
A Lossy Compression Method on Positional Index for Efficient
and Effective Retrieval

Shuni Gao, Jipeng Liu, Xiaoguang Liu*, Gang Wang*
College of Computer Science, KLMDASR, Nankai University, Tianjin, China

{gaoshn,liujp,liuxg,wgzwp}@nbjl.nankai.edu.cn

ABSTRACT
In query processing, incorporating proximity between query terms
is beneficial for effective retrieval. However, it brings inevitable
storage and computing costs by using positional data in inverted
indexes. In this paper, we propose a lossy method for compress-
ing term position data in the case of utilizing term proximity. Our
method exploits clustering property of term occurrences, adaptively
clusters the nearby occurrences, and replaces the clustered posi-
tions with a centralized value. Experimental results show that our
adaptive method is competitive with respect to index size, ranking
efficiency and effectiveness.

CCS CONCEPTS
• Information systems → Proximity search; Data compres-
sion; Retrieval effectiveness.

KEYWORDS
Query Processing, Term Proximity, Positional Index Compression

ACM Reference Format:
Shuni Gao, Jipeng Liu, Xiaoguang Liu*, Gang Wang*. 2019. A Lossy Com-
pression Method on Positional Index for Efficient and Effective Retrieval.
In The 28th ACM International Conference on Information and Knowledge
Management (CIKM ’19), November 3–7, 2019, Beijing, China. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3357384.3358125

1 INTRODUCTION
Inverted index compression has drawn lots of attention in Informa-
tion Retrieval. Typically, an inverted index consists of document
IDs (docIDs), in-document frequencies, and positions of term oc-
currences within the document. Most previous works [5, 6] have
concentrated on organization and compression on docIDs.

Positional index is widely used in term dependency models, in
which the proximity between terms is integrated into document
ranking. Term dependency models achieve higher ranking accu-
racy than bag-of-words models in most cases. Meanwhile, it brings
inevitable storage and computational costs with the use of position
data. Moreover, positional indexes are about 3 to 5 times larger
than the non-positional ones [1], thus significantly decrease system
throughput. Consequently, the compression of positional index is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’19, November 3–7, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3358125

becoming increasingly important recently. Various researches have
been proposed for the compression of positional index, in a lossless
way [1, 7].

The main idea of our work is lossy compression, namely in-
formation cannot be fully recovered. The technique is commonly
used in image compression, which allows a certain loss of pixels.
We bring lossy method into positional data compression. Different
from docID compression, which need to be fully and correctly re-
covered for further AND/OR/WAND operation, not all positions are
contributive to proximity estimation in term dependency models.
Therefore, the special application allows a certain loss of positional
information.

An important observation of occurrences of a term within doc-
ument is the tendency of cluster, i.e., positions are crowded to-
gether. The idea in this work is that clustered occurrences can
be compressed to a centralized value, which is lossy. Moreover,
we hypothesize that positions in different positional index should
be clustered in different granularity. As a result, we propose an
adaptive-granularity method when clustering term positions.

In the remainder of this paper, we introduce related work in
Section 2, review term dependencymodels in Section 3, and describe
the proposed adaptive lossy compression approach in Section 4.
Experimental results are presented in Section 5, and we suggest
some ideas for future work in Section 6.

2 RELATEDWORK
The idea of approximate positional index was first proposed by El-
sayed et al. in [3]. They divided documents into coarse-grained buck-
ets and represented each bucket with its ID. They introduced two
approaches to dividing documents: fixed-width, with fixed bucket
size for each document; and variable-width, which divided each
document into a fixed number of buckets. The methods achieved
smaller positional indexes and less query execution time, but un-
competitive retrieval effectiveness compared with uncompressed
indexes. The weakness is that all the documents are divided by sin-
gle granularity (a fixed bucket-width or a fixed number of buckets).
A position list records the occurrences of a term within a docu-
ment, which means both document and term information should
be considered, rather than just document information. In our work,
granularity is adaptively determined for each position list according
to the term and document it belongs to. A series of experiments on
methods proposed in [3] are conducted as baselines in Section 5.
To the best knowledge of the authors, there is no other work that
introduce lossy-compressed positional index.

3 TERM DEPENDENCY MODEL
Metzler and Croft [4] proposed sequential dependence model (SDM)
and full dependence model (FDM), which model term dependencies

Session: Short - Information Retrieval CIKM ’19, November 3–7, 2019, Beijing, China

2317

https://doi.org/10.1145/3357384.3358125
https://doi.org/10.1145/3357384.3358125

viaMarkov randomfields. SDM incorporates sequential dependence
of adjacent terms, while FDM incorporates full dependence of all
term pairs in a query. The two dependency models use the same
form of scoring function below.

S(q, d) :=
∑
t ∈q

λT fT (t , d) +
∑

<ti ,tj> in q

(
λO fO (ti , tj , d) + λU fU (ti , tj , d)

)
,

where the second sum is over consecutive term pairs in SDM and
all term pairs in FDM. fT , fO , and fU are feature functions for uni-
grams, ordered sequences of term pair, and term pairs co-occurring
within a window, respectively. λT , λO , and λU are the correspond-
ing weighting parameters.

4 THE PROPOSED METHOD
In this Section, we first introduce the procedure of generating lossy-
compressed positional data, then we introduce how we decide the
lossy granularity (threshold) for each position list.

Algorithm 1 Adaptive Lossy Compression Method.
Input:

pl = {p0, p1, ..., pn }, a sorted position list containing the positions a term appears in a
document
threshold , the lossy granularity for the position list

Output:
lossy_posit ion_l ist , the lossy-compressed positions

1: c = {p0 }
2: for i = 1, 2, ..., n do
3: p = c .last() /* the last number in c */
4: if pi − p < threshold then
5: c .add(pi)
6: else
7: s = c .centroid()
8: lossy_posit ion_l ist .add(s)
9: c = {pi }
10: end if
11: end for

Algorithm 1 shows the procedure of generating lossy-compressed
position list. We first cluster the nearby positions by their gaps,
and then use a centralized position (centroid) to represent clustered
positions. The centroid of a cluster is calculated by first summing
up all values in the cluster, and then divided by cluster size.

Table 1 gives an example of our adaptive lossy compression
method and Var(64) proposed in [3]. In this example, the clustering
threshold of our method is 11. Var(64) equally divides the document
(653 words) into 64 buckets and represents each bucket with its ID.
We see that Var(64) scales positions into a smaller range, while our
centroid-based representation retains the approximate position of
a cluster and keep the overall distribution of all clusters.

Table 1: An example of adaptive lossy compression.

Uncompressed 2, 10, 17, 22, 66, 71, 82, 93, 100, 125, 561, 641, 643
Adaptive(11) 12, 68, 82, 96, 125, 561, 642

Var(64) 0, 1, 2, 6, 8, 9, 12, 54, 62, 63

The key point of our method is to adaptively choose appropriate
granularity (clustering threshold) for each position list. Since a
position list is the positions that a term occurs in a document, we
assume that the threshold should be determined by two factors: the
importance of the term and the length of the document. Based on the

above consideration, we propose formula (1)-(3) to determine the
threshold using Inversed Document Frequency(IDF) and document
length. IDF is commonly used to evaluate the importance of a term.
IDF (t) = loд(N /Nt), where Nt is the number of documents in
which the term t appears, and N is the number of documents in
the whole collection.

document_f actor = [loд10(document_lenдth)]a (1)

term_f actor =
IDF

b
+ c (2)

threshold =
document_f actor
term_f actor

(3)

Document length varies from tens to tens of thousands, so we
first scales document length by logarithmic and power function.
Parameter a is used to adjust the influence of the two functions in
formula (1). IDF is linearly transformed to a reasonable range in for-
mula (2). Formula (3) combines the two factors together. Intuitively,
it is better to keep more positional information if the position list
belongs to an important term. That is to say, the more important a
term is, the smaller its threshold should be. Consequently, threshold
is inversely proportional to IDF.

a, b, c are tunable parameters, which are trained by hill climbing
search to directly optimize mean average precision. The parameters
are trained by starting at a = b = 1, c = 0. We sequentially split
10% of query set for parameter training. In our experiments, a, b, c
is 3, 4, 0.5 respectively.

5 EXPERIMENTAL RESULTS
5.1 Experimental setup
We use two query sets, which is the Million Query 2007 (MQ2007)
Million Query 2008 (MQ2008). The Million Query track used GOV2
collection of documents. The two query sets consists of queryID,
docID and <queryID, docID> relevance judgment. We filter out
invalid queries that have no relevant document. Information of
dataset is listed in Table 2.

Table 2: Dataset information.

MQ2007 MQ2008
#query 1454 564
#doc 59559 12102

#position list 190386 46399

Indexes were constructed by Lucence. Experiments are per-
formed on a server with Intel Xeon processors (E5-2603 1.6GHz),
256GB RAM. All experiments are performed on a single core.

We choose three types of baselines, which is uncompressed,
lossless-compressed and lossy-compressed positional index. For
lossless method, we choose Simple16 and VByte, which are com-
monly used in inverted index compression[2]. For lossy method,
we choose previous solutions that split each document into buckets
and represent each bucket with its ID. Variable-width method with
buckets number b is denoted as Var(b), and fixed-width method
with bucket sizew is denoted as Fixed(w). The value of b andw is in
consistency with the experiment in [3]. Experiments are conducted

Session: Short - Information Retrieval CIKM ’19, November 3–7, 2019, Beijing, China

2318

by applying SDM and FDM retrieval model on the positional data
generated by baselines and our method. For fair comparisons, we
tune parameter settings to optimize retrieval effectiveness for both
baselines and our method.

Experimental results are evaluated in terms of index size, ranking
efficiency and effectiveness1.

5.2 Index Size

0 20 40 60 80 100

Adaptive

Var(8)

Var(16)

Var(32)

Var(64)

Fixed(10)

Fixed(20)

Fixed(30)

Fixed(40)

Fixed(50)

Simple16

VByte

Compression rate (%)

MQ2007 MQ2008

Figure 1: Compression rate of baselines and our method.

Figure 1 shows the compression rate of baselines and our adap-
tive method. Bars plot compression rate, thus shorter is better. We
observe that the compression rate of our method is close to lossless
compression method Simple16 and VByte. Among all lossy base-
lines, Var achieve smaller indexes than Fixed. As expected, index
size increases with the growth of bucket number b and the decline
of bucket sizew respectively. The compression rate of our method is
smaller than Fixed and bigger than Var. The two query sets exhibit
similar results on compression rate.

A secondary compression by coding bucket ids was performed
in [3], which is not included in our experiment. We only evaluate
the lossy-compression procedure.

5.3 Ranking Efficiency
In efficiency experiments, we collect the time to compute term
proximity, which is when position data are being used. Figure 2
illustrates the averaged time of the proposed method and baselines.
The MQ2007 and MQ2008 query sets exhibit similar results, so

1We do not compare the results of lossless methods in efficiency and effectiveness
experiments for space reasons. In terms of efficiency, lossless compressed index is
not competitive compared with uncompressed index because of the decompressing
procedure. In terms of effectiveness, lossless compressed index yields the same ranking
accuracy with uncompressed one.

0 2 4 6 8 10 12

Adaptive

Uncompressed

Var(8)

Var(16)

Var(32)

Var(64)

Fixed(10)

Fixed(20)

Fixed(30)

Fixed(40)

Fixed(50)

Averaged query processing time (ms)

SDM FDM

Figure 2: Averaged execution time of baselines and our
method.

we only plot results on MQ2007 for space reasons. As expected,
execution time is positively correlated with size of positional index.
Fewer positions lead to less calculation, thus Var(8) consumes the
least execution time. Our adaptive method achieves comparable
time to Var, and less time than Fixed and uncompressed strategies.

We also observe that Fixed(10) consumes more time than the un-
compressed strategy, although the data size of Fixed(10) is smaller
than the uncompressed one. As introduced in Section 3, new feature
functions are proposed for Fixed and Var, which include additional
calculations on buckets. As a result, the efficiency of computing
term proximity is hindered. Compared with Var and Fixed that rep-
resent positions by bucket-ids, our centroid-based representation
retains the approximate position of a cluster so that the overall
distribution of all clusters is kept. As a result, our strategy can
be directly used in dependency models without changing feature
functions.

5.4 Ranking Effectiveness
Ranking Effectiveness is measured by mean precision at 1 (MP@1)
and mean average precision (MAP). The results are listed in Table 3.
Significant tests are performed between the proposed method and
all baselines.

In Table 3, we observe that the proposed adaptive strategy consis-
tently achieves the highest ranking accuracy. Among the baselines,
Fixed outperforms the uncompressed and Var strategies in most
cases. It seems that Var is uncompetitive compared with the un-
compressed one because it hurts ranking accuracy sometimes.

When we examine overall performance, we find that Var(8)
achieves the smallest positional index, the least execution time,
but the worst ranking accuracy. In contrast, Fixed(10) achieves the
largest positional index, the most execution time, but better ranking
accuracy. This is expected that smaller positional index keeps fewer

Session: Short - Information Retrieval CIKM ’19, November 3–7, 2019, Beijing, China

2319

Table 3: Ranking accuracy (MAP, MP@1) of baselines and the proposedmethod. Bold, + and ∗ indicates statistically significant
improvements of adaptive method over the uncompressed, Var, and Fixed strategy respectively, according to the Fisher’s ran-
domization (p<0.05). Percentage improvements of adaptive method over the uncompressed baseline are shown in parenthesis.

MQ2007 MQ2008
FDM SDM FDM SDM

MP@1 MAP MP@1 MAP MP@1 MAP MP@1 MAP
Uncompressed 0.5107 0.5389 0.4962 0.5268 0.5922 0.6561 0.5869 0.6513

Var(8) 0.5107 0.5247 0.4931 0.5176 0.5975 0.6534 0.6046 0.6501
Var(16) 0.5076 0.5307 0.5038 0.5240 0.6152 0.6573 0.6046 0.6550
Var(32) 0.5084 0.5351 0.5084 0.5255 0.5993 0.6557 0.5833 0.6460
Var(64) 0.4985 0.5342 0.4893 0.5219 0.6011 0.6563 0.5887 0.6468
Fixed(10) 0.5268 0.5427 0.4977 0.5247 0.5922 0.6614 0.5887 0.6534
Fixed(20) 0.5145 0.5419 0.4962 0.5292 0.5904 0.6614 0.5816 0.6526
Fixed(30) 0.5145 0.5435 0.4901 0.5297 0.5851 0.6608 0.5922 0.6557
Fixed(40) 0.5245 0.5437 0.4985 0.5314 0.5957 0.6592 0.5993 0.6572
Fixed(50) 0.5321 0.5471 0.5115 0.5361 0.5975 0.6601 0.6046 0.6569
Adaptive 0.5329+ 0.5475+ 0.5260+∗ 0.5390+∗ 0.6401 0.6778+∗ 0.6312 0.6730+∗

(+4.35%) (+1.60%) (+6.00%) (+2.32%) (+8.09%) (+3.31%) (+7.55%) (+3.33%)

positions, resulted in less calculation and losing more positional
information, while larger index is on the contrary. Compared with
Var(64) which is comparable to our method in terms of data size
and execution time, our method achieves improvements of up to
7.5% in MP@1 and 4% in MAP. Overall, the proposed adaptive lossy-
compression method achieves the best balance on data size, ranking
efficiency and effectiveness.

We delve deeper into the reason that our method achieves bet-
ter effectiveness than uncompressed and other strategies. As we
introduced, term dependency models achieve higher ranking accu-
racy in most cases. Meanwhile, utilizing term proximity inevitably
brings noise into document ranking. Previous research [8] held
similar opinion that utilizing term proximity was not suitable for
all queries. The high ranking accuracy of our method indicates that
our approach reduces noise brought by term proximity to a certain
extent while retaining important positional information.

As for the two dependency models used in this paper, we see
that FDM consumes more time (figure 2), but consistently yields
better retrieval effectiveness (table 3). It can be explained that SDM
only incorporates proximity of adjacent term pairs of a query, while
FDM incorporates all term pairs of a query. Consequently, FDM
leverages more proximity features of a query, thus achieves better
effectiveness. Meanwhile, FDM is inherently more computationally
complex than SDM.

6 CONCLUDING REMARKS
Utilizing term dependence is beneficial for effective retrieval. How-
ever, it brings inevitable storage and computing costs by using
positional data of inverted indexes. In this paper2, we hypothesize
that not all exact positions have to be stored. Motivated by the clus-
tering property of term positions, we design a lossy compression
method for positional index that replaces clustered positions with

2This work is partially supported by NSFC (61872201, 61702521, 61602266,
U1833114); STDPof Tianjin (17JCYBJC15300, 16JCYBJC41900, 18ZXZNGX00140,
18ZXZNGX00200); and Fundamental Research Funds for Central Universities,
TKLNDST.

a centralized value. Moreover, clustering granularity is adaptively
determined by term importance and document length.

Experiments are carried by two dependencymodels on two query
sets. Experimental results show that the proposed method achieves
the highest ranking accuracy, with competitive index size and exe-
cution time. Moreover, further analysis on effectiveness indicates
that the proposed method reduces noise brought by term proximity
to some extent while retaining important positional information.

In the future, more methods are going to be tried to optimal
the formulas. Second, we will try to apply our method into real
world applications. Moreover, the proposed lossy method can be fur-
ther applied to other filed involving position data, such as passage
retrieval.

REFERENCES
[1] Leonidas Akritidis and Panayiotis Bozanis. 2012. Positional Data Organization and

Compression inWeb Inverted Indexes. InDatabase and Expert Systems Applications
- 23rd International Conference, DEXA 2012, Vienna, Austria, September 3-6, 2012.
Proceedings, Part I. 422–429.

[2] Matteo Catena, Craig Macdonald, and Iadh Ounis. 2014. On Inverted Index Com-
pression for Search Engine Efficiency. In Advances in Information Retrieval - 36th
European Conference on IR Research, ECIR 2014, Amsterdam, The Netherlands, April
13-16, 2014. Proceedings. 359–371.

[3] Tamer Elsayed, Jimmy J. Lin, and Donald Metzler. 2011. When close enough is
good enough: approximate positional indexes for efficient ranked retrieval. In
Proceedings of the 20th ACMConference on Information and KnowledgeManagement,
CIKM 2011, Glasgow, United Kingdom, October 24-28, 2011. 1993–1996.

[4] Donald Metzler and W. Bruce Croft. 2005. A Markov random field model for term
dependencies. In Proc. SIGIR. 472–479.

[5] Alistair Moffat and Lang Stuiver. 2000. Binary Interpolative Coding for Effective
Index Compression. Inf. Retr. 3, 1 (2000), 25–47.

[6] Giuseppe Ottaviano and Rossano Venturini. 2014. Partitioned Elias-Fano indexes.
In The 37th International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’14, Gold Coast , QLD, Australia - July 06 - 11, 2014.
273–282.

[7] Hao Yan, Shuai Ding, and Torsten Suel. 2009. Compressing term positions in web
indexes. In Proceedings of the 32nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 2009, Boston, MA, USA,
July 19-23, 2009. 147–154.

[8] Ju Yang, Jiancong Tong, Rebecca J. Stones, Zhaohua Zhang, Benjun Ye, GangWang,
and Xiaoguang Liu. 2016. Selective Term Proximity Scoring Via BP-ANN. SIGIR
Neu-IR abs/1606.07188 (2016).

Session: Short - Information Retrieval CIKM ’19, November 3–7, 2019, Beijing, China

2320

	Abstract
	1 Introduction
	2 related work
	3 Term Dependency Model
	4 The proposed method
	5 Experimental results
	5.1 Experimental setup
	5.2 Index Size
	5.3 Ranking Efficiency
	5.4 Ranking Effectiveness

	6 Concluding remarks
	References

