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1 Reliability Equations for Cloud Storage Systems
2 with Proactive Fault Tolerance
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4 Abstract—As cloud storage systems increase in scale, hard drive failures are becoming more frequent, which raises reliability issues.

5 In addition to traditional reactive fault tolerance, proactive fault tolerance is used to improve a system’s reliability. However, there are

6 few studies which analyze the reliability of proactive cloud storage systems, and they typically assume an exponential distribution for

7 drive failures. This paper presents closed-form equations for estimating the number of data-loss events in proactive cloud storage

8 systems using RAID-5, RAID-6, 2-way replication, and 3-way replication mechanisms, within a given time period. The equations model

9 the impact of proactive fault tolerance, operational failures, failure restorations, latent block defects, and drive scrubbing on the systems

10 reliability, and use time-based Weibull distributions to represent processes (instead of homogeneous Poisson processes). We also

11 design a Monte-Carlo simulation method to simulate the running of proactive cloud storage systems. The proposed equations closely

12 match time-consuming Monte-Carlo simulations, using parameters obtained from the analysis of field data. These equations allow

13 designers to efficiently estimate system reliability under varying parameters, facilitating cloud storage system design.

14 Index Terms—proactive fault tolerance, cloud storage systems, reliability, time-variant failure rates, latent block defects

Ç

15 1 INTRODUCTION

16 MODERN-DAY data centers usually host hundreds of
17 thousands of servers, using hard drives as the primary
18 data storage device. Many challenges are faced for such large
19 data center management [1], [2]. The failure of an individual
20 hard drive might be rare, but a system with thousands of
21 drives will regularly experience failures [3], [4], [5], [6]. Drive
22 failure can result in service unavailability, hurting the user
23 experience, and even permanent data loss. Therefore, high
24 reliability is one of the biggest concerns in such systems.
25 Traditional cloud storage systems adopt redundancy, e.g.,
26 erasure codes and replication, to reconstruct data when drive
27 failure occurs, which is known as reactive fault tolerance. To
28 provide satisfactory reliability in large-scale cloud storage
29 systems with high failure frequency, multi-erasure codes (or
30 multiple replicas) must be used, which brings high construc-
31 tion and maintenance cost and heavy read/write overhead.
32 Thus, reactive fault tolerance alone cannot meet the demands
33 of the high reliability and service quality in modern data cen-
34 ters. Proactive fault tolerance [7], [8], [9], [10], [11], [12], [13],
35 [14], [15], [16], [17] instead predicts drive failures and handles
36 them in advance; with sufficient prediction accuracy and

37effective warning handling, it can significantly enhance the
38system reliability and reduce costs.
39When designing proactive cloud storage systems and
40tweaking parameters to optimize performance, designers
41must consider factors such as coding redundancy, failure pre-
42diction, the amount of bandwidth used to reconstruct or
43migrate data after a drive fails or is predicted to fail, and drive
44scrubbing for eliminating block defects. As such, designers
45could benefit from an accurate and easy-to-use way to assess
46the effects of these factors on overall reliability.
47So far there are only a few relevant studies which analyze
48the reliability of proactive cloud storage systems [11], [18],
49[19]. There are some drawbacks to the current research: (a)
50Inaccurate failure distribution models—the reliability esti-
51mates are based on the assumption that both hard drive
52failures and their repairs follow a homogeneous Poisson
53process with constant failure and restoration rates, which
54was contested in [20], [21], [22], [23]. (b) Incomplete consid-
55eration of failures—focusing on whole-drive failures, with-
56out incorporating latent block level failure mode, which,
57with increases in single-drive and whole-system capacity,
58can not be ignored [24]. (c) Unrealistic reliability metric—
59mean time to data loss (MTTDL) is excessive relative to the
60actual run time of cloud storage systems and does not ade-
61quately reflect reliability [25].
62One could simulate the system to assess reliability more
63accurately, but at the expense of usability, which would
64require specialized code, extensive computation, and is
65time consuming. It is preferable to have reliability equations
66which are easy to use, applicable to different configurations
67and executed quickly, especially when frequently tweaking
68the parameters of a cloud storage system where the exe-
69cuted workload and rates of failures, warnings, etc., fluctu-
70ate over time.
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71 Elerath et al. defined two reliability equations for reac-
72 tive RAID-5 [22] and RAID-6 [23] groups without disk
73 failure prediction. In this paper, we extend the work to
74 proactive RAID systems and proactive replication systems
75 with disk failure prediction; in these settings the reliabil-
76 ity analysis is more intricate due to the need to factor in
77 failure prediction and replica dispersal. We make two
78 main contributions: (a) to incorporate drive failure predic-
79 tion, we modify the calculation for the cumulative hazard
80 rate and drive availability; and (b) to incorporate replica
81 dispersal, we mathematically derive the probability of
82 data loss.
83 Specifically, this work generalizes the equations by
84 Elerath et al. [22], [23] for assessing the reliability of proac-
85 tive RAID-5 and RAID-6 systems, and we further propose
86 two new equations for assessing the reliability of proactive
87 2-way replication, and 3-way replication systems; these four
88 systems are the most commonly used methods in current
89 data centers. The equations allow for expressions of time-
90 dependent failure and restoration rates, and incorporate
91 block defects, media scrubbing processes, and proactive
92 fault tolerance on reliability. We also design an event-driven
93 Monte-Carlo-based simulation method to simulate cloud
94 storage systems with proactive fault tolerance. The pro-
95 posed equations and simulations are consistent with one
96 another. Using these equations, system designers can easily
97 assess trade-offs, compare schemes, and understand the
98 effects of the parameters on the overall cloud storage system
99 reliability, allowing them to better design and optimize

100 infrastructures.
101 The rest of the paper is organized as follows: Section 2
102 describes the relevant background knowledge. The equations
103 we present are listed in Table 1, and their derivation is given
104 in Section 3. We evaluate their accuracy versus simulations in
105 Section 4, and explore these systems’ sensitivity to varying
106 parameters. Section 5 describes some limitations and the effi-
107 cacy of themodels.

1082 BACKGROUND

1092.1 Related Work

110Reliability, the focus of this paper, is one of the most impor-
111tant aspects of storage systems and has been studied exten-
112sively, especially for RAID systems.

113Gibson et al. [26] found that hard drive failure rates typi-
114cally followed a “bathtub curve”. However they still
115considered the exponential distribution a useful simplifying
116assumption for modeling drive failure events. Recently,
117researchers found that drive failure events were not ade-
118quately modeled by homogeneous Poisson processes [20],
119[21], [22], [23], and some other work focus on device
120failure [27].
121In this paper, we use Weibull distributions for modeling
122drive failure events. This is motivated by Schroeder and
123Gibson [20], who found that hard drive failure rates were
124not constant with age, and recommended the Weibull distri-
125bution for modeling drive failure, which can account for
126both “infant mortality” and aging drives.

127Elerath et al. defined two equations for assessing the reli-
128ability of RAID-5 [22] and RAID-6 [23] groups, and these
129papers form the basis of the equations proposed in this
130paper. Greenan et al. [28] argued that MTTDL was a bad
131reliability metric, and Elerath et al. went so far as to say it
132should be “put to rest”. However, Iliadis and Venkate-
133san [29] offered a rebuttal. In this paper, we use the
134expected number of data loss events to measure reliability,
135consistent with Elerath et al. Elerath et al.’s equations use
136time-dependent failure and repair rates and included the
137contributions of both sector defects and data scrubbing.
138They considered RAID groups without disk failure predic-
139tion. In this work, we extend this work to include (a)
140proactive fault tolerance and (b) replication systems.
141For proactive cloud storage systems, there are only a few
142studies focusing on their reliability. Eckart et al. [18] used
143Markovmodels to demonstrate the effect of failure prediction

TABLE 1
Mathematical Models for the Expected Number of Data Loss Events in RAID-5, RAID-6, 2-way Replication,

and 3-way Replication Systems, Each With Proactive Fault Tolerance
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144 has on a system’s MTTDL. They devised models for a single
145 hard drive, RAID-1, and RAID-5 with proactive fault toler-
146 ance. Li et al. extended this study to RAID-6 groups [11] and
147 replication systems [19]. However, there are some drawbacks
148 in those studies on reliability of proactive systems (as men-
149 tioned in the introduction), whichwe overcome in this paper.

150 2.2 Drive Failure Modes

151 Intermittent failure is the most common mode of failure. In
152 this case, a drive or some sectors cannot be accessed tempo-
153 rarily, and are often restored by retrying several times.
154 Latent block defects are commonly caused by latent sector
155 errors, a permanent inability to access data from certain sec-
156 tors (possibly due to physical defects e.g., a scratch), and
157 data corruption, where data stored in a block are incorrect.
158 Latent sector errors are not reported by the drive until the
159 particular sector is accessed. Data corruption can not be
160 reported by the drive even when a defective block is read; it
161 is silent and could have greater impact than other errors.
162 To detect and protect data against the block defects,
163 cloud storage systems usually perform drive scrubbing
164 during idle periods. Drive scrubbing is a background pro-
165 cess that proactively reads and checks data from all drive
166 blocks. If a defective block is detected, the system recon-
167 structs the corrupted content from the available data. The
168 time required to scrub an entire drive varies with the drive
169 capacity and the drive scrubbing rate.
170 A serious type of failure is an operational failure, where a
171 whole drive is permanently no longer accessible. Such fail-
172 ure can be repaired only by replacing the drive. Proactive
173 fault tolerance only protects against data loss caused by
174 operational failures.
175 When an operational failure occurs, the cloud storage
176 system initiates a rebuild process during which it restores
177 the missing data using the accessible surviving data. The
178 rebuild time depends on the amount of data that is trans-
179 ferred during the process, and the data transfer rate. More-
180 over, to maintain the quality of user service, usually only a
181 fraction of the total bandwidth available is used for a
182 rebuild process. As such, the rebuild time will also be influ-
183 enced by the foreground activity.
184 Only the last two failure types—latent block defects and
185 operational failures—impact a storage system’s reliability,
186 so we focus on them in this paper.

187 2.3 Proactive Fault Tolerance

188 Self-Monitoring, Analysis, and Reporting Technology
189 (SMART) is implemented within modern hard drives [30].
190 SMART monitors and compares drive attributes with pre-
191 set thresholds, and issues warnings when attributes exceed
192 the thresholds. As a result, systems can act in advance of
193 drive failures, such as by migrating data. This typifies
194 proactive fault tolerance, which fundamentally improves
195 system reliability.
196 Moreover, to improve prediction accuracy, statistical and
197 machine learning methods have been proposed to build
198 hard drive failure prediction models based on SMART
199 attributes [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
200 some of which achieve good prediction performance, which
201 is reasonable to use in practice.

202Existing drive failure prediction models are mostly only
203able to predict operational failures in advance; block-defect
204prediction models are at an early stage in development and
205do not have suitable practical performance. For example,
206recent work by Mahdisoltani et al. [31] does not predict the
207location of block defects, but only if a disk will incur a
208block defect. Currently, drive scrubbing and reactive fault
209tolerance are used to cope with block defects. Thus, this
210paper only considers the prediction of operational failures
211(and not the prediction of block defects).
212In a proactive cloud storage system, a drive failure pre-
213diction model runs in the background and monitors the
214drives in real time (with a minor resource cost [14], [16]),
215periodically outputting their health states (such as once an
216hour). When an alarm is raised by the model, the data on an
217at-risk drive is ordinarily migrated (or backed up) to
218healthy drives immediately.
219There are two prediction deployment schemes: (a)
220intra-drive prediction, in which the backups are dealt
221with locally by the drive; and (b) intra-system prediction,
222in which backups are dealt with by the system. The latter
223has greater flexibility, so we study proactive cloud stor-
224age systems with intra-system prediction. Since failure
225prediction eliminates most drive failures, it reduces the
226rate of data loss events.
227In this paper, we use a simple model for proactive fault
228tolerance, where a proportion of drives that are about to fail
229are predicted to fail in advance; the proportion is called the
230failure detection rate (FDR). Rebuild processes for drives that
231are predicted to fail are assumed to be completed before
232failure actually occurs.

2332.4 Reactive Fault Tolerance

234In a real-world setting, some drives will inevitably incur
235operational failure in proactive cloud storage systems since
236the FDR will not be 100 percent and it takes time to
237migrate data. It is therefore necessary for proactive cloud
238storage systems to also use reactive fault tolerance to ensure
239reliability. In this paper, we include four different reactive
240fault tolerance methods: RAID-5, RAID-6, 2-way replication,
241and 3-way replication.
242In the presence of reactive fault tolerance, data loss
243requires simultaneous operational failures and/or block
244defects. Moreover, these failures will not result in data
245loss if rebuilding has finished and/or scrubbing has taken
246place.
247RAID-5 and RAID-6 are popular RAID schemes, in
248which hard drives are arranged in RAID groups of g drives.
249Data stripes are spread across multiple drives and are
250accessed in parallel. Each stripe of a RAID-5 group can
251tolerate a single failure—an operational failure or block
252defect—but data loss may occur as the result of simulta-
253neous failures. Each stripe of a RAID-6 group can tolerate
254any two failures.
255In a replication cloud storage system, each data block has
256a certain number of replicas, and the replicas are dispersed
257over different nodes to improve the probability of blocks
258available when multiple nodes fail concurrently. Replica-
259tion systems have two storage properties: no two replicas of
260a data block are stored on the same node; and replicas of a
261data block must be found on at least two racks.

LI ET AL.: RELIABILITY EQUATIONS FOR CLOUD STORAGE SYSTEMS WITH PROACTIVE FAULT TOLERANCE 3



IEE
E P

ro
of262 2.5 Weibull Distribution

263 In a real-world setting, drive failure rates typically follow a
264 “bathtub curve” with high failure rates at the beginning and
265 the end of a drive’s life-cycle [32]. Fig. 1 depicts the failure
266 rate for a hard drive’s life-cycle [32], [33], [34]: after the
267 initial infant mortality, the failure rate enters in low-risk
268 state and starts to wear out after 5 to 7 years. Schroeder and
269 Gibson [20, Fig. 8] subsequently found the Weibull distribu-
270 tion is a suitable fit for the empirical cumulative distribution
271 function of time between drive replacements observed in a
272 field-gathered dataset, while the exponential distribution
273 provides a poorer fit.
274 The time required for restoring data after an operational
275 failure (or scrubbing an entire drive) depends on the drive’s
276 capacity and the data transfer rate of the drive (or the rate of
277 media scrubbing). To improve the reliability of cloud stor-
278 age systems while maintaining a quality user service, the
279 data transfer rates for repairing (and scrubbing rates) are
280 adjusted according to the foreground activity, with high
281 rates when idle and low rates when busy [23]. This was veri-
282 fied by Elerath and Schindler [23, Figs. 3, 4, 5, Tab. III], who
283 found the Weibull distribution is also a suitable match for
284 time-to-failure, time-to-repair, and scrubbing-time distribu-
285 tions derived from field data.
286 Therefore, we use the 2-parameter Weibull distribution
287 to model occurrences of failures, rebuilds, and scrubbing in
288 a cloud storage system. For parameters a and b in the Wei-
289 bull distribution, the probability density function f , cumu-
290 lative density function F , hazard rate h, and cumulative
291 hazard rateH are given as follows:

fðtÞ ¼ b
tb�1

ab
expð�ðt=aÞbÞ; (1)293293

294

F ðtÞ ¼ 1� expð�ðt=aÞbÞ;

hðtÞ ¼ b
tb�1

ab
; and

HðtÞ ¼ tb

ab
:

(2)

296296

297 (See e.g., [35, Sec. 3.1.1].) The parameter a is the scale parame-
298 ter denoting the characteristic life, and b is the shape parame-
299 ter controlling the shape of the distribution.
300 Weibull distributions are used to express various time-
301 dependent distributions with increasing, decreasing, or con-
302 stant occurrence rates. If b > 1, the hazard rate h increases
303 over time, i.e., the probability of an operational failure

304increases, simulating an aging cloud storage system. With
3050 < b < 1, we model a system with “infant mortality”, and
306with b ¼ 1 we have the traditional exponential distribution.
307The parameter a gives the characteristic life of drives. Youn-
308ger drives may have a decreasing failure rate, while the
309older drives may have increasing failure rates.
310We compare models using the cumulative hazard rate,
311i.e., the expected number of failure events from time 0. For a
312proactive cloud storage system, however, we assume that
313all drives that are classified as at risk of failure have suffi-
314cient time in advance, i.e., the time between warning and
315actual failure. Thus, for proactive cloud storage systems, we
316scale the cumulative hazard rate accordingly:

ĤðtÞ :¼ ð1� FDRÞ t
b

ab
; (3)

318318

319where FDR is the failure detection rate. The function Ĥ
320instead gives the expected number of failure events from
321time 0 which are not predicted in advance.
322A drive’s availability is the proportion of time it can pro-
323vide service to its users. The availability of a drive in the pres-
324ence of operational failures, can be estimated using [23], [36]:

AopðtÞ :¼ apðtÞ
apðtÞ þMTTR

;

326326

327where MTTR denotes the mean time to repair a drive after an
328operational failure, and ap is the drive pseudo-characteristic
329life, modeled by

apðtÞ ¼ ab

tb�1
;

331331

332where a and b are the parameters of the Weibull distribu-
333tion for operational failures, and t is time.
334For proactive cloud storage systems, we adjust this to
335account for operational failure prediction:

ÂopðtÞ :¼ apðtÞ
apðtÞ þ ð1� FDRÞMTTR

; (4)

337337

338as only unpredicted operational failures need to be repaired.
339Since the system has intra-system prediction, proactive fault
340tolerance does not affect the pseudo-characteristic life of
341drives.
342We also use a 2-parameter Weibull distribution to model
343occurrences of block defects, restorations, and scrubbing in
344a cloud storage systems (block defects are not predicted in
345advance). The steady-state availability of drives in the pres-
346ence of block defects is modeled in [36] by

Adef :¼
MTTB

MTTBþMTTS
; (5)

348348

349where MTTB denotes the mean time to block defect, and
350MTTS denotes the mean time to scrubbing, i.e., the mean time
351between drive scrubbings.
352For the Weibull distribution, Eq. (1), we have

MTTR ¼ aGð1þ 1=bÞ; (6) 354354

Fig. 1. Depicting the typical “bathtub curve” behavior of hard-drive failure
rates, deduced in [34] from drives in the field.
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Gð1þ 1=bÞ ¼
Z 1

0

x1=be�x dx:

357357

358 The values of MTTB and MTTS are also calculated as per
359 Eq. (6), with appropriate parameters (listed in Table 2 for
360 our experiments).

361 3 MATHEMATICAL MODELS

362 In this section, we derive equations for the expected number
363 of data loss events within a period of time, for RAID-5,
364 RAID-6, 2-way replication, and 3-way replication systems,
365 each with proactive fault tolerance. The equations are listed
366 in Table 1.

367 3.1 Proactive RAID Systems

368 If an operational failure or block defect occurs for a RAID
369 group, the group is said to be in degraded mode. Degraded
370 mode triggered by an operational failure initiates a rebuild
371 process to repair the failure, whereas degraded mode as a
372 result of a block defect will be resolved in the course of
373 scrubbing.
374 Consistent with [22], [23], we consider a sequence of fail-
375 ures as negligible if (a) it requires two or more block defects,
376 as it is improbable that two block defects simultaneously
377 occur which affect the same data on two separate drives (with
378 the number of blocks per drive typically in the tens of thou-
379 sands), and (b) if the only surviving copy of a block is lost
380 through a block defect, as the time between block defects
381 (usually thousands or even tens of thousands of hours) is
382 much larger than the rebuild time (typically tens of hours).
383 The expected number of data loss events in time period t
384 in a stripe is thus modeled by:

Pr
being at risk of data
loss by op. failure

� �
�

no. ways in which an
op. failure could result

in data loss

 !
� ĤðtÞ;

386386

387 where ĤðtÞ is the adjusted cumulative hazard rate given in
388 Eq. (3).
389 Modifying [22, Eq. 5], we estimate the expected number
390 of data loss events in a g-drive RAID-5 group within a time
391 period t as

NR5ðtÞ :¼ ðRop þRdef Þ ðg� 1Þ ĤðtÞ; (7)393393

394where Rop ¼ 1� Âg
op is the probability of the group having

395at least one operational failure and Rdef ¼ 1�Ag

def
is the

396probability of the group having at least one block defect.
397Here, Âop is the adjusted availability of a drive in the pres-
398ence of operational failures given in Eq. (4), and Âg

op is the
399probability of all the g drives having no operational failure at
400a given time. After a drive fails, the remaining g� 1 drives are
401subject to operational failure, thereby giving Eq. (7).
402Again modifying [23, Eq. 5], we estimate the expected
403number of data loss events in a g-drive RAID-6 group
404within a time period t as

NR6ðtÞ :¼ ðRop-op þRop-defÞ ðg� 2Þ ĤðtÞ; (8)
406406

407where Rop-op is the probability of the group having at least
408two operational failures, so

Rop-op ¼ Prðat least 2 op. failsÞ
¼ 1� Prðno op. failÞ � Prðexactly 1 op. failÞ
¼ 1� Âg

op � g Âg�1
op ð1� ÂopÞ

410410

411and Rop-def is the probability of the group having at least
412one operational failure and one block defect on two distinct
413drives, so

Rop-def ¼ Pr
at least 1 op. fail and 1 block

defect on two distinct drives

� �

’ 1� Prðno op. failÞ � Prðno block defectÞ
þ Prðno op. fail and no block defectÞ

¼ 1� Âg
op �Ag

def
þ ðÂopAdefÞg: 415415

416

417For proactive RAID systems, we use the adjusted drive
418availability Âop and cumulative hazard rate ĤðtÞ to account
419for operational failure prediction in Eqs. (7) and (8), rather
420than Aop andHðtÞ in [22, Eq. 5] and [23, Eq. 5], respectively.
421When the failure detection rate FDR ¼ 0, Eqs. (7) and (8)
422become [22, Eq. 5] and [23, Eq. 5], respectively, as in reactive
423RAID systems.

4243.2 Proactive Replication Systems

425In a replication system,we use r to denote the number of racks,
426n to denote the number of nodes in each rack, d to denote the
427number of drives in each node, and b to denote the number of
428blocks on each drive. There are thus rnd drives in total.
429After an operational failure or block defect, we say the
430system enters degraded mode during the rebuild or scrubbing
431process. Note, this definition of “degraded mode” is distinct
432from that for RAID groups: for replication, we consider all
433of the rnd drives in the system (whereas for RAID, we con-
434sider those within a group separately). As such, we no lon-
435ger consider if the system has block defects, but how many
436block defects it has.

4373.2.1 Proactive 2-Way Replication

438In a 2-way replication system, every data block has two cop-
439ies, and the two copies must be stored on two separate
440racks. We call such an arrangement a replica pair. Given a
441drive, we can choose any of the ðr� 1Þnd drives on different
442racks to extend it to a replica pair.

TABLE 2
Parameters of the Weibull Distributions [23]

Drive A Drive B Drive C

SATA SATA FC/SCSI

Operational failure af 302;016 4;833;522 1;058;364
bf 1.13 0.576 0.721

Latent block defect al 12;325 42;857 50;254
bl 1 1 1

Rebuild time ar 22.7 20.25 6.75
br 1.65 1.15 1.4

Scrubbing time as 186 160 124
bs 1 0.97 2.1

LI ET AL.: RELIABILITY EQUATIONS FOR CLOUD STORAGE SYSTEMS WITH PROACTIVE FAULT TOLERANCE 5
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443 Suppose both drives in a replica pair incur operational
444 failures, and drive D is one of them. The probability that a
445 data block x onD is also stored on the other failed drive is

p ¼ 1

ðr� 1Þnd ;
447447

448 assuming duplicate blocks are stored in random replica pairs.
449 The probability that no block on D is lost (i.e., not stored
450 on the other failed drive) is ð1� pÞb, so the probability of
451 data loss caused by these two concurrent failures is

P2-way ¼ 1� �1� p
�b
;

¼ 1�
�
1� 1

ðr� 1Þnd
�b
:

(9)
453453

454

455 Data loss can only occur when at least two racks simulta-
456 neously have corrupted data due to operational failures or
457 block defects. As with RAID systems, we consider the case
458 of two block defects erasing shared data to be negligible.
459 Case (a): Two operational failures.
460 Assuming the system is in degraded mode due to an
461 operational failure of some drive on one rack, data loss
462 occurs with probability P2-way when there is a second oper-
463 ational failure on one of the ðr� 1Þnd drives on the other
464 racks. This situation is illustrated in Fig. 2.
465 Case (b): One operational failure and one block defect.
466 ‘Given the system has a block defect for block x, data loss
467 will occur when an operational failure occurs for the unique
468 second drive containing x. By definition, a drive has a block
469 defect with probability 1�Adef , so the expected number of
470 drives with block defects is ð1�AdefÞrnd. This situation is
471 illustrated in Fig. 3.
472 Combining cases (a) and (b), the expected number of data
473 loss events within a time period t is thus

N2-wayðtÞ ¼
�
P2-way ðr� 1ÞndDop þ rnd ð1�Adef Þ

�
ĤðtÞ;
(10)

475475

476 where
Dop ¼ 1� Ârnd

op (11)478478

479 is the probability of being in degraded mode due to an oper-
480 ational failure.

4813.2.2 Proactive 3-Way Replication

482In 3-way replication, each data block is stored 3 times, on 3
483distinct nodes, out of which 2 nodes are on the same rack
484and 1 node is on another rack. We call such an arrangement
485a replica set.

486Lemma 1. The number of replica sets is

rðr� 1Þ n

2

� �
nd3: 488488

489

490The number of replica sets containing a given drive is

3

2
ðr� 1Þnðn� 1Þd2: 492492

493

494The number of replica sets containing two given drives on
495different nodes in the same rack is ðr� 1Þnd.
496The number of replica sets containing two given drives on
497different racks is 2ðn� 1Þd.
498Proof. To count the number of replica sets, we pick one of
499the r racks, from which we choose two nodes (in one of
500n2ways), and one of the r� 1 other racks, from which we
501choose one of the n nodes, and from each of the three
502nodes, we choose one drive (in one of d3 ways). This gives
503the first claim in the lemma statement.
504Given a drive D, it can belong to two types of replica
505sets; the number of replica sets containing D and another
506drive in the same rack asD (but different node toD) is

ðn� 1Þd
zfflfflfflfflffl}|fflfflfflfflffl{

choose drive on
same rack as D

� ðr� 1Þnd
zfflfflfflfflfflffl}|fflfflfflfflfflffl{

choose drive on
different rack to D

508508

509and there are ðr� 1Þn2d2 replica sets containing D with
510the other two drives in a different rack to D. Summing
511these simplifies to give the second claim.
512For the third claim, given two drives on different
513nodes in the same rack, we can choose any of the
514ðr� 1Þnd drives on different racks to extend them to a
515replica set.
516For the fourth claim, given two drives on different
517racks, we can choose any of the 2ðn� 1Þd drives on dif-
518ferent nodes in those two racks to extend them to a rep-
519lica set. tu

Fig. 2. 2-way replication. We have an operational failure for some drive
D (i.e., degraded mode due to an operational failure). We lose data with
probability P2-way if an operational failure occurs on any drive on
another rack toD.

Fig. 3. 2-way replication. We have a block defect for block x. We will lose
x if an operational failure occurs to the unique second drive containing x.
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520 Suppose all the three drives in a replica set incur opera-
521 tional failures, and drive D is one of them. By the second
522 claim in Lemma 1, the probability of a block on D is also
523 stored on the other two failed drives is

pdup ¼ 2

3ðr� 1Þnðn� 1Þd2 :525525

526

527 Then the probability [37] of at least one data block being
528 lost caused by the concurrent failures is

P3-way ¼ 1� �1� pdup
�b
;

¼ 1�
�
1� 2

3ðr� 1Þnðn� 1Þd2
�b
:

(12)
530530

531

532 There are four situations in which data loss occurs as the
533 result of an additional operational failure, Cases I to IV in
534 the following.
535 Case I: Two operational failures in one rack.
536 For a given d-drive node, the probability of no drive in
537 that node incurring an operational failure is Âd

op: Conse-
538 quently, for a given n-node rack, the probability of opera-
539 tional failures occurring on at least two drives on different
540 nodes in that rack is

Frack :¼ 1� Prðno op. failsÞ � Pr
op. fails only

on one node

� �

¼ 1� ðÂd
opÞn � nðÂd

opÞn�1ð1� Âd
opÞ

542542

543 and the probability D
ð1Þ
op-op that at least one of the r racks

544 incurs operational failures on at least two drives on differ-
545 ent nodes in that rack is given by

D
ð1Þ
op-op ¼ 1� ð1� FrackÞn

¼ 1� �ðÂd
opÞn þ n ðÂd

opÞn�1ð1� Âd
opÞ
�r
:547547

548

549 Given two operational failures occurring on two drives
550 on different nodes in the same rack, an operational failure
551 on any one of the ðr� 1Þnd drives in the other racks causes
552 data loss with probability P3-way.
553 Case II: Two operational failures on different racks.
554 For a given rack, the probability of at least one drive
555 incurring an operational failure is 1� Ând

op: The probability
556 of at least two racks incurring an operational failure is thus

D
ð2Þ
op-op ¼ 1� Prðno op. failsÞ � Pr

exactly one rack

with op. fails

� �

¼ 1� Ârnd
op � r ðÂnd

opÞr�1ð1� Ând
opÞ:558558

559

560 Given two operational failures occurring in two different
561 racks, an operational failure on any one of the 2ðn� 1Þd
562 drives in those racks but in distinct nodes causes data loss
563 with probability P3-way.
564 Case III: An operational failure and a block defect on the
565 same rack.
566 This case is illustrated in Fig. 4. Given an operational fail-
567 ure, the expected number of drives on different nodes in the
568 same rack with block defects is

Prðblock def.Þ � ðno. such drivesÞ ¼ ð1�Adef Þðn� 1Þd:570570

571Given an operational failure for some drive D and a driveX
572on a different node in the same rack with defective block x,

Pr a copy of x
occurs in D

� �
¼ no. replica sets containing D and X

no. replica sets containing X

¼ 2

3ðn� 1Þd
574574

575by Lemma 1. Thus, given an operational failure for somedrive
576D, the expected number of drives on a different node in the
577same rackwith defective block xwhich also occurs onD is

2

3
ð1�AdefÞ: 579579

580

581Finally, given an operational failure for somedriveD and a
582drive on a different node in the same rackwith defective block
583x which also occurs on D, there is a unique drive on another
584rackwhichmust incur an operational failure to lose block x.
585Case IV: An operational failure and a block defect on the
586different racks.
587This case is illustrated in Fig. 5. Given an operational fail-
588ure, the expected number of drives in different racks with
589block defects is

ð1�AdefÞðr� 1Þnd:
591591

592Given an operational failure for some drive D and a driveX
593on a different rack with defective block x,

Pr a copy of x
occurs in D

� �
¼ no. replica sets containing D and X

no. replica sets containing

¼ 4

3ðr� 1Þnd
595595

596by Lemma 1. Thus, given an operational failure for some
597drive D, the expected number of drives on a different rack
598with defective block xwhich also occurs onD is

4

3
ð1�Adef Þ: 600600

Fig. 4. Simultaneously, we have an operational failure for drive D and a
block defect for block x (on a drive on a different node in the same rack
to D). If D happens to contain a copy of x, then x is lost if an operational
failure occurs to the unique third drive containing x.
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601 Finally, given an operational failure for some drive D and a
602 drive on a different rack with defective block x which also
603 occurs on D, there is a unique drive on another rack which
604 must be erased to lose block x.
605 Combining Cases I–IV: The expected number of data loss
606 events within a time period t is thus

N3-wayðtÞ ’
�
P3-way ððr� 1ÞndDð1Þ

op-op þ 2ðn� 1ÞdDð2Þ
op-opÞ

þ2Dopð1�Adef Þ
�
ĤðtÞ;
(13)608608

609 whereDop is given by Eq. (11).

610 4 EVALUATION

611 In this section, we compare the predictions of the equations
612 in Table 1 to simulations and give an analysis of the sensitiv-
613 ity of the equations.

614 4.1 Equation Verification

615 4.1.1 Experimental Setup

616 To test the accuracy of the equations in Table 1, we compare
617 them against Monte-Carlo simulations. We design event-
618 driven Monte-Carlo simulations, in which there are six
619 types of events that drive the virtual time forward:

620 (a) Weibull distributed operational failure events, with
621 parameters af and bf , potentially occurring on each
622 drive;
623 (b) Weibull distributed block defect events, with parame-
624 ters al and bl, potentially occurring on each drive;
625 (c) Weibull distributed failure-rebuild complete events,
626 with ar and br denoting recovery time, occurring
627 after an operational failure;
628 (d) Weibull distributed scrubbing complete events, with as

629 and bs denoting scrubbing time, periodically occur-
630 ring on each drive to eliminate simulated block
631 defects on it;

632(e) warning events, occurring 300 hours before opera-
633tional failure for a proportion of drives determined
634by the failure detection rate FDR; and
635(f) Weibull distributed warning-rebuild complete events,
636with ar and br denoting pre-warning recovery time
637(chosen to be the same as for failure-rebuild complete
638events, for simplicity), occurring after awarning event.
639Events (e) and (f) simulate proactive fault tolerance. Events
640(c) and (f) trigger the introduction of a new drive (with future
641failure and block defects). After (b) completes, a future block
642defect event is added to the drive. When events of type (a)
643and/or (b) simultaneously occur, under appropriate condi-
644tions (depending on the system) we incur a data loss event,
645and newdata is added tomaintain system scale.
646We enumerate the number of data loss events over a
6475-year time period, and compare the results to the equa-
648tions’ predictions. A 5-year simulation is repeated until
649the total number of data loss events is 10 or more, and
650we average the results.
651Our choice of time in advance TIA ¼ 300 hours is moti-
652vated by [11], where the classification tree prediction model
653predicted over 95 percent of failures with the TIA around
654360 hours on a real-world dataset. For the four events (a)–
655(d), we use the parameters in [23], listed in Table 2, from
656three representative drive models, which had been in the
657field for several years.
658For RAID systems, we set the number of drives in each
659group g ¼ 15 for RAID-5 and g ¼ 16 for RAID-6, so each
660RAID group has 14 data drives. We choose 400 RAID
661groups to model a deployment typical for a single RAID
662system (5;600 data drives). For 2-way replication, we set the
663number of racks r ¼ 200, the number of nodes in each rack
664n ¼ 14, the number of drives in each node d ¼ 4, and the
665number of blocks in each drive b ¼ 107, and for 3-way repli-
666cation we set ðr; n; d; bÞ ¼ ð300; 14; 4; 107Þ. In this way, all
667four systems store the same amount of user data.

6684.1.2 Accuracy with Failure Prediction

669Fig. 6 plots the expected number of data loss events pre-
670dicted by the equations in Table 1 and enumerated by simu-
671lation as the failure detection rate varies from 0 to 0.95. We
672include proactive RAID and replication systems for drives
673A, B, and C. For all the drive models, the equation-based
674results of every system closely match the simulation-based
675values; in the average case, they disagree by around
67610 percent (Elerath and Schindler [23] found the difference
677between equation and simulation of around 20 percent).
678A reliability analysis is often used to assess trade-offs, to
679compare schemes, and to estimate the effect of several param-
680eters on storage system reliability. In this setting, a 10 percent
681error would not significantly influence the analysis, especially
682considering the Monte-Carlo simulations themselves are also
683approximations. In a situation where Monte-Carlo simula-
684tions are required, the given equations could be used e.g., to
685quickly reject inferior parameter combinations, after which
686we can useMonte-Carlo simulations on the remaining cases.
687Ordinarily, the equations and simulations agree closely,
688but for high FDR, they begin to disagree in some cases, e.g.,
689by a factor of 1.9 for the 3-way replication system with
690FDR ¼ 0:95 on drive C. However, this occurs when the
691expected number of data loss events is low.

Fig. 5. Simultaneously, we have an operational failure for drive D and a
block defect for block x (on a drive on a different rack as D). If D hap-
pens to contain a copy of x, then x is lost if an operational failure occurs
to the unique third drive containing x.
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692 4.1.3 Accuracy as Time Varies

693 Fig. 7 plots the equational and simulated number of data
694 loss events over a t year period, as t varies from 1 year to
695 10 years. Here we use drive A and set FDR ¼ 0:8. We find
696 that the equational results closely match the simulated
697 results. In the worst case, the equation and simulation dis-
698 agree by around 30 percent. In the average case, they dis-
699 agree by around 10 percent.

700 4.1.4 Accuracy as System Scale Varies

701 Fig. 8 plots the equational and simulated number of data
702 loss events over a 5-year period, as the effective storage
703 space (i.e., the amount of user data, excluding redundancy)
704 varies. We vary the storage space via the number of groups
705 in RAID systems and the number of racks in replication sys-
706 tems. Here we continue to use drive A and set FDR ¼ 0:8.
707 We again find that the equational results closely match
708 the simulated results. In the worst case, the equation and
709 simulation disagree by around 30 percent. In the average
710 case, they disagree by around 10 percent. The experiment

711results verify the effectiveness of the reliability equations on
712cloud storage systems with various scales.
713Moreover, the equations yield comparable results much
714faster than the simulations. On a standard PC desktop, with
715e.g., MATLAB, we can quickly calculate the equational
716results (in approximately 1ms), while the simulations usu-
717ally take between tens of seconds and tens of hours (even
718hundreds of hours for a system with high FDR, where the
719expected number of data loss events is very low) to produce
720the results for a single set of inputs.
721If the failure statistics for solid-state storage systems
722could be obtained (i.e., the inputs in Table 1), the proposed
723equations could be used for solid-state storage systems.

7244.2 Sensitivity Analysis

725In this section, we illustrate how the equations can be used
726to analyze system sensitivity to varying system parameters.
727We compare RAID-6 and 3-way replication, which are the
728most common redundancy schemes. Unless otherwise
729stated, we use drive A’s parameters and set t ¼ 5 years.

7304.2.1 Sensitivity to Drive Model

731While both drives A and B are near-line SATA models, they
732have the different failure distributions. In particular, drive
733A has higher operational failure and block defect rates than
734drive B. Fig. 9 plots the expected number of data loss events
735for these two drives.

Fig. 6. Number of data loss events predicted by the mathematical model
and enumerated during simulation as the failure detection rate (FDR)
varies, for drives A, B, and C, respectively.

Fig. 7. The expected number of data loss events over t years, for drive A
and FDR ¼ 0:8.

Fig. 8. The expected number of data loss events as the effective storage
space varies, for drive A and FDR ¼ 0:8. The storage capacity of a drive
is denotedm.
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736 In terms of data loss events, a designer could learn from
737 this which drive performs better (drive B, in this case) and
738 which storage scheme performs better (RAID-6, in this
739 case). Fig. 9 also shows the change in performance as FDR
740 changes, and the significant difference between proactive
741 and purely reactive fault tolerance. We see a stronger sensi-
742 tivity to FDR in 3-way replication and RAID-6 systems,
743 than in 2-way replication and RAID-5 systems.

744 4.2.2 Sensitivity to Weibull Parameters

745 The reliability of a system is affected by the rebuild time, as
746 concurrent operational failures are more likely to happen
747 with a longer rebuilding process.
748 Fig. 10 plots the expected number of data loss events for
749 proactive RAID-6 and 3-way replication systems as the Wei-
750 bull parameters vary. We vary the rebuild time via ar, the
751 time for latent block defects via al, and the scrubbing time
752 via as. All other parameters are those for drive A in Table 2.
753 We see that rebuild time plays a significant role in the
754 expected number of data loss events, and that 3-way repli-
755 cation is more sensitive to the rebuild time than RAID-6.
756 This arises as RAID-6 is far more sensitive to block defects
757 (and hence Adef ) than 3-way replication, which is apparent
758 from the model: for RAID-6, the expected number of data
759 loss events scales linearly with Ag

def
, whereas for 3-way

760 replication, the expected number of data loss events scales
761 linearly with Adef , and with MTTB in the order of years
762 andMTTS in the order of hours, we have Adef close to 1.
763 Fig. 10 shows MTTB and MTTS has a negligible role for
764 3-way replication, but not for RAID-6. This is consistent
765 with the models: in 3-way replication, two operational fail-
766 ures can result in the loss of a defective block x in only one
767 way, but in RAID-6, two operational failures can result in
768 the loss of block x in g�1

2

� �
ways.

769 4.2.3 Sensitivity to System Scale Parameters

770 There are several other sensitivity properties that concern
771 system designers and reliability engineers, such as the effects
772 of system scale parameters on the overall cloud storage sys-
773 tem reliability. In this subsection, we investigate the sensitiv-
774 ity of a system’s reliability to some system scale parameters
775 (including the number of data drives per RAID group, rack

776size, node size, and drive capacity). Unless otherwise stated,
777we use the systemparameters described in Section 4.1.1.
778Fig. 11 plots the expected number of data loss events for
779RAID-6 and 3-way replication systems, as the number of
780data drives per group (i.e., g� 2), and the number of nodes
781per rack (i.e., rack size n) varies. We see that the number of
782data drives in RAID-6 group and the rack size have a signifi-
783cant impact on RAID-6 and 3-way replication systems reli-
784ability, respectively.
785Fig. 12 plots the expected number of data loss events for
7863-way replication systems as the number of drives per node
787d changes, and as the number of blocks per drive b changes.

Fig. 9. The expected number of data loss events of drives A and B, with
RAID-6 or 3-way replication (rebuild parameters: ar ¼ 24, br ¼ 2; scrub-
bing parameters: as ¼ 240, bs ¼ 1).

Fig. 10. The expected number of data loss events for drive A as the
mean time to rebuild, mean time to block defect, and mean time to scrub-
bing changes. We include proactive fault tolerance with FDR ¼ 0:8 and
reactive fault tolerance with FDR ¼ 0.

10 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 15, NO. X, XXXXX 2018



IEE
E P

ro
of

788 We see that the number of drives per node (i.e., the node
789 size d) has a significant impact on 3-way replication systems
790 reliability. We see that the number of data loss events
791 increases as b increases.
792 As per the analysis in Section 3.2.2, provided each replica
793 set shares at least one data block, data loss occurs when the
794 three drives in a replica set simultaneously fail, and otherwise
795 occurs with probability P3-way given in Eq. (12). Conse-
796 quently, the larger the value of b, the higher the probability of

797a data loss event through simultaneous failures, but when the
798b is greater than a certain value (depending on system size),
799the probability is approximately 1, consistentwith Eq. (12).

8005 CONCLUSION AND FUTURE WORK

801In this paper, we present four equations for proactive RAID
802and replication cloud storage systems, by which one can
803predict the overall reliability of systems in the presence of
804operational drive failures and latent block defects. The
805equations also incorporate time-variant failure rates and
806media scrubbing processes. We use Weibull distributions
807for failure rates, which is now considered more realistic
808than the simpler exponential distribution.
809We indicate the usefulness of these equations by investi-
810gating the impact of proactive fault tolerance and the system
811parameters on reliability. While simulations need specialized
812code and take much longer, they give comparable results to
813the equations. As such, the equations can help designers to
814readily explore the design space for their system:

815(a) To ensure availability, a designer desires to minimize
816rebuild and warning migration bandwidth, but this
817influences the rebuild time, which impacts success-
818fully protecting at-risk data, which will negatively
819affect the reliability against data loss. The equations
820can aid the designer in optimizing this trade-off.
821(b) In general, a high failure detection rate incurs a high
822false alarm rate (FAR), resulting in unnecessary
823processing costs. The equations can help designers
824choose a failure predictor with an FDR to achieve a
825specific level of reliability, while minimizing FAR.
826(c) The reliability of systems is also significantly affected
827by drive model (see Fig. 9). The equations can thus
828help e.g., to decide whether to construct a system
829with less reliable, but cheaper drives.
830(d) The intermediate results in the mathematical model
831are meaningful, which may assist an operator pin-
832point how data loss occurs in a storage system.
833There are some limitations to the mathematical models
834we present:

835� The models have a static mean rebuild time, which
836may not accurately reflect fluctuation due to system
837usage (which might vary according to the time of the
838day) and system utilization (howmuch data is stored
839on each drive).
840� The assumptions break down when FDR approaches
8411. With FDR ¼ 1, there are no operational failures,
842and the models will predict no data loss events. Real-
843istically, even with FDR ¼ 1, data loss events will
844still occur in cases where there is insufficient time in
845advance, and as a result of concurrent block defects.
846We see this behavior in Fig. 6.
847In practice, cloud storage systems at petabyte or exabyte
848scales are both dynamic and heterogeneous, since new
849drives will continuously enter the system as old ones leave
850due to failure or age. Moreover, correlated failures (e.g.,
851node failures, or simultaneous block defects as a result of a
852scratch) will also occur in system, which may influence the
853system’s reliability. Therefore, in future work, we plan to:
854(a) modify the equations to suit other cloud storage systems,

Fig. 11. The expected number of data loss events of drive A, as the num-
ber of data drives in RAID-6 group, and the rack sizes in 3-way replica-
tion system vary. We include proactive fault tolerance with FDR ¼ 0:8
and reactive fault tolerance with FDR ¼ 0.

Fig. 12. The expected number of data loss events for 3-way replication
systems with drive A as the node size (top) and drive size (bottom)
change. We include proactive fault tolerance with FDR ¼ 0:8 and reac-
tive fault tolerance with FDR ¼ 0.
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855 such as deduplication and heterogeneous systems, to model
856 their reliability; and (b) extend the models to incorporate
857 correlated failures.
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