
split conditions or contains only one class. Minimum Split
(Minsplit) and Minimum Bucket Size (Minbucket) [15] are
used to control node split. Minsplit limits the minimum
number of samples that must exist at a node before it
is considered for splitting. Minbucket limits the minimum
number of samples at any leaf node. A complete tree will
be built to maximum depth depending on the values of
Minsplit and Minbucket, which can overfit the training data
and then not perform very well on new data. We can avoid
the overfitting by pruning. Subbranches with low overall
information gain will be pruned back from the grown tree,
thereby the classification tree is simplified. So there are two
steps in the CT algorithm for training prediction models. The
first step is to build a full classification tree on the training
set. The second is to prune back some subbranches with low
gain in order to avoid overfitting. We can use the Complexity
Parameter (CP) to control the size of the tree and to select
an optimal size by controlling the process of pruning. The
CP governs the minimum gain that must be obtained at
each split of the classification tree in order to make a split



worthwhile. The detailed CT algorithm for training drive
failure prediction models is shown in Algorithm 1.

We build classification and regression tree models using
SMART attributes and their change rates as input vectors
together with the target values representing good or failed
drives. To separate good and failed drives effectively, we also
propose some training strategies. We change the probability
distributions of the good and failed samples by adjusting
their weights, which impacts the prediction performance
dramatically. To reduce false alarms, we can weight the two
kinds of errors (false alarms and miss detections), which will
affect the choice of variable on which to split the dataset at
each node. We use loss weight to denote the unwelcome
degree of the error.

Algorithm 1 CT algorithm for training prediction models
Input: Training data (composed of SMART attributes, at-

tribute change rates and target values), split conditions
(Minsplit, Minbucket), and pruning parameter (CP)

Output: CT model for drive failure prediction
1: Begin
2: create root node T which contains all the data
3: label T with the majority vote of the data at it
4: push T onto a stack S
5: while S is not empty do
6: pop the top element from S and store it to D
7: if D does not satisfy the split conditions then
8: set D as a leaf node
9: else

10: for each possible split based on vi at D do
11: calculate gain(D,vi) using Formula (1), (2)

and (3)
12: end for
13: select the split maximizing gain(D,vi)
14: split D into child nodes D1 and D2 based on vi
15: label nodes D1, D2 and push them onto S
16: end if
17: end while
18: for each node P in the tree do
19: if the gain induced by P’s split is less than CP then
20: prune back the entire sub-tree rooted at P
21: end if
22: end for
23: End

B. Regression Tree Model

The prediction models explored by previous works, in-
cluding the classification tree model presented in the last
subsection, are all binary classifiers. When we train a model,
we label each sample as good or failed. When we test a
sample, the model also simply outputs a binary classification
result. This result cannot describe the drive’s health condi-
tion finely. As a result, although those models can achieve

satisfactory prediction performance, they can only deal with
accurate predictions and false alarms indiscriminately. This
will induce heavy processing cost. In fact, drives do not
deteriorate suddenly, but gradually. Our idea is a mechanism
that can deal with drives closer to failure more priority than
those more healthy. Therefore, a prediction model that can
evaluate drives’ healthy finely is essential.

We build a Regression Tree (RT) model to evaluate drives’
health degree. In the RT model, each test has a quantitative
target value describing the drive’s health degree rather than a
class label indicating good or failed. The training algorithm
is mostly similar with the CT training algorithm. In order to
find the best split, the algorithm checks all possible splitting
attributions, as well as all possible values of the attribution
to be used to split the node. However, the measure of the
best split is the minimum of squares instead of the greatest
gain in information. For each possible split, the algorithm
calculates the within-node sum of squares about the mean
of each child node on the target variable. We choose the
best split that yields the smallest overall sum of squares
within the child nodes. The sum of squares within a node
is calculated as

sq =
n

∑
i=1

(yi−Y )2 (4)

where n is the number of samples at this node, yi is the
target variable of the i− th sample, and Y is the mean of
the n samples on the target variable. The detailed algorithm
for training RT prediction model is shown in Algorithm 2.

The important difference between the CT and RT algo-
rithms is how to set target values. In the CT algorithm, the
target value of every good sample is set to 1 and that of every
failed sample is set to −1. In the RT algorithm, the target
values of good samples remain the same which represent
their absolute health. For each failed sample, we set its target
value to a real value representing its health degree. A simple
function to determine the health degree of the failed sample
i hours before failure is as:

h(i) =−1+
i
w

(5)

where w denotes the size of the global deterioration window.
That is, we think all samples w hours before failure represent
a borderline condition between good and failed, and drives
deteriorated gradually after that. As such, all of the failed
sample i hours before failure have the same health degree.
However, this function does not perform very well. We de-
velop another function based on personalized deterioration
window to generate the input for Algorithm 2:

hd(i) =−1+
i

wd
(6)

where wd denotes the size of drive d’s deterioration window.
We set wd to the time in advance of d which can be
obtained by building a prediction model, such as a CT



Algorithm 2 RT algorithm for training prediction models
Input: Training data (composed of SMART attributes, at-

tribute change rates and target values), split conditions
(Minsplit, Minbucket), and pruning parameter (CP)

Output: RT model for drive failure prediction
1: Begin
2: create root node T which contains all the data
3: label T with the mean of health degree
4: push T onto a stack S
5: while S is not empty do
6: pop the top element from S and store it to D
7: if D does not satisfy the split conditions then
8: set D as a leaf node
9: else

10: for each possible split at D do
11: calculate the sum of squares sq j for each

child node D j using Formula (4), j = 1,2
12: calculate the sum sq = sq1 + sq2
13: end for
14: select the split minimizing sq
15: split D into child nodes D1,D2
16: label D1,D2 and push them onto S
17: end if
18: end while
19: for each node P in the tree do
20: if the sq induced by P’s split is less than CP then
21: prune back the entire sub-tree rooted at P
22: end if
23: end for
24: End

model, using the training set, and then applying it to d. Since
personalized deterioration window distinguishes different
individual drives’ deterioration process more precisely, this
method achieves better prediction performance than the
method based on global deterioration window.

IV. DATASET DESCRIPTION AND PREPROCESSING

A. Data Collection

Our dataset is collected from a real-world data center, and
contains two drive families represented by “W” and “Q”.
There is a total of 25,792 drives in the dataset, labeled good
or failed. Table I lists the details of our dataset. During a
period of eight weeks, each good drive was sampled every
hour. Some samples were missed because of sampling or
storing errors. For failed drives, samples in a period of 20
days before actual failure were recorded. Some failed drives
might lose some samples if they had not survived 20 days
of operation since we began to collect data.

For every drive, we can read out 23 meaningful attributes
from a SMART record. However, some attributes are useless
for failure prediction because their values are the same for
good and failed drives and are changeless during operation.

Table I
DATASET DETAILS.

Family Class Disks Period Samples
“W” Good 22,790 56 days 30,631,028
“W” Failed 434 20 days 158,190
“Q” Good 2,441 56 days 3,155,735
“Q” Failed 127 20 days 40,017

Table II
PRELIMINARY SELECTED SMART ATTRIBUTES (BASIC FEATURES).

ID # Attribute Name
1 Raw Read Error Rate
2 Spin Up Time
3 Reallocated Sectors Count
4 Seek Error Rate
5 Power On Hours
6 Reported Uncorrectable Errors
7 High Fly Writes
8 Temperature Celsius
9 Hardware ECC Recovered
10 Current Pending Sector Count
11 Reallocated Sectors Count (raw value)
12 Current Pending Sector Count (raw value)

So we filter out them and use only ten attributes to build our
prediction models. Each SMART attribute has a six-byte raw
value and a one-byte normalized value ranging from 1-253
which is transformed from the raw value [5]. The formats
of the raw values are vendor-specific and not specified by
any standard. Since some normalized values lose accuracy
and their corresponding raw values are more sensitive to the
health condition of drives, we select two raw values besides
the ten normalized values to build our models. Table II lists
the preliminarily selected features (called basic features).

B. Feature Selection Using Statistical Methods

We found that in our dataset the SMART attributes
are non-parametrically distributed, which agrees with the
observations in previous works [6], [8]. So we use three non-
parametric statistical methods - reverse arrangement test,
rank-sum test and z-scores [6] - to select features.

We first apply three non-parametric statistical methods
to the basic features. By testing these features and some
of their combinations, ten of them are selected for model
building. The tenth feature “Current Pending Sector Count”
and the twelfth feature the raw value of “Current Pending
Sector Count” are excluded. We also test the change rates of
SMART attributes. However, unlike [11], for every attribute,
we test change rates with different intervals and finally
select three of them as features - the 6-hour change rates of
“Raw Read Error Rate”, “Hardware ECC Recovered” and
“Reallocated Sectors Count (raw value)”.

As a result, each sample used in model training and
failure detection has 13 features including 9 normalized



values, 1 raw value and 3 change rates. Section V shows
that the features selected by statistical methods yields better
prediction performance compared to the features selected by
expertise [11].

V. EXPERIMENTAL RESULTS

The experimental results in our previous work [11] show
the advantage of the Backpropagation artificial neural net-
work model in prediction performance over the other previ-
ous models. Meanwhile, the AdaBoost method [11] does not
provide significant performance improvement and is much
more computationally expensive. So, when we evaluate our
classification and regression tree models, the plain BP ANN
model is served as the control group. It has been reported
by many studies [1], [2], [3], [16] that hard drive models,
manufacturers and other environment factors can influence
the statistical behavior of failures. To eliminate the impact
of these factors, the SMART dataset is separated by drive
model when building and evaluating our models.

A. Evaluating Classification Tree Model

1) Experimental Setup: When we evaluate our classifica-
tion tree model, we use only “W” drive family and good
samples collected within a single week. To evaluate the
model more practically, we divide the dataset into training
and test sets according to time rather than randomly. For
each good drive, we take the earlier 70% of the samples
within the week as training data, and the later 30% as test
data. Since failed drives are much less than good drives
and the chronological order of them was not recorded, we
use all failed drives and divide them randomly into training
and test sets in a 7 to 3 ratio. We randomly choose 3
samples per good drive in the training set as good samples
to train models. By this way, we can eliminate the bias
of a single drive’s sample in a particular hour and provide
enough information to describe the health condition of the
drive. Like [11], we take out the failed sample within a time
window, that is, the last n hours before the failure actually
occurs, to train models, based on the assumption that the
last n samples could demonstrate the failed signature. We
test n= 12,24,48,96,168,240. In the following experiments
except for Section V-B3, we divide the dataset into training
and test sets in the same way.

The Receiver Operating Characteristic (ROC) curve is
used for presenting the prediction performance of our mod-
els. For drive failure prediction problem, the ROC curve
indicates the trade-off between the failure detection rate
(FDR) and the false alarm rate (FAR). FDR means the
fraction of failed drives that are correctly classified as failed.
FAR is defined as the fraction of good drives that are
incorrectly classified as failed. We can trade off between
them by tuning algorithm parameters. Another important
metric of drive failure prediction is the time in advance

(TIA) which describes how long in advance we can detect
the impending failures.

2) Feature Selection: As mentioned in the last section,
we select 13 critical features including 10 SMART attributes
and 3 change rates. To verify the effectiveness of statistically
selected features, we apply BP artificial neural network [11]
and classification tree models to three different feature sets.
They are the 12 basic features detailed in Table II, the 13
critical features selected by statistical methods, and the 19
features selected by expertise [11]. In this experiment, we
set the failed time window to 12 hours [11]. That is, the
samples collected within last 12 hours before failure are used
as failed samples. For the BP ANN model based on 19-
features, the input, hidden and output layers contain 19, 30,
and 1 nodes respectively. For the 13-features set, the three
layers have 13, 13 and 1 nodes respectively. For the 12-
features set, they have 12, 20 and 1 nodes respectively. The
maximum number of iterations is set to 400 and the learning
rate is set to 0.1. Some important CT parameters are set
as follows: MinimumSplit = 20, MinimumBucketSize = 7,
ComplexityParameter = 0.001. Unless otherwise stated, we
keep these settings in the following experiments. When we
detect a drive, we check its sample in chronological order,
and predict the drive is going to breakdown if any sample
is classified as failed. Otherwise, the drive is classified as a
good drive.

Table III shows the results. The feature set selected by
the statistical methods outperforms other two feature sets
in prediction performance with both prediction models.
Therefore, we use it in the following experiments.

Table III
EFFECTIVENESS OF THREE DIFFERENT FEATURE SETS

Model Dataset FAR (%) FDR (%) TIA (hours)

BP ANN
12 features 0.44 89.47 347.7
19 features 0.25 90.23 345.5
13 features 0.20 90.98 342.5

CT
12 features 0.57 95.49 352.4
19 features 0.63 94.74 351.4
13 features 0.56 95.49 351.4

3) Evaluating CT Model: To separate good and failed
drives effectively, we modify the probability distributions of
the good and failed samples in training set to affect node
splitting when building tree. We boost the failed sample set
by giving it a higher weight, which adjusts the failed sample
set to occupy 20% of the total and the good sample set
to occupy 80%. In addition, due to good drives being the
absolute majority in reality, a high FAR implies too many
false alarms and results in heavy processing cost. To lower
FAR, the loss weight specified for FAR is 10 times higher
than that for FDR, which will affect the choice of variable
on which to split the dataset at each node.

We test the impact of time window on the prediction
performance of the CT model. Six different time windows



are respectively used to train CT models while keeping good
training samples fixed. The results are illustrated in Table IV.
As expected, adjusting the time window provides a coarse
way to trade off between FDR and FAR. When the time
windows is set to 168 hours (i.e. 7 days), the CT model
obtains the best performance with a FDR of 95.49% at the
FAR of 0.09%. Certainly, users can use other time windows
to obtain higher FDR at the expense of FAR. In the following
experiments in this paper, we use the same time window and
probability distribution settings to train CT models and use
a 12 hours time window to train BP ANN models.

Table IV
IMPACT OF TIME WINDOW ON CT MODEL.

Time Window FAR (%) FDR (%) TIA (hours)
12 hours 0.31 93.98 354.4
24 hours 0.33 93.98 355.3
48 hours 0.39 95.49 350.6
96 hours 0.21 96.24 351.7
168 hours 0.09 95.49 354.6
240 hours 0.11 93.23 361.4

Since an abnormal sample can not give the confident
information of the fault drive due to the measurement noise,
it is not appropriate to predict that a drive is going to
fail if only one sample of it is classified as failed by the
model. We apply the voting-based detection algorithm [11]
to our CT model. When detecting a drive, we check the
last N consecutive samples (voters) before a time point, and
predict the drive is going to fail if more than N/2 samples
are classified as failed, and the next time point is tested
otherwise. If all time points pass, the drive is classified
as a good drive. Figure 2 shows the prediction results of
CT and BP ANN models using the voting-based failure
detection algorithm. We can see that, as N increases, the
FAR of the CT model drops quickly while its FDR decreases
slowly. When 27 voters are counted, the CT model predicts
over 93% failures at a FAR of 0.009%. Even at the end
(left) of the curve, the FAR of the CT model continues
dropping. The BP ANN model is inferior to the CT model
both in FDR and FAR. Moreover, when N exceeds 5, its
FDR drops sharply while its FAR decreases slowly. We can
conclude that, compared to the BP ANN model, our CT
model achieves both higher failure detection rate and lower
false alarm rate, and also can reach a very low false alarm
rate while maintaining a high detection rate.

Besides prediction accuracy, providing sufficient time
(measured by TIA) to users for backing up or migrating
data, is also important. For correct predictions, Figure 3 and
Figure 4 show the distribution of hours in advance, respec-
tively plotted for BP ANN at the point 84.21% detection
and 0.07% false alarms and for CT at 93.23% detection and
0.009% false alarms. In both models, almost all of correct
detections are predicted 24 hours before failure, which is the
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Figure 2. Impact of voting-based detection method on prediction perfor-
mance. The points on each curve are obtained by the number of voters
N = 1,3,5,7,9,11,15,17, and 27 from right to left.

goal hard drive manufacturers want SMART technology to
achieve. And both model achieve an average TIA over two
weeks, which is sufficient for backing up data before the
failure actually occurs. For other points in Figure 2, their
TIA distributions are similar to those showed in Figure 3
and 4. We can conclude that the CT model achieves very
good TIA as well as prediction accuracy.
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Figure 3. Distribution of time in advance of BP ANN model.
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B. Simulating Practical Use

We evaluate the CT and BP neural network models by
simulating their application in real-world data centers - being
used with different drive families, being used in small-scale
data centers, and being updated periodically.

1) Evaluating with Different Drive Family: Different
families of drives have different characteristics which may
impact their reliability, even if they are made by the same
manufacturers. Thereby, effectiveness with different drive
families is an important metric of prediction models. Howev-
er, previous works paid little attention to this partly because
of the lack of appropriate datasets. We test the CT and BP
ANN models with the dataset of drive family “Q”, which
has a much smaller volume than that of “W” dataset (see
Table I). The prediction results are showed in Figure 5. The
failure detection rate of CT model is varying from 100%
to 93.5% with the increase of the number of voters N,
meanwhile the false alarm rate is varying from 0.82% to
0.16%. And the average hours in advance is about 290∼ 300
hours. The prediction accuracy is not as good as that on
family “W”, in part because the “Q” dataset contains much
less drives. However, the prediction performance is still
acceptable for practical use. The BP ANN model obtains a
much lower prediction accuracy than that on family “W”. As
a result, the performance gap between it and the CT model
has remarkably widened. We are certain that our CT model
is more stable in prediction performance with different drive
families compared to the BP ANN model.

The experiment results on the two datasets illustrate the
advantage of CT model in interpretability. By analyzing the
trees, we can find out the significant attributes inducing
“W” drives’ failures are long power on hours “POH”, high
temperature or much reported uncorrectable errors “RUE”.
As for “Q” drives, the most common failure causes are long
“POH”, high temperature or high seek error rate “SER”. So
we can take corresponding measures to reduce the failure
rate.
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Figure 5. Prediction results of CT and BP ANN models on family “Q”
using voting-based detection method. The points on each curve are achieved
by setting N = 1,3,5,11, and 17 from right to left.

2) Evaluating with Fewer Drives: In Section V-A, we
use a very large dataset containing 23,224 drives, which is
collected from a big data center. In the real world, however,
prediction models will most likely be used in small and
medium-sized data centers. To evaluate the effectiveness of
prediction models applying to small and medium-size data
centers, we test them with synthesized datasets containing
fewer drives. We create four small datasets (named A, B,
C and D) by randomly choosing 10%, 25%, 50% and 75%
of all the good and failed drives respectively from the “W”
dataset. So the smallest dataset D contains only 2,790 good
drives and 43 failed drives. Table V shows the prediction per-
formance of the CT and BP ANN models with these datasets.
The voting-based detection algorithm with 11 voters is used.
As expected, as the size of dataset decreases, both CT and
BP ANN models suffer performance degradation. However,
even with the dataset that is one order of magnitude smaller
than the original dataset, both models obtain acceptable FDR
and FAR. Especially, CT model remains reasonably low
FAR. Moreover, both models keep an average TIA about two
weeks. Notice that the dataset used in the last subsection is
actually a small-sized dataset, and the results on it agree with
the results in this subsection. Since our CT model obtains
acceptable prediction performance with both real-world and
synthesized small-sized dataset, we believe it can predict
hard drive failure effectively in small and medium-sized data
centers.

Table V
PREDICTION PERFORMANCE ON SMALL-SIZED DATASETS.

Model Dataset FAR (%) FDR (%) TIA (hours)

BP ANN

A 2.93 88.24 329.6
B 1.10 90.63 345.3
C 0.16 84.38 338.0
D 0.03 81.82 350.6

CT

A 0.22 82.35 345.7
B 0.07 90.63 346.6
C 0.11 90.63 343.3
D 0.09 91.82 341.7

3) Model Updating Strategies: Another critical prob-
lem neglected by previous works is model aging. So it
is reasonable to assume that they use a “train once, use
forever” strategy, that is, a prediction model is built and
then remains unchanged. However, as time goes on, drives’
SMART attributes will change, so models may gradually
lose their effectiveness. We actually observe significant drop
of prediction accuracy when we simulate long-term use of
prediction models.

We explore three different model updating strategies to
keep prediction accuracy. The first is the fixed strategy
which remains a prediction model unchanged over time after
building it, that is, no updating. The second strategy is
to update the model periodically, say, once a week, using
samples collected by the last week, and then to apply it



to the current week. We name it the accumulation strategy.
The third strategy is also to update the model periodically.
However, only samples collected within the last cycle are
used to build a new model, and this model is used to
predicting failures during the current cycle. So we name
it the replacing strategy. Since the last strategy uses drives’
latest status to update models, we expect it to achieve the
best prediction accuracy.

To evaluate the ability of these strategies to keep predic-
tion accuracy as time goes on, we use all of good samples
spanning eight weeks rather than a single week to simulate
long-term use of prediction models. More specifically, for
the fixed strategy, we train models using samples within the
first week and then apply them unchangeably to test the
samples respectively collected within the second week, the
third week, until the eighth weeks. The ratio of the size of
the training set to the size of each test set is still 7 to 3. Since
failed samples are much less than good samples and they are
collected at different times, we still divide all of failed drives
randomly in a 7 to 3 ratio for training and test respectively.
For the accumulation strategy, we train models using good
samples collected from the first week to the i-th week, and
then apply it to the (i+ 1)-th week, where i = 1,2, . . . ,7.
For the replacing strategy, we train a new model using good
samples collected from the ((i−1)× c+1)-th week to the
(i× c)-th week, and then use it to predict drive failures
during next c weeks. c denotes the cycle length, and we
tried c = 1,2 and 3.

We test the CT and BP ANN models with three updating
strategies on the drive families “W” and “Q”. The voting-
based detection algorithm is used, and 11 voters are counted
for each time point. In this part, we show only false alarm
rate and omit failure detection rate, in part due to space
limitations, and in part because we use the same failed sam-
ple set in all experiments which implies that the false alarm
rate is more important. Figures 6 - 9 show the false alarm
rates of the two models with different updating strategies
as time goes on. In general, the fixed strategy performs
worst. As time goes on, its FAR increases gradually. After
the sixth week, since the distance between the training and
test samples are quite far, the up trend becomes very steep.
Finally, its FAR rises to 10%− 20% which implies that
the false alarms will be hundreds of times more than the
correct detections. This will cause unacceptable processing
cost. Apparently, it is impolitic to remain prediction models
unchanged. The accumulation strategy performs better be-
cause more recent good samples are used to train prediction
models. However, its FAR also increases apparently in the
last weeks and rises to an unacceptable high value. As
expected, the replacing strategy performs best. Since only
the latest drive status is used for training, this strategy can
maintain a reasonably low FAR. Among the three different
cycle lengthes, 1-week updating achieves the lowest FAR.
We think the results are broadly in line with what we

expected. We can conclude that it is necessary to update
prediction models for a long-term practical use.
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Figure 6. FAR of CT with updating on “W”.
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Figure 7. FAR of BP ANN with updating on “W”.
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Figure 8. FAR of CT with updating on “Q”.

Combining with the replacing strategy, both CT and BP
ANN models maintain a low false alarm rate for a long time
on both “W” and “Q” families. However, they perform quite
differently in failure detection rate. The CT model maintains
a FDR above 90% with all of the updating strategies and
both drive families. While the FDR of BP ANN model is
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Figure 9. FAR of BP ANN with updating on “Q”.

about ten percentage points lower than that of the CT model
on average and fluctuates wildly. Moreover, BP ANN model
shows quite different FDRs and FARs with the two different
drive families, while CT model shows close performance
trend with different drive families. This further verifies the
advantage of the CT model over the BP ANN model in
prediction performance as well as stability.

In this subsection, we simulate three practical application
scenarios of prediction models. The experimental results
show that our classification tree model maintains high failure
detection rate and low false alarm rate as well as good
stability in these scenarios.

C. Evaluating Health Degree Model

In this subsection, we test the health degree model based
on regression tree. We first train a CT model using the
training set, and then use it to determine TIA for each failed
drive. The target value of each failed sample is then set by
formula 6. If a failed drive is missed by the CT model,
the target values of its samples are set by formula 5 and
the deterioration window is set to 24 hours. We do not use
all samples within the deterioration window to train the RT
model. Instead, we choose 12 samples evenly within the
window for each failed drive. To evaluate the effectiveness
of the health degree model, we train another RT model
for comparison. The target values are set to +1 and −1
respectively for good and failed samples.

When we build the RT models, split conditions (Min-
imumSplit, MinimumBuketSize) and pruning parameter
(ComplexityParameter) are set to the same values as in
training the CT model. We test the health degree model
and the control group with the “W” dataset. We use a new
voting-based detection algorithm. For each drive in test, if
the average output of the last N samples is lower than the
threshold, the drive is predicted to be failed, and the next
time point is tested otherwise. Figure 10 plots the ROC
curves of the health degree model and the control group. N is
set to 11. Each data point is obtained by a unique threshold.
The health degree model achieves a maximum FDR above

96%. And its ROC curve is closer to the upper left corner
of the quadrant than that of the control group, which means
higher FDR and lower FAR. The health degree model has
another advantage over binary classifiers, such as the CT
model. Since it outputs real values, we can trade off between
the FDR and the FAR finely by simply applying the model
with different detection thresholds, while the CT model can
only make trade-off coarsely by tuning some training and
detection parameters. We can reach a very high FDR, or
reach a very low FAR, or select a pair in the middle. In a
word, the health degree model provides a way to distinguish
detections more finely as well as additional flexibility in
performance adjusting.
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Figure 10. ROC curves of RT models. The points on curve
of health degree model are obtained by setting threshold
= −0.5,−0.37,−0.3,−0.2,−0.1,−0.02 and 0.0 from left to right.
The points on curve of classifier are obtained by setting threshold
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VI. RELIABILITY ANALYSIS

We use several Markov models to evaluate the benefits of
our decision tree models on reliability.

Eckart et al. [17] deduced an formula to approximate the
Mean Time To Data Loss (MTTDL) of a single hard drive
with failure prediction:

MT T DLdrive ≈
MT T F

1− kµ

µ+γ

(7)

where MTTF means Mean Time To Failure of a single
drive. k denotes FDR and γ is the inverse of TIA. µ is the
inverse of the Mean Time To Repair (MTTR). This formula
demonstrates the major relationship between the MTTDL of
a single drive and the failure prediction accuracy.

Table VI shows the MTTDL of a single drive with
different prediction models. The parameters come from real-
world data centers and our experiments. All three prediction
models improve the MTTDL by an order of magnitude even
for the simplest single hard drive configuration. Moreover,
although the prediction performance advantage of our de-
cision tree models over the BP ANN model is small, it



Table VI
IMPACT OF FAILURE PREDICTION ON MTTDL. MTTF = 1,390,000

HOURS, MTTR = 8 HOURS. FOR CT MODEL, k = 0.9549,
γ = 1/355hours; FOR RT MODEL, k = 0.9624, γ = 1/351hours, AND FOR

BP ANN MODEL, k = 0.9098, γ = 1/343hours.

Model MTTDL (years) % increase
No prediction 158.67 0.00
BP ANN 1430.33 801.42
CT 2398.92 1411.84
RT 2687.31 1593.59

makes the twofold gap of MTTDL because of the superlinear
growth of MTTDL as the prediction accuracy increases.
This implies that even a small improvement in prediction
accuracy is worthwhile.

To evaluate the benefits of drive failure prediction on
large-scale storage systems, we build a Markov model
showed in Figure 11 describing reliability of RAID-6 sys-
tems with proactive fault tolerance. For any N disks config-
uration, there are 3N + 1 states: N + 1 prediction states, Pi
where i represents the number of drives that are currently
predicted to fail; N single-erasure states, SPi where one drive
has already failed and i drives are currently predicted to fail;
N−1 double-erasure states DPi; and the absorbing state F
where data loss occurs.

Figure 11. Reliability model for RAID-6 system with failure prediction.
l denotes the missed alarm rate (i.e. l = 1− k).

Due to the pressure of construction and maintenance
cost, the commercial companies are preferring consumer
SATA hard drives which are much cheaper but less reliable
than enterprise-class SAS drives to construct data centers.
Therefore, we compare four RAID systems: two RAID-6
systems respectively composed of SAS and SATA drives,
another SATA RAID-6 system, and a SATA RAID-5 system.
The last two systems employ our CT model, and the first two
do not use any drive failure prediction model. Figure 12 plots
the systems’ MTTDL as their size increases. We calculate
the first two systems’ MTTDL using Formula 8 [18], and the
last two systems’ MTTDL by the Markov models showed
respectively in Figure 11 and [17].
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MT T DLRAID−6 ≈
MT T F3

N(N−1)(N−2)MT T R2 (8)

As the figure shows, although the annual repair rate of
SATA drives is almost 40% higher than that of SAS drives,
the SATA RAID-6 system with CT model achieves MTTDL
several orders of magnitude higher than that of the RAID-6
system composed of SAS drives but without drive failure
prediction. This means that, with the help of our CT model,
we indeed improve reliability of storage system constructed
with cheap drives dramatically. The curves of the other three
systems are close, especially when the systems are large.
This indicates that, by employing our prediction model,
you can keep similar or higher reliability while significantly
reduce the construction and maintenance costs by reducing
redundancy and/or using cheaper hard drives.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose new hard drive failure prediction
models based on the classification and regression trees.
Compared with the state-of the-art model, the Backprop-
agation artificial neural network model, our classification
tree model performs better in prediction accuracy as well as
stability and interpretability. We test prediction models with
different drive families and with fewer number of drives,
and our CT model still shows steady and good prediction
performance and advantage over the BP ANN model. We
present two model updating strategies to prevent model
aging. To evaluate their effectiveness, we simulate long-
term use of prediction models. Compared with the strategy
remaining models unchanged, our updating strategies indeed
keep smoother prediction accuracy and the 1-week replacing
strategy performs best. These experimental results indicate
that our new model is suitable for practical use. We also



propose a health degree model based on the regression tree.
Compared with previous binary classifiers, such as our CT
model, the RT model can give a drive in test a real value
representing its health degree rather than a simple binary
classification result. This value can serve for the priorities
of detections to determine their processing order. Moreover,
this model provides a easy way to tune the detection rate
and the false alarm rate finely by adjusting the detection
threshold. To evaluate the benefits of our models on the
reliability, we present a Markov model describing RAID-6
systems with failure prediction. The simulation results show
that our models can significantly improve reliability and/or
reduce cost.

The health degree model does not completely outperform
binary classifier models, such as our CT model. It is worth-
while to study other methods to build more effective health
degree models. Moreover, we will try other statistical and
machine learning methods, such as random forest, to boost
the prediction performance. Finally, introducing prediction
models into real-world distributed storage systems is the
most important task in the near future.
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