
Fairness-aware Update Schedules for Improving
Consistency in Multi-server Distributed Virtual

Environments

Li Yusen*†
s080007@e.ntu.edu.sg

Yunhua Deng†
yhdeng@ntu.edu.sg

Wentong Cai†
aswtcai@ntu.edu.sg

Xueyan Tang†
asxytang@ntu.edu.sg

*Department of Computer Science and Information Security
Nankai University

Tianjin, China

†School of Computer Science and Engineering
Nanyang Technological University

Singapore

ABSTRACT
In Distributed Virtual Environments (DVEs), how to guar-
antee consistency and fairness is a primary concern for im-
proving user experience. As the scale of DVE systems grows
fast, multi-server architecture has been widely used in large
scale DVEs such as Massively Multiplayer Online Games
(MMOGs). In multi-server DVEs (MSDVEs), servers may
get saturated with resources such as network bandwidth due
to huge resource demand and workload variability. With
resource limitations, state updates cannot be disseminated
timely and inconsistency and unfairness will be greatly in-
creased if the resources are not allocated properly. In this
paper, we propose a fairness-aware state update schedul-
ing algorithm which can minimize total inconsistency while
guarantee fairness in MSDVEs under servers’ network band-
width constraints. Experimental results show that the pro-
posed algorithm significantly improves the consistency and
fairness compared to other existing update algorithms.

CCS Concepts
•Computing methodologies → Distributed simula-
tion; Distributed algorithms; •Computer systems orga-
nization → Client-server architectures;

1. INTRODUCTION
Distributed Virtual Environment (DVE), a virtual world

deployed on a group of computers connected via network,
allows multiple geographically distributed participants, also
known as clients, to communicate and interact with each
other through the shared virtual world. In the virtual world,
each client is often represented by an entity, called an avatar.
A client can use his/her avatar to move or traverse in the vir-

tual world and communicate and interact with other clients.
DVEs have been widely used in many different applications
such as military training, e-learning and online games [1, 4,
17, 21].

The client-server architecture is the most popular one to
support DVEs. In client-server DVEs, the virtual world is
maintained by a server and each client maintains a copy of
the (relevant) virtual world state on his computer. When
one client performs an action that affects the virtual world
(e.g., the client controlled avatar moves to a new position),
the state of the virtual world maintained by other clients
must be updated in a timely manner. However, due to trans-
mission delay and clock asynchrony, different clients may
receive the same state update at different times, which will
result in inconsistency and unfairness. Inconsistency refers
to the differences between the virtual worlds seen by clients
and the virtual world maintained by the server. Unfair-
ness refers to the differences among the virtual worlds seen
by different clients. It has been shown that both inconsis-
tency and unfairness are crucial for user experience in DVEs
[2]. Inconsistency may deteriorate the game responsiveness
and playability while unfairness may provide unfair advan-
tages or disadvantages to different players. Therefore, how
to reduce inconsistency and unfairness is very important for
DVEs.

As the development of the DVE applications, the scale
of DVE systems becomes larger and larger. Like the most
popular online game WoW [21], the peak number of simulta-
neous active users has exceeded 5 million [22]. Multi-server
architecture, especially the zone based multi-server architec-
ture, has become a popular platform to support large scale
DVEs. In zone based multi-server DVEs (MSDVE), the vir-
tual world is usually spatially partitioned into several dis-
joint zones, with each zone managed by only one server. A
client interacts only with other clients in the same zone, and
may move to other zones. As a server only needs to handle
one or more zones instead of the entire virtual world, the
system is more scalable. The zone based architecture has
been used in many large-scale virtual environments such as
RING [7], CittaTron [8] and many existing Massively Mul-
tiplayer Online Games (MMOGs) [6, 14].

At present, a large scale MSDVE like MMOGs can in-
clude millions of concurrent users spread across the world,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIMUTOOLS 2016, August 22-23, Prague, Czech Republic
Copyright © 2016 EAI 978-1-63190-120-1

1

which demands huge amount of resources such as comput-
ing power and network bandwidth on various servers [22].
Adding clients to a MSDVE will increase the resource re-
quirement of servers. As the number of clients increases, the
total resource demand may become huge. Moreover, a DVE
system is highly dynamic. A client can join or leave a DVE
at any given time. Therefore, the number of participating
clients is dynamically changing over time, which results in
dynamic workload requirement at servers. In addition, the
workload like network bandwidth in a DVE is also highly
dependent on avatars’ interactions [18]. When avatars are
crowded in the virtual world, more network bandwidth for
each client is required. For instance, the peak value of the
network bandwidth requirement from server to a client in
WoW can exceed 64kbps, which is much larger than the
median value 6.9kbps [18]. Facing huge resource demand
and workload variability, servers may get saturated with re-
sources like network bandwidth. If resources are not allo-
cated properly, inconsistency and unfairness will be greatly
increased.

In our previous work [9, 11], we have studied how to sched-
ule state updates for minimizing inconsistency in MSDVEs
with network bandwidth constraints of servers. However,
unfairness is not considered in the proposed update algo-
rithm. In this paper, we take unfairness into account and
reconsider the state update scheduling problem in MSDVEs.
The aim is to minimize inconsistency while guarantee fair-
ness in MSDVEs when the network bandwidth is constrained
for servers. The contributions of this paper are three-fold.
First, we propose a new metric using time-space inconsis-
tency to measure unfairness in a DVE. The new metric
takes both spatial and temporal differences into account in
the measurement, which is more effective in reflecting the
impact of unfairness on users’ experiences. Second, we pro-
pose a fairness-aware update scheme which ensures the same
update can be issued at the same time by different clients
so that the unfairness among clients is eliminated. Third,
we propose a heuristic update algorithm that can minimize
inconsistency with fairness guarantees in a MSDVE with
network bandwidth constraints of servers. The proposed
update algorithm has been shown to outperform other algo-
rithms by experimental results.

The rest of the paper is structured as follows. The system
model and problem definition are introduced in Section 2. In
Section 3, the proposed update schedules are presented. The
experimental evaluations are presented in Section 4. The
related work is summarized in Section 5. In the last section,
a conclusion is given and the future work is discussed.

2. SYSTEM MODEL
In this paper, we focus on zone based MSDVEs. However,

the proposed approach can be easily applied to other types
of MSDVEs. In zone based MSDVEs1, as shown in Figure
1, the virtual world is assumed to be partitioned into zones
and each zone is maintained by one server. For instance, in
Figure 1, the virtual world is partitioned into three zones
z1, z2 and z3 which are maintained by servers s1, s2 and s3
respectively. Avatars located in a zone are maintained by
the server that is in charge of this zone. Generally, an avatar
is only allowed to interact with the avatars in the same zone

1In the rest of the paper, MSDVE refers to the zone-based
MSDVE

Figure 1: System Model of a MSDVE

where the avatar is residing.
Traditionally, clients can be assigned to servers in two

different ways: based on virtual position or based on phys-
ical position. In the virtual position manner, each client is
connected to the server that maintains the zone where his
avatar is. The server-to-server communication is avoided
in this case. However, the network delay between a client
and the server may be large. In the physical position man-
ner, each client is connected to the closest server that incurs
minimum network delay. In this case, the network delay be-
tween a client and its connected server is small. However,
if the connected server is not the server that maintains his
avatar, the state updates need to be forwarded by the con-
nected servers, thus the communications between servers are
required. Therefore, client assignment will affect the trans-
mission delays from servers to clients, and cause inconsis-
tency. In our previous work [10, 12], the client assignment
problem has been studied and a new client assignment ap-
proach was proposed. In that approach, a client is allowed
to connect to any server, which is not necessarily the server
that maintains his avatar or the closest server. The clients
are assigned to servers with the purpose of minimizing in-
consistency. In our system model, the client assignment will
be determined by the approach proposed in [12].

In this paper, we focus on the position update of avatars,
which are the most common type of avatar states requiring
constant updates. Based on the above system model, the
position update in a MSDVE is accomplished as follows. The
server maintaining the avatar updates the position of the
avatar according to user’s input commands and periodically
(generally by frame) disseminates the position updates to
the clients in the same zone. To improve accessibility and
responsiveness, each client in the same zone will maintain a
replicated copy of the avatar. When a new position update is
received by a client, the replica of the avatar will be updated
and reflected to the user.

Note that when a server disseminates position update to a
client, the client may not be connected to the server. In this
case, the position update should be forwarded by the server
that is connected to the client. Consider an avatar and a
replica of the avatar, we define target server of the replica
as the server maintaining the avatar and contact server of
the replica as the server that is connected by the client where
the replica is. To send position update to the replica, if the
contact server and the target server of the replica are the
same (e.g., the replicas maintained by client c1 in Figure 1),

2

the target server will directly disseminate position update to
the replica. Otherwise, if the target server and the contact
server are different (e.g., the replicas maintained by client c3
in Figure 1), the target server will first send position update
to the contact server in the manner of forwarding request,
and then the contact server will forward position update to
the replica.

In our system model, network bandwidth consumption on
position update at each server can be divided into three
parts. The first part is used to disseminate position updates
to the replicas whose target server and contact server both
are this server. The second part is used to send position
updates in the manner of forwarding request for the repli-
cas whose target server is this server and contact server is
different. The third part is used to forward position update
for the replicas whose contact server is this server and tar-
get server is another one. Suppose the network capacity for
the position updates (the sum of three parts) is constrained
for some servers, that is, each saturated server is allowed
to send or forward position updates to only a given number
of replicas. The aim of this paper is to investigate position
update scheduling strategies for those saturated servers to
reduce inconsistency while guarantee fairness in the whole
DVE.

Based on the system model, we formally define inconsis-
tency and unfairness using the metric of time-space incon-
sistency in a MSDVE. Time-space inconsistency is defined
based on the following observation: participants make their
judgements of a specific situation in a DVE based not only
on the positions of entities, but also on the duration of this
situation [25]. It has been shown that time-space inconsis-
tency can effectively reflect the impact of inconsistency on
a participant’s perception and decision making. Therefore,
it would be more reasonable to use time-space inconsistency
to evaluate inconsistency and unfairness.

Consider a replica r of an avatar a. Let Δ(r, a, t) denote
the spatial difference between the position of replica r at
client side and the position of avatar a at server side at time
t, the time-space inconsistency between r and a in a time
session [ts, te] (denoted by s) is defined by

Ω(r, a, s) =

∫ te

ts

Δ(r, a, t)dt (1)

The total inconsistency associated with an avatar a in
session s is defined as the total time-space inconsistency of
all replicas of a in session s, which is given by

Θ(a, s) =
∑

r∈R(a)

Ω(r, a, s) (2)

where R(a) denotes the set of all replicas of a. The total
inconsistency of the DVE in session s is defined as the total
inconsistency of all avatars in session s in the DVE, which
is given by

Θ(s) =
∑
a

Θ(a, s) (3)

Consider an avatar a. Let p(a, t) denote the position of
a at server side at time t. For a replica r of a, let p(r, t)
represent the position of r at client side at time t. The

divergence associated with a at time t is defined by

D(a, t) =

√
1

NR(a)
·

∑
r∈R(a)

(p(r, t)− p(a, t))2 (4)

where

p(a, t) =
1

NR(a)
·

∑
r∈R(a)

p(r, t) (5)

and NR(a) denotes the size of R(a). The unfairness associ-
ated with avatar a in session s is defined by

Γ(a, s) =

∫ te

ts

D(a, t)dt (6)

The unfairness of the MSDVE in session s is then defined
by

Γ(s) =
∑
a

Γ(a, s) (7)

Based on the above definitions, this paper aims at two
objectives:

1. The first objective is to minimize unfairness of the sys-
tem in all sessions, i.e.,

minimize
∑
s

Γ(s) (8)

2. The second objective is to minimize total inconsistency
of the system in all sessions, i.e.,

minimize
∑
s

Θ(s) (9)

3. UPDATE SCHEDULES
In this section, we investigate position update schedules to

minimize inconsistency while guarantee fairness in MSDVEs
with network bandwidth constraints of servers. We first pro-
pose a fairness-aware update scheme which can guarantee
fairness in a MSDVE. Based on the fairness-aware update
scheme, we then propose an update scheduling algorithm
which can minimize total inconsistency in a MSDVE. The
basic idea of the scheduling algorithm is to update avatars
according to their update priorities which are defined ac-
cording to their potential impacts on inconsistency. When
the network bandwidth is limited, the avatars with higher
update priorities are updated first.

3.1 Fairness-aware Update Scheme
According to the definition, fairness can be achieved if

each update of avatars is applied on the relevant replicas at
the same time. Local lag is the most commonly used tech-
nique to achieve such goal [13]. For our problem, the basic
idea is to add additional “lag” to the updates with smaller
transmission delays so that the updates with larger trans-
mission delays can be applied simultaneously. The “lag” can
be performed either at server side (i.e., delaying disseminate
update after it is generated) or at client side (i.e., delaying
application of update after it is received) or both at server
and client sides.

Consider a replica r. Let dr denote the transmission delay
of a position update from r’s target server to r. Consider an
avatar a. Let dmax

a denote the maximum transmission delay
of a position update from the server maintaining avatar a

3

to all the replicas of a, i.e., dmax
a is the maximum dr for

all r ∈ R(a). Suppose a position update of avatar a is
generated at time t. In the fairness-aware update scheme,
the position update will be applied on all replicas of avatar
a at time t + dmax

a . The time t + dmax
a is defined as the

due time of the position update of avatar a generated at
time t. The additional lag to be added for replica r (r ∈
R(a)) is dmax

a −dr. In practical system, where the additional
lag is performed will be flexibly determined by the update
schedules according to the system context.

3.2 Derivations of Update Priority
The overview of the derivations of update priorities is as

follows: firstly, we formulate the problem of finding opti-
mal update schedule to minimize total inconsistency as an
inequality constrained problem (ICP) for a static MSDVE.
Secondly, Lagrange Multipliers are used to help derive the
update priorities that can be estimated in practical systems.

Consider an avatar a. Due to transmission delay (includ-
ing the lag that may be added by the fairness-aware update
scheme), position update will not take effect on each replica
until dmax

a later after it is generated. The growth of time-
space inconsistency between each replica of avatar a and
avatar a is given by

Ω =

∫ t

tlast+dmax
a

Δ(r, a, s)ds (10)

where r is a replica of a and tlast is the time of the update
last generated by the server maintaining a before t − dmax

a

[12]. To simplify the problem definition, we assume af-
ter each update of a is applied on the replicas, the differ-
ence between each replica’s position and avatar a’s posi-
tion grows in the same manner following an increasing func-
tion δ(·). Therefore, for a replica r of avatar a, we have

Δ(r, a, t) = δ(t− (tlast + dmax
a))) and dδ(t)

dt
> 0. It is plausi-

ble to assume δ(·) to be increasing, otherwise, the difference
between the replica and the avatar is unchanged or getting
smaller between two successive updates, position update is
no longer needed in that case. With this assumption, Equa-
tion (10) can be rewritten as

Ω =

∫ t−(tlast+dmax
a)

0

δ(s)ds (11)

Note that δ(t) is the same for all the replicas of avatar
a since update is applied with all the replicas at the same
time. Similarly to Theorem 1 in [11], it can be proved that
under fairness-aware update scheme, given a fixed number
of updates allowed in a period for an avatar in a MSDVE,
the updates should be generated periodically at server side
over this period for minimizing total inconsistency over all
replicas of this avatar. Therefore, to minimize total inconsis-
tency, it just needs to determine the optimal update period
for each avatar.

Suppose there are NA avatars in the DVE, which are de-
noted by a1, a2, ..., aNA. Consider an avatar ai (1 ≤ i ≤
NA). Suppose the update period of ai is pi, then the incon-
sistency between ai and the replicas between two successive
updates applied on the replicas is given by

NR(ai) ·
∫ pi

0

δi(t)dt (12)

The total inconsistency of the virtual world over period T is

given by

NA∑
i=1

(
T

pi
·NR(ai) ·

∫ pi

0

δi(t)dt

)
(13)

Then, we analyze the constraint of network bandwidth for
each server. Suppose there are NS servers in the DVE,
which are denoted by s1, s2, ..., sNS . Consider a server sj
(1 ≤ j ≤ NS). sj needs to send position updates directly
to the replicas whose target server and contact server are
both sj . Moreover, sj needs to send forwarding requests for
the replicas whose target server is sj but contact server is
different. Let α denote the bandwidth consumption for dis-
seminating one position update directly or in the manner of
forwarding request. The total network bandwidth require-
ments for these two parts over T are

α ·
⎛
⎝ ∑

ai∈R(sj)

NR(ai) · T
pi

⎞
⎠ (14)

where R(sj) denotes the set of avatars maintained by sj . In
addition, sj needs to forward position updates to the replicas
whose contact server is sj but target server is different. The
bandwidth consumption on this part over T is given by

α ·
⎛
⎝ ∑

ak �∈R(sj)

NR(ak, sj) · T

pk

⎞
⎠ (15)

where NR(ak, sj) denotes the number of replicas of avatar
ak whose contact server is sj . Suppose the network capacity
of sj for position update at each update frame is constrained
by cj . Let f denote the update frame length of each server.
The total network capacity over T will be constrained by
cj · T

f
. Therefore, we have

α ·
(∑

NR(ai) · T
pi

+
∑

NR(ak, sj) · T

pk

)
≤ cj · T

f
(16)

Thus, the problem can be defined as the following inequality
constrained problem (ICP), the objective is to minimize

f(p) =

NA∑
i=1

(
T

pi
·NR(ai) ·

∫ pi

0

δi(t)dt

)
(17)

subject to

gj(p) ≤ 0, 1 ≤ j ≤ NS (18)

, where p = [p1, ..., pNA] and gj(p) is defined as

gj(p) = α ·
(∑

NR(ai) · T
pi

+
∑

NR(ak, sj) · T

pk

)
− cj · T

f

Based on the ICP formulated above, using Lagrange Mul-
tipliers, the update priority of avatar ai at time t can be
defined by

1

ϕi(t)
· ((t− tlast) ·Δ(r, ai, t+ dmax

ai
)−

∫ t+dmax
ai

tlast+dmax
ai

Δ(r, ai, s)ds

)
(19)

4

ϕi is defined as

α ·NR(ai) · μk + α ·∑NS
j=1,j �=k(NR(ai, sj) · μj)

NR(ai)
(20)

where μi (1 ≤ i ≤ NS) are Lagrange Multipliers. The
derivations are similar to that in [11]. The only difference
is the update priority was derived in terms of each replica
in [11], while the update priority is derived in terms of each
avatar whereas in this paper.

To calculate the update priority, the values of Δ(r, ai, t+

dmax
ai

),
∫ t+dmax

ai
tlast+dmax

ai
Δ(r, ai, s)ds and μi (1 ≤ i ≤ NS) should

be estimated by the server at time t. The estimations of
these values in practical systems have been discussed in [11].

3.3 Update Scheduling Algorithm
Based on the above analysis, we investigate a fairness-ware

update scheduling algorithm for minimizing total inconsis-
tency. The update scheduling algorithm is designed towards
achieving the following two targets:

• To maintain fairness, each position update of an avatar
should be applied on all replicas of the avatar at same
time.

• To minimize inconsistency, the avatar with highest up-
date priority among all avatars in the virtual world
should be updated.

The update scheduling algorithm is denoted as Fair-LMH.
There are two data structures maintained by each server for
running Fair-LMH.

• AvatarList: the avatar list maintained by each server.
At each update frame, the avatars maintained by each
server are sorted according to update priorities and
put into the AvatarList.

• RequestList[]: an array of lists for storing updates
(position update or forwarding request). If an update
is stored in the list RequestList[i], it means that the
update can be delayed at most i frames at this server.

As has been mentioned earlier, each server will gener-
ate position updates (for the replicas whose target server
is this server) and receive forwarding requests (for the repli-
cas whose contact server is this server but target server is
different). All the generated position updates and received
forwarding requests will be first placed in RequestList be-
fore sent out.

Consider a position update generated by server si. Sup-
pose the update is for replica r (si is the target server of
r). The update will be put into the list RequestList[j] at
server si, where j is equal to

�d
max
a(r) − dr

f
� (21)

Consider a forwarding request received by server si. Sup-
pose the request is received at time t and the update is for
replica r (r’s contact server is si but target server is not si).
Let t′ denote the time when the update is generated at r’s
target server. The forwarding request will be put into the
list RequestList[j] at server si, where j is equal to

�d
max
a(r) − (t′ − t)

f
� (22)

Algorithm 1 Fair-LMH (Server Side)

1: Put all avatars into AvatarList and sort them accord-
ing to update priority

2: Move the items in list RequestList[i] to list
RequestList[i-1] for all i > 0

3: Put each received forwarding request since last update
frame into RequestList

4: Disseminate the updates in RequestList[0] as many as
possible

5: while (AvatarList is not empty and bandwidth is not
used up) do

6: Select the avatar with highest priority in AvatarList
7: Generate position updates for the selected avatar and

put each of them into RequestList
8: Disseminate the updates in RequestList[0] as many

as possible
9: Remove the selected avatar from AvatarList
10: end while
11: while (There are some unempty lists in RequestList

and bandwidth is not used up) do
12: Disseminate the updates in the unempty list with

smallest index
13: end while

Algorithm 2 Fair-LMH (Client Side)

1: Assume the client receives an update at time t. Sup-
pose the due time to apply the update (according to
the fairness-aware update scheme) is td. If td > t, the
update will be applied td − t time later, otherwise, the
update is applied immediately.

The Fair-LMH algorithm has two parts, which run at
server side and client side respectively. The part for server
side, shown in Algorithm 1, runs at each update frame.
At each update frame, all the avatars maintained by the
server are first put into AvatarList and sorted according
to update priority which can be calculated by (19) (line
1). Then, items in list RequestList[i] are moved to list
RequestList[i-1] for all i > 0 (line 2) since one update
frame has elapsed. After that, each received forwarding re-
quest since last update frame is placed in RequestList,
where the index of the list is calculated according to (22)
(line 3). Then, the most urgent updates which are in list
RequestList[0] are sent out first (line 4). Next, avatars
are handled in decreasing order of their update priorities as
long as there is network bandwidth available (lines 5 to 10).
To handle an avatar, the position updates are generated first
and placed in RequestList. Then, the most urgent updates
which were placed in list RequestList[0] are sent out. If
the network bandwidth is still available after all the avatars
in AvatarList are handled, we continue processing each un-
empty list in RequestList (lines 11 to 13). Each time, the
list with smallest index is processed and all updates in the
list will be disseminated if there is sufficient bandwidth.

The part for client side is shown in Algorithm 2. When a
client receives an update, if the receiving time is earlier than
the due time of the update, the update will be issued at the
due time. Otherwise, the update is applied on the replica
immediately.

4. EXPERIMENTAL EVALUATION

5

4.1 Simulation Setup
We implemented an event-driven simulator to simulate a

MSDVE. The virtual world is of scale 10000 x 10000, which
was divided into 25 equal sized squares, each of them rep-
resents a zone. A total of 10 servers and 20000 clients were
simulated. Each avatar is associated with a client, which
was randomly distributed in the virtual world initially. The
client assignment and zone mapping were determined by the
approaches proposed in [12]. The length of a frame was set
at 0.025 seconds, i.e., there are 40 frames per second.

The avatars move around the virtual world with random
way point (RWP) mobility model. Specifically, as the simu-
lation starts, each avatar selects one location in the virtual
world as the destination. It then travels towards this des-
tination with constant velocity chosen uniformly and ran-
domly from [0.1, 1] distance units per frame. Upon reaching
the destination, the avatar again chooses another random
destination in the virtual world and move towards it.

In our simulation, the transmission delay from a server
to a client was generated according to a shifted exponen-
tial distribution with probability density function f(x) =

λe−λ(x−τ)(x ≥ τ) [5]. To generate a mean transmission de-
lay d with a variance of v (0 < v < 1), τ and λ should be

set to v ∗ d and
1

(1− v) ∗ d respectively.

Without loss of generality, the bandwidth consumption of
position update and forwarding request, i.e., α was set at 1.
The bandwidth capacity at each server was set to allow the
server to send a given number of ci updates at each frame,
where ci was varied in the experiments.

4.2 Update Algorithms to Compare
We also implemented the LMH algorithm for comparison,

which is the optimal update algorithm proposed in our previ-
ous work for minimizing total inconsistency in MSDVEs [11].
However, the fairness is not considered in LMH. Moreover,
we implemented some intuitive fairness-aware update algo-
rithms including Fair-FF and Fair-SPACE. The Fair-FF and
Fair-SPACE also follow the updating algorithm described in
Algorithm 1 and Algorithm 2. The only difference between
Fair-FF, Fair-SAPCE and Fair-LMH is on how the update
priority of each avatar is calculated.

• Fair-RR: the update priority of each avatar is defined
as the time since last update was generated.

• Fair-Space: the update priority of each avatar is de-
fined as the spatial difference between the avatar and
the replicas of the avatar.

4.3 Experimental Results
In the simulations, each experiment runs for a period of 30

minutes where the first 10 minutes was considered the war-
up period. Statistics were collected for the remaining 20
minutes of simulated time. In the results, the inconsistency
and unfairness are presented as a ratio between 0 and 1
after normalization. For each group of result, let vmin and
vmax denote the maximum value and the minimum value of
the data respectively. The normalized ratio of a value v is
calculated by (v − vmin)/(vmax − vmin).

4.4 Impact of Bandwidth Capacity
We first evaluated the impact of bandwidth capacity on

the performance of the algorithms. For each experiment,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60N
or

m
al

iz
ed

 In
co

ns
is

te
nc

y

Available Network Capacity (x102)

Fair-RR
Fair-SPACE

Fair-LMH

Figure 2: Impact of Bandwidth Capacity on Incon-
sistency

0

0.2

0.4

0.6

0.8

1

5 15 25 50 75 100 150 200 250 300

N
or

m
al

iz
ed

 U
nf

ai
rn

es
s

Available Network Capacity (x102)

Fair-LMH
LMH

Figure 3: Impact of Bandwidth Capacity on Unfair-
ness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N
or

m
al

iz
ed

 In
co

ns
is

te
nc

y

Average Network Latency

Fair-RR
Fair-SPACE

Fair-LMH

Figure 4: Impact of Network Delay on Inconsistency

the bandwidth capacity was set in a range from 100 to 6000
updates per frame at each server. The average network delay
was set at 0.1s with a variance of 0.95.

Figure 2 shows the normalized inconsistency achieved by
different algorithms. As can be seen, lower bandwidth makes
larger inconsistency for all algorithms. For small bandwidth
capacity, which implies more serious bandwidth constraints,
Fair-LMH performs much better than other algorithms. For
large bandwidth capacity, all algorithms get similar perfor-
mance. This is because all the replicas can be updated fre-
quently so the inconsistency is small.

Figure 3 shows the normalized unfairness achieved by LMH
and Fair-LMH. As can be seen, Fair-LMH can greatly de-
crease the unfairness compared to LMH for all bandwidth
capacities.

4.5 Impact of Network Delay
Next, we evaluated the impact of network delay on the

performance of the algorithms. For each experiment, the

6

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5

N
or

m
al

iz
ed

 U
nf

ai
rn

es
s

Network Latency

Fair-LMH
LMH

Figure 5: Impact of Network Delay on Unfairness

mean network delay was set in a range of 0.1s to 0.5s. The
variance of network delay was set at 0.95. The bandwidth
capacity was set at 1000 updates per frame at each server.

Figure 4 shows the normalized inconsistency achieved by
different algorithms. As can be seen, the total inconsistency
gets larger as the average network delay increases. This
is because time-space inconsistency is affected by transmis-
sion delays and generally increases with the delays. The
Fair-LMH algorithm alway outperforms other algorithms for
various network delays.

Figure 5 shows the normalized unfairness incurred by Fair-
LMH and LMH with different network delays. As can be
seen, as the network delay increases, the unfairness incurred
by the two algorithms both increases. For various network
delays, the unfairness incurred by Fair-LMH is much smaller
than the unfairness incurred by LMH.

4.6 Impact of Network Delay Variance

0
0.2
0.4
0.6
0.8

1

 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

 In
co

ns
is

te
nc

y

Variance of Network Delay

Fair-RR
Fair-SPACE

Fair-LMH

Figure 6: Impact of Network Delay Variance on In-
consistency

At last, we evaluated the impact of the variance of net-
work delays on the performance of the algorithms. For each
experiment, the mean network delay was set at 0.1s. The
variance of network delay was set in a range of 0.55 to 0.95.
The bandwidth capacity was set at 1000 updates per frame
at each server.

Figure 6 shows the normalized inconsistency incurred by
different algorithms. As can be seen, the total inconsistency
gets larger as the variance of network delay increases. How-
ever, the growth is not quite obvious. The Fair-LMH algo-
rithm always performs better than other algorithms for all
variance settings.

Figure 7 shows the normalized unfairness incurred by Fair-
LMH and LMH. As can be seen, similar to the inconsistency,
the impact of network variance on the unfairness is also not

0
0.2
0.4
0.6
0.8

1

0.95 0.85 0.75 0.65 0.55

N
or

m
al

iz
ed

 U
nf

ai
rn

es
s

Variance of Network Delay

Fair-LMH
LMH

Figure 7: Impact of Network Delay Variance on Un-
fairness

obvious. The Fair-LMH algorithm always performs better
than LMH for all variance settings.

5. RELATED WORK
The update scheduling problem for improving consistency

in DVEs has been studied a lot in the literature. A state
update scheduling algorithm to minimize total inconsistency
in single server DVEs with constraint of network bandwidth
was proposed in [19]. The proposed algorithm can be easily
extended for multi-server DVEs where a client is allowed to
directly connect to multiple servers. In our previous work [9,
11], we considered MSDVEs and proposed a heuristic update
algorithm to prioritize state updates from a global perspec-
tive for improving consistency in MSDVEs where each server
has a limit network bandwidth. However, the unfairness is
not considered in any of the work mentioned above.

Research has also been carried out to address unfairness in
DVEs. The causal relationship between propagation time,
inconsistencies, playability and fairness in online multiplayer
games was explored in [3]. Two strategies were proposed for
managing playability and fairness in online games. Zan-
der et.al [23] studied the impact of delay differences among
players on the fairness in multiplayer network gaming. An
approach that can be used with the existing network games
to equalize the delay differences was designed and imple-
mented. However, in all the work mentioned above, only
network delay is considered while the spatial difference is
not considered in the measurement.

Many research activities have been carried out to ad-
dress the bandwidth reduction issues in DVEs. For example,
dead reckoning [3, 16, 24] and relevance filtering [15, 20] are
widely used in DVEs to compensate the network latency and
reduce the network traffic. By maintaining a DR prediction
model, remote node can predict the state of the replicated
entity between two consecutive update packets thus update
frequency can be reduced. Relevance filtering can eliminate
the irrelevant information by using the concept of Area of
Interest (AOI). For a single avatar, if some entities are not
in the avatar’s AOI (that implies the avatar is not inter-
ested in these entities), state updates of these entities can
be saved. Although the total network traffic can be greatly
reduced by using these techniques, the total bandwidth re-
quirement may still be very high as the population of the
DVE grows. If servers are not able to disseminate all state
updates due to the constraints of network capacity, our al-
gorithm is to determine the updating priority for each state
update according to their potential impact on inconsistency

7

and unfairness. Therefore, our algorithm can be easily used
on top of those techniques.

6. CONCLUSIONS
In this paper, we investigated update schedules for im-

proving fairness and consistency in MSDVEs with network
bandwidth constraints for servers. A fairness-aware update
scheme was proposed to guarantee fairness among clients in
a MSDVE. Based on the fairness-aware update scheme, a
distributed state update scheduling algorithm was proposed
to minimize total inconsistency. A variety of experiments
were performed to evaluate the proposed algorithm. From
the results we can see that the proposed algorithm outper-
forms other algorithms. However, the proposed algorithm is
only evaluated by simulations. In the future, we would like
to evaluate the proposed algorithm in some real large scale
DVE systems.

7. ACKNOWLEDGMENTS
This research is supported by the National Research Foun-

dation, Prime Minister’s Office, Singapore under its IDM Fu-
tures Funding Initiative, and Singapore Ministry of Educa-
tion Academic Research Fund Tier 2 under Grant MOE2013-
T2-2-067.

8. REFERENCES
[1] C. Bouras, G. Hornig, V. Triantafillou, and

T. Tsiatsos. Architectures supporting e-learning
through collaborative virtual environments: the case
of INVITE. In IEEE International Conference on
Advanced Learning Technologies, pages 13–16, 2001.

[2] J. Brun, F. Safaei, and P. Boustead. Fairness and
playability in online multiplayer games. Faculty of
Informatics-Papers, page 232, 2006.

[3] J. Brun, F. Safaei, and P. Boustead. Managing latency
and fairness in networked games. Communications of
the ACM, 49(11):46–51, 2006.

[4] J. Chim, R. W. H. Lau, H. V. Leong, and A. Si.
Cyberwalk: A web-based distributed virtual
walkthrough environment. IEEE Transactions on
Multimedia, 5:503–515, 2003.

[5] A. Corlett, D. Pullin, and S. Sargood. Statistics of
one-way internet packet delays. 53 rd IETF, 2002.

[6] Everquest. http://everquest.station.sony.com.

[7] T. Funkhouser. Ring: a client-server system for
multi-user virtual environments. In Proceedings of
Symposium on Interactive 3D graphics. ACM, 1995.

[8] M. Hori, T. Iseri, K. Fujikawa, S. Shimojo, and
H. Miyahara. Scalability issues of dynamic space
management for multiple-server networked virtual
environments. In IEEE Pacific Rim Conference on
Communications, Computers and Signal Processing,
volume 1, pages 200–203. IEEE, 2001.

[9] Y. Li and W. Cai. Determining optimal update period
for minimizing inconsistency in multi-server
distributed virtual environments. In 2011 IEEE/ACM
15th International Symposium on Distributed
Simulation and Real Time Applications (DS-RT),
pages 126–133. IEEE, 2011.

[10] Y. Li and W. Cai. Consistency-aware partitioning
algorithm in multi-server distributed virtual

environments. In 2012 IEEE 26th International
Parallel & Distributed Processing Symposium
(IPDPS), pages 798–807. IEEE, 2012.

[11] Y. Li and W. Cai. Update schedules for improving
consistency in multi-server distributed virtual
environments. Journal of Network and Computer
Applications, 41:263–273, 2014.

[12] Y. Li and W. Cai. Consistency-aware zone mapping
and client assignment in multi-server distributed
virtual environments. IEEE Transactions on Parallel
and Distributed Systems, 26(6):1570–1579, 2015.

[13] Z. Li, X. Tang, W. Cai, and S. J. Turner. Fair and
efficient dead reckoning-based update dissemination
for distributed virtual environments. In Principles of
Advanced and Distributed Simulation (PADS), 2012
ACM/IEEE/SCS 26th Workshop on, pages 13–22.
IEEE, 2012.

[14] B. Ng, A. Si, R. Lau, and F. Li. A multi-server
architecture for distributed virtual walkthrough. In
Proceedings of the ACM Symposium on Virtual Reality
Software and Technology, 2002.

[15] K. Pan, W. Cai, X. Tang, S. Zhou, and S. Turner. A
hybrid interest management mechanism for
peer-to-peer networked virtual environments. In IEEE
International Symposium on Parallel and Distributed
Processing (IPDPS), 2010.

[16] L. Pantel and L. Wolf. On the suitability of dead
reckoning schemes for games. In Proceedings of the 1st
Workshop on Network and System Support for Games
(NetGames), 2002.

[17] SecondLife. http://secondlife.com.

[18] P. Svoboda, W. Karner, and M. Rupp. Traffic analysis
and modeling for world of warcraft. In IEEE
International Conference on Communications (ICC),
pages 1612–1617, 2007.

[19] X. Tang and S. Zhou. Update scheduling for
improving consistency in distributed virtual
environments. IEEE Transactions on Parallel and
Distributed Systems (TPDS), 21:765–777, 2010.

[20] D. Van Hook, S. Rak, and J. Calvin. Approaches to
relevance filtering. In Proc. of 11th DIS Workshop,
1994.

[21] WoW. http://www.worldofwarcraft.com/index.xml.

[22] WoWCencus.
http://www.warcraftrealms.com/censusplus.php.

[23] S. Zander, I. Leeder, and G. Armitage. Achieving
fairness in multiplayer network games through
automated latency balancing. In Proceedings of the
2005 ACM SIGCHI International Conference on
Advances in Computer Entertainment Technology,
pages 117–124. ACM, 2005.

[24] Y. Zhang, L. Chen, and G. Chen. Globally
synchronized dead-reckoning with local lag for
continuous distributed multiplayer games. In
Proceedings of 5th ACM SIGCOMM Workshop on
Network and System Support for Games (NetGames),
2006.

[25] S. Zhou, W. Cai, B.-S. Lee, and S. J. Turner.
Time-space consistency in large-scale distributed
virtual environments. ACM Transactions on Modeling
and Computer Simulation (TOMACS), 14(1):31–47,
2004.

8

