
Representing X-Code Using Latin Squares∗

Gang Wang, Sheng Lin, Xiaoguang Liu and Jing Liu
Nankai-Baidu Joint Lab, College of Information Technology Science, Nankai University

Weijin Road 94, Tianjin, China
wgzwp@163.com, shshsh.0510@gmail.com, liuxg74@yahoo.com.cn, jingliu@nankai.edu.cn

Abstract

X-Code is an important 2-erasure correcting vertical ar-
ray code. In this paper, we present a combinatorial repre-
sentation for X-Code. It is based on graph representation
of binary linear/array codes. We represent X-Code by Cay-
ley tables of the cyclic groups of prime order - a special
column-Hamiltonian Latin squares (CHLS). This represen-
tation is helpful to comprehend X-Code’s 2-erasure correct-
ing ability. We also show the inner relationship between X-
Code and the Liberation codes though the former is a verti-
cal code and the latter is a horizontal code. A possible way
to construct the 2-erasure vertical codes like X-Code using
common CHLS is also proposed.

1. Introduction

In recent years, as hard disks have grown greatly in size
and storage systems have grown in size and complexity, it
is more frequent that a failure of one disk occurs in tan-
dem with unrecovered failures of other disks or latent fail-
ures of blocks on other disks. On a system using single-
erasure correcting code such as RAID-5, this combination
of failures leads to a permanent data loss [1]. Thus, ap-
plications of multi-erasure correcting codes have become
more pervasive. X-Code is an important 2-erasure correct-
ing array code [2]. It requires that the number of disks
must be a prime, which is the major disadvantage of it.
This paper presents a combinatorial representation for X-
Code, shows the correspondence between X-Code and the
Liberation codes [3], and gives a possible way to construct
X-like codes with non-prime size using common column-
Hamiltonian Latin squares.

∗This paper is supported partly by the National High Technology Re-
search and Development Program of China (2008AA01Z401), RFDP of
China (20070055054), and Science and Technology Development Plan of
Tianjin (08JCYBJC13000)

2. Related Work

An erasure code for storage systems is a scheme that en-
codes the content on n data disks into m check disks so that
the system is resilient to any m device failures [4]. Unfor-
tunately, there is no consensus on the best coding technique
for n,m > 1. All the known coding schemes have trade-
offs.

The best known multi-erasure codes are Reed-Solomon
codes [5]. High computational complexity is a serious prob-
lem because of Galois Field based operations.

Binary linear codes [6] are inherently XOR-based, hence
have perfect computational complexity. Fig 1.a shows a 2d-
parity code [6], where Dij denotes a data disk that partici-
pates in the itℎ horizontal parity group (Pi is the parity disk)
and the jtℎ vertical parity group (Qj is the parity disk). We
can see that binary linear codes divide data disks into over-
lapping parity groups to tolerate multi-erasures. Bad stor-
age efficiency is their major drawback.

Figure 1. 2d-parity code and X-Code.

Another category is parity array codes. This kind of
codes arrange symbols into an array and divide them into
overlapping parity groups, hence the name. Array codes try
to combine the advantages of RS codes and binary linear
codes - they inherit linear codes’ pure parity architecture
and use less disks. EVENODD [7], RDP [1] and Libera-
tion [3] are typical horizontal codes in which data and par-
ity are stored separately. X-Code [2] and B-Code [8] are



Figure 2. X-Code and LS.

typical vertical codes in which data and parity are stored
together. Vertical codes have some advantages over hori-
zontal codes: fit distributed systems well; optimal encoding
performance.

In this paper, we focus mainly on X-Code, an impor-
tant 2-erasure vertical code. As shown in Fig 1.b, a p-disk
X-Code system is described by a p × p array (p must be
a prime). Each column denotes a disk and each symbol
denotes a disk block. X-Code organizes the parity groups
along diagonals and skew diagonals - this is the reason why
it was named ‘X’-Code. Because all parities are indepen-
dent and every data symbol belongs to exactly two parity
groups, X-Code achieves optimal encoding performance.

Array codes can be regarded as data layouts of binary
linear codes. For example, the 5-disk X-Code can be con-
structed by deleting D01, D03, D10, D12, D21, D24, D30,
D33, D42, and D44 from the 2d-parity code shown in Fig
1.a and then packing the remaining symbols into 5 disks.

3. Related Combinatorics Knowledge

Some literature refers to simple graph representation of
2-erasure binary linear codes [6, 8, 9]: each vertex denotes a
parity symbol (group) and each edge denotes a data symbol
- the two endpoints of an edge is just the two parities of
the data. So a 2d-parity code is described by a bipartite
graph. An array code can be described by a graph partition
in which each sub-graph denotes a disk. We have proven
the following theorem [9]:

Theorem 1. If an array code can be described by a parti-
tion of a simple graph, it is a 2-erasure code iff the union of
any pair of sub-graphs of the partition doesn’t contain the
following two types of structures:

1) A path and its two endpoints. We call this kind of unre-
coverable erasure Closed Parity Symbols Subset, CPSS
for short.

2) A cycle. We call it CDSS - Closed Data Symbols Subset.

Theorem 1 is intuitive. We know that a parity group tol-
erates only single-erasures. For two adjacent edges X and
Y , because they belong to the same parity group, one of
them, say X must be recovered by another group (in which

X is the only failed symbol) and then Y is recovered by
their common group. In other words,X and Y are decoding
dependent. Therefore a closed path mentioned above means
a unresolvable dependency chain, namely the erasure can’t
be recovered. On the contrary, for an open path, the end
edge (the only failed symbol in its group) is recovered first,
and other edges and vertices can be recovered one by one.

Theorem 1 doesn’t suggest how to construct array codes.
Perfect one-factorization of graph (P1F) [10] is a useful
tool for 2-erasure array codes constructing. A one-factor
of a graph G is a set of edges in which every vertex ap-
pears exactly once. A one-factorization (1F) of G is a par-
tition of the edge-set of G into one-factors. A perfect one-
factorization is a one-factorization in which every pair of
distinct one-factors forms a Hamiltonian cycle. There is a
widely believed conjecture in graph theory: every complete
graph with an even number of vertices has a P1F [10].

Latin square is another useful tool for array code con-
structing. For k ≤ n, a k × n Latin rectangle is a k × n
matrix of entries chosen from some set of symbols of cardi-
nality n, so that no symbol is duplicated within any row or
any column. In this paper, we use ℤn = {0, 1, . . . , n−1} as
the symbol set. When k = n, the Latin rectangles are called
Latin squares of order n. The symbol in row r, column c of
a Latin rectangle R is denoted by Rrc. A Latin square of
order n also can be described by a set of n2 triples of the
form (row, column, symbol).

Each row r of a Latin rectangle R is the image of
some permutation �r of the symbol set, namely Rri =
�r(i). Each pair of rows (r, s) defines a permutation by
�r,s = �r�

−1
s . If �r,s consists of a single cycle for each

pair of rows (r, s) in a Latin square L, we say L is row-
hamiltonian. Similar concepts can be defined in terms of the
column and symbol. In this paper, we are concerned with
column-hamiltonian Latin squares (CHLS). Fig 2.a shows
a CHLS of order 5. It belongs to a special family of LS -
Cayley tables of the cyclic groups. The symbol in row r,
column c of a Cayley table Cn of the cyclic group of order
n is (r + c) mod n. Apparently, Cn is a CHLS iff n is a
prime. �0,3 of C5 is also shown in Fig 2.a.

There is a CHLS L of order n iff the complete bipartite
graphKn,n = (V,W,E) has a P1F F = {F0, , Fn−1} [10].



Figure 3. X-Code and P1F.

To show this, we convert (i, j, k)(∈ L) into the edge
(vi, wk) in Fj . Thus the cycle pattern in �r,s in L corre-
sponds to that in Fr ∪Fs. There is another conclusion [10]:
if the complete graph Kn+1 has a P1F, then so does Kn,n.
Thus we have a conjecture: Kn,n has a P1F (CHLS of or-
der n exists) for n = 2 and all odd positive integers n.
Graph theorists have found some families of “P1F number”
and many other individual P1F numbers. Thus array codes
based on P1F(CHLS) are superior to other array codes (with
“prime size” restriction) in parameter flexibility.

4. Combinatorial Representation For X-Code

A p-disk X-Code can be described by a p × p Latin
square. Fig 2.b-f shows how to translate the 5-disk X-Code
into a LS of order 5. We denote each data symbol by a pair
(P index,Q index), each parity symbol by its index. So
the 5-disk X-Code (Fig 2.b) is translated into the array in
Fig 2.c. Note that two parity rows are combined and placed
in row 4 and row 5 is blank.

Next, we shift all pairs in column i to the up by i steps
(with wraparound). Fig 2.d shows the result. Now, all pairs

in row i belong to the itℎ diagonal parity group. So we
delete the first index (diagonal parity index) from each pair.
The array becomes the form shown in Fig 2.e. Finally, we
construct an LS L by filling the missing number into the
blank position in each row (column). Fig 2.f shows L. We
can see that Lij = ((i + 2j) mod n) and L is isomorphic
to Cn. We denote it by C2

n. We can similarly denote LS
composed of symbols (i, j, (i+mj) mod n) by Cm

n .

This example shows the injection from X-Code to C2
n of

prime order. In fact, the inverse method converts a C2
n of

prime order into a X-Code. Thus there is a bijection be-
tween X-Code and C2

n of prime order. As Fig 2 shows,
each symbol in the LS produces a data/parity symbol in the
X-Code. Its column index designates the disk, its row in-
dex designates the diagonal parity group, and the symbol
itself designates the skew diagonal parity group. The sym-
bols in the secondary diagonal of LS are unused, we call
them the U symbols. Each symbol in the skew diagonal
above the secondary diagonal constructs a diagonal parity
symbol and a skew diagonal parity symbol, we call it the
P symbol. Other symbols are used to construct data sym-
bols, they are called the D symbols. In Fig 2.f, U symbols



are surrounded by circles, and P symbols are surrounded by
triangles. Combinatorics theorists call them transversals. A
transversal in a LS of order n is a set of n symbols, one from
each row and column, containing each of the n symbols ex-
actly once. We can see that the diagonal and skew diagonal
in a Cm

n are transversals.
Can the codes produced by the method described above

tolerate any 2-erasure? Certainly we can verify easily that
the codes conform to the definition of X-Code, therefore are
2-erasure code. Now we prove this using a combinatorial
method. The proof is based on theorem 1, so we give graph
representation for X-Code first.
Algorithm 1 Constructing X Code by P1F
Require: A P1F F = {F0, . . . , Fp−1} of Kp,p. Fj =
{(vi, w(i+2j)%p)∣0 ≤ i ≤ p− 1}, 0 ≤ j ≤ p− 1.

Ensure: The p-disk X-Code.
1: Delete edges (vp−1−j , w(j−1)%p) and

(v(p−2−j)%p, w(j−2%p) from each Fj (0 ≤ j ≤ p− 1).
We call the former the breaking edge and the latter the
parity edge.

2: Add vertices v(p−2−j)%p and w(j−2)%p into each Fj

(0 ≤ j ≤ p− 1).
3: For each (va, wb) ∈ Fj (0 ≤ j ≤ p− 1), place the data

symbol that participates in Pa and Qb in the jtℎ disk.
For each va ∈ Fj , place Pa in the jtℎ disk. For each
wb ∈ Fj , place Qb in the jtℎ disk.

We can see that F corresponds to C2
n, and edges

(vp−1−j , w(j−1)%p) are just U symbols, and edges
(v(p−2−j)%p, w(j−2%p) are just P symbols. Fig 3 shows
the procedure of performing algorithm 1 on the P1F corre-
sponding to C2

5 . Fig 3.c corresponds to step 1, and Fig 3.d
corresponds to step 2. Because each pair of factors Fi and
Fj forms a Hamiltonian cycle, each pair are broken into
four paths by step 1. Therefore there are no CDSS in any
pair of disks. We add two vertices into each disk in step 2.
They are just the two vertices of the parity edge deleted from
the same factor in step 1. Therefore, in order to prove the
code 2-erasure, the only thing we need to do is to prove
that there are no CPSS in any pair of disk. Fig 3.e shows
a 2-erasure (disk0, disk1) (F0 and F1) in a 5-disk X-Code
system. The Hamiltonian cycle is broken into four paths
(w0 − v0 −w2 − v2, empty, v4 −w1 − v1 −w3 and empty,
in fact two paths) by deleting two breaking edges ((v4, w4)
and (v3, w0)) and two parity edges ((v3, w3) and (v2, w4))
(denoted by dashed lines). It is easy to see that there are
no CPSS iff the breaking edges and the parity edges appear
interleaved in the cycle (therefore four parity vertices just
fall into different paths). This 2-erasure indeed satisfies this
condition. But how about other 2-erasures?

Lemma 2. For any pair of disks in a p-disk code con-
structed by algorithm 1, the two parity edges and the two

breaking edges appear in the cycle interleaved.

Proof. Suppose the itℎ disk and the jtℎ disk fail, 0 ≤ i <
j ≤ p− 1. All of the operations are with mod p.

According to algorithm 1, the breaking edges are
(vp−1−i, wi−1) and (vp−1−j , wj−1), and the parity edges
are (vp−2−i, wi−2) and (vp−2−j , wj−2). We rewrite
them as (v−i−1, wi−1), (v−j−1, wj−1), (v−i−2, wi−2) and
(v−j−2, wj−2).

We travel the Hamiltonian cycle induced by Fi and Fj

along the same direction as �i,j in LS (anticlockwise in
Fig 3) from (v−i−2, wi−2). The visit path is v−i−2 – wi−2

– v−i−2+2(i−j) – wi−2+2(i−j) – ⋅ ⋅ ⋅ – v−i−2+2k(i−j) –
wi−2+2k(i−j) – ⋅ ⋅ ⋅ – wi−2+2(p−1)(i−j) – v−i−2+2p(i−j)

(= v−i−2). k is the sequence number of the vertices in
the cycle. We represent the relative order of (v−i−1, wi−1),
(v−j−1, wj−1), (v−i−2, wi−2) and (v−j−2, wj−2) by the
sequence numbers of v−i−2, v−i−1, wj−2 and wj−1. The
sequence number of v−i−2 is obviously 0, suppose the se-
quence numbers of other three vertices are x, y and z re-
spectively, so

−i− 1 ≡ −i− 2 + 2x(i− j)mod p
⇒ 2x(i− j) ≡ 1mod p (1)

j − 2 ≡ i− 2 + 2y(i− j)mod p
⇒ (2y + 1)(i− j) ≡ 0mod p (2)

j − 1 ≡ i− 2 + 2z(i− j)mod p
⇒ (2z + 1)(i− j) ≡ 1mod p (3)

Because i, j are different integers in [0, p−1], x, y and z
are integers in [1, p− 1] and p is a prime, (i− j) and p have
no common divisors except 1. According to equation 2,
(2y + 1) ≡ mod p. Moreover 3 ≤ 2y + 1 ≤ 2p− 1, thus y
must be (p+ 1)/2.

Equation 1 plus equation 2 minus equation 3 derives
2(x+y−z)(i−j) ≡ 0mod p, thus 2(x+y−z) ≡ 0mod p.
So, x + y = z or x + y = z + p. The former derives
0 < x ≤ y < z. x = y means that the breaking edge
(v−i−1, wi−1) and the parity edge (v−j−2, wj−2) have a
common vertex wi−1(= wj−2). x + y = z + p derives
0 < z < y < x. Anyway, breaking edges and parity edges
appear in the cycle interleaved.

So the following theorem is obvious.

Theorem 3. The codes constructed by algorithm 1 are all
2-erasure codes.

5. Relationship Between X-Code and Libera-
tion Code

The Liberation code is a new kind of 2-erasure horizontal
code presented recently [3]. Unlike most other array codes,
its construction is based on ”addition” instead of ”subtrac-
tion” - it is constructed by arranging the third parity group



Figure 4. Liberation code.

for some data symbols instead of deleting some symbols.
Fig 4.a shows a 7-disk Liberation code. Dij denotes the
data symbol that participates in parity groups Pi and Qj .
Dijk denotes the data symbol that participates in Pi,Qj and
Qk. This example belongs to the family presented in [3] that
can be described as:

1) The number of data disks is a prime p. Each disk con-
tains p symbols. The first parity disk stores horizontal
parity symbols, and the second parity disk stores diag-
onal parity symbols.

2) The itℎ data symbol in the jtℎ disk participates in the
itℎ horizontal parity symbol Pi and the (i− j)tℎ diag-
onal parity symbol Q(i−j).

3) When j is odd, the (p+j
2 − 1)tℎ data symbol in the jtℎ

disk is the “3-group” data symbol and its third parity
symbol is Q p−j

2
. When j is even, the 3-group symbol

is in row j
2 − 1 and its third parity symbol is Qp− j

2
.

We call this family of Liberation codes the Liberation-1
codes. They can be described by CHLS. Let’s take the 7-
disk Liberation code in Fig 4.a for instance. If we represent
each data symbol by its second parity index, the code is
translated into an LS of order 5 as depicted in Fig 4.b. The
first parity index of each data symbol is just the row index
of the LS symbol, so we don’t write it explicitly. We can
see this LS is just C4

5 . In fact, the (p + 2)-disk Liberation-
1 code corresponds to Cp−1

p . Next, we deal with the third
parity groups of 3-group data symbols. For Dijk (in disk
(i − j)), we mark the symbol ‘k’ in column (i − j) by a
circle in the LS, and mark the symbol ‘j’ by a triangle as
Fig 4.b shows. It’s very close to the LS in Fig 2.f. In fact, we
can transform it into the latter. We perform a permutation
{0 → 3, 1 → 4, 2 → 0, 3 → 1, 4 → 2} on the symbol set.
So the LS is transformed into the LS shown in Fig 4.c. It is
almost the LS in Fig 2.f after proper column rearrangement.
The only difference is that its first column is not marked
because the first data disk contains no 3-group data symbol.

We have proven the Liberation-1 codes 2-erasure in [11].
The key idea appears as depicted in Fig 4.d. The circle cor-
responds to the 2-erasure (disk1, disk3). The two dashed

lines both denote the 3-group data symbol D212 in disk 1,
and the two wavy lines both denote D301 in disk 3. So we
call w0 and w1 the real 3-vertices, because they touch three
edges (data symbols). We call v2 and v3 the fake 3-vertices
because they in fact touch only two edges. If a 2-erasure
composed of disk 0 and another data disk, it can be recov-
ered definitely. If a 2-erasure composed of two data disks
excluding disk 0, it can be recovered iff the real and fake
3-vertices appear on the cycle interleaved. We have shown
that the Liberation-1 codes satisfy this condition [11]. The
method used is similar to that used in the proof of lemma 2.

The real 3-vertices correspond to the symbols sur-
rounded by circles in Fig 4.d. Namely, they corresponds
to U symbols. The fake 3-vertices actually correspond to
P symbols. If we perform the permutation used in the last
paragraph but one on Fig 4.d (the w vertices are replaced
by those in the parentheses), it is converted into Fig 3.e.
The edges corresponding to 3-group data symbols are just
the parity edges in Fig 3.e, and the edges incident to real
3-vertices are just the breaking edges. That is to say, there
is an interesting internal relationship between X-Code and
Liberation-1 code although the former is a vertical code and
the latter is a horizontal code. We can convert a p-disk X-
Code into a (p+ 2)-disk Liberation-1 code using LS as the
intermedium . Namely, there is an injection from X-Code
to Liberation-1 code. But given a Liberation-1 code, the
corresponding X-Code may not exist.

6. Constructing X-Code Using CHLS Other
Than C2

p

A big limitation of X-Code is that the number of disks
must be a prime. Examining algorithm 1 and lemma 2, we
have a possible way to construct X-like codes. We replace
the input of algorithm 1 - C2

p by a common CHLS of order
n and two transversals of it. If the two transversals satisfy
lemma 2, we will obtain an n-disk X-like code. Because
CHLS of non-prime order exist, we may produce X-like
code with non-prime size. We have written a search pro-



gram according to this idea. The algorithm takes a CHLS
as input and searches its two transversals conforming to
lemma 2. Compared with previous algorithm based on ma-
trix operations (such as Plank’s algorithm for Liberation
code searching [11]), our algorithm prunes effectively.

Figure 5. Effective code searching.

Suppose the input is C2
n (n doesn’t have to be a prime).

Without lemma 2, we have to enumerate all possible com-
binations of U symbol and P symbol for each column. Our
algorithm does only about half of work for a column. Fig 5
shows the idea. Fig 5.a shows C2

5 and the starting point
of search - symbol ‘0’ and symbol ‘1’. Fig 5.b shows the
Hamiltonian cycle induced by column 0 and column 1. The
breaking edge (v1, w1) and the parity edge (v0, w0) are de-
noted by a dashed line and a wavy line respectively. They
divide the circle into two semicircles. A plain algorithm
may check all possible positions of the U symbol and the
P symbol in column 1, while our algorithm only searches
in each semicircle. The reason is that if the breaking edge
and the parity edge from column 1 fall into different semi-
circles, the two breaking edges and the two parity edges
from column 0 and column 1 are not interleaved. The plain
algorithm enumerates about

(
n
2

)
possibilities for a column,

while our algorithm enumerates only about
(n

2
2

)
possibili-

ties. The total workload our algorithm is about 1
2n of the

plain algorithm. Moreover, after a tentative code is pro-
duced, our algorithm doesn’t really check whether it is 2-
erasure like the plain algorithm, because lemma 2 has been
satisfied.

Certainly, this algorithm is still an exponential algo-
rithm. We have tested some small CHLS. But until now,
we haven’t found any code that is not isomorphic to stan-
dard X-Code.

7. Conclusion and Future Work

In this paper, we presented a combinatorial representa-
tion for X-Code. This representation is based on a graph
representation of linear/array codes. We showed that there
is a bijection between X-Code and a special family of
CHLS. We also gave a combinatorial proof for the MDS

property of X-Code. This method is helpful to comprehend
the 2-erasure correcting ability of X-Code. We showed an
interesting inner relationship between X-Code and the Lib-
eration codes though the former is a kind of vertical code
and the latter is a kind of horizontal code. Finally, we pre-
sented an effective algorithm to search X-like code.

Constructing X-like code with non-prime size by both
theoretical method and algorithmic method is the most im-
portant future work. We think the algorithmic method is
more promising. Certainly, we should optimize the search
algorithm further. We must find more strong necessary con-
ditions to prune more effectively.

References

[1] P. F. Corbett, R. English, A. Goel, T. Grcanac, S. Kleiman,
J. Leong, and S. Sankar. Row-Diagonal Parity for Double
Disk Failure Correction. In Proceedings of the FAST ’04
Conference on File and Storage Technologies, pages 1–14,
San Francisco, California, USA, December 2004.

[2] L. Xu and J. Bruck. X-Code: MDS Array Codes with Op-
timal Encoding. IEEE Transactions on Information Theory,
45(1):272–276, 1999.

[3] J. S. Plank. The RAID-6 Liberation Codes. In Proceedings
of the 6th USENIX Conference on File and Storage Tech-
nologies, FAST 2008, pages 97–110, San Jose, CA, USA,
February 2008.

[4] J. S. Plank. Erasure Codes for Storage Applications. Tutorial
Slides, presented at the 4th Usenix Conference on File and
Storage Technologies, FAST 2005, December 2005.

[5] J. S. Plank. A Tutorial on Reed-Solomon Coding for Fault-
Tolerance in RAID-Like Systems. Softw., Pract. Exper.,
27(9):995–1012, 1997.

[6] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and
D. A. Patterson. Coding Techniques for Handling Failures in
Large Disk Arrays. Algorithmica, 12(2/3):182–208, 1994.

[7] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD:
An Efficient Scheme for Tolerating Double Disk Failures in
RAID Architectures. IEEE Trans. Computers, 44(2):192–
202, 1995.

[8] L. Xu, V. Bohossian, J. Bruck, and D. G. Wagner. Low-
density MDS Codes and Factors of Complete Graphs.
IEEE Transactions on Information Theory, 45(6):1817–
1836, 1999.

[9] J. Zhou, G. Wang, X. Liu, and J. Liu. The Study of Graph
Decompositions and Placement of Parity and Data to Toler-
ate Two Failures in Disk Arrays: Conditions and Existance.
Chinese Journal of Computer, 26(10):1379–1386, 2003.

[10] I. M. Wanless. Perfect Factorisations of Complete Bipar-
tite Graphs and Latin Squares without Proper Subrectangles.
Electron. J. Combin, 6(R9), 1999.

[11] G. Wang, X. Liu, S. Lin, G. Xiu, and J. Liu. Constructing
Liberation Codes Using Latin Squares. In 14th IEEE Pacific
Rim International Symposium on Dependable Computing,
PRDC 2008, pages 73–80, Taipei, Taiwan, December 2008.


