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Abstract—Intersection of inverted lists is a frequently used
operation in search engine systems. Efficient CPU and GPU
intersection algorithms for large problem size are well studied.
We propose an efficient GPU algorithm for high performance
intersection of inverted index lists on CUDA platform. This
algorithm feeds queries to GPU in batches, thus can take full
advantage of GPU processor cores even if problem size is small.
We also propose an input preprocessing method which alleviate
load imbalance effectively. Our experimental results based on a
real world test set show that the batched algorithm is much faster
than the fastest CPU algorithm and plain GPU algorithm.

I. INTRODUCTION

The Internet search market has undergone a booming ex-
pansion along with the rapid growth of Internet, which makes
search engines faced with great performance challenges. To
provide high throughput, search engine systems typically are
built upon large-scale clusters. Nevertheless, per node work-
load is still quite heavy, especially CPU occupancy is high.
Thus, in order to maximize overall throughout, we propose
a new approach to offload the CPU workload to graphical
processing units (GPUs).

In search engine systems, “list intersection” occupies a
significant part of CPU time. A search query is composed of
several keywords. Each keyword corresponds to an inverted
index list which stores IDs of documents that contain this
keyword. What search engine returns to user is just the
intersection result of the inverted index lists involved.

The data set we used is provided by Baidu Inc. It is a real
world test set instead of a synthetic one. It contains 33337
user search queries. Each query contains 2 to 8 keywords.
Our aim is to offload all intersection calculation from CPU to
GPU. However, our data set has a property: most of inverted
index lists are short (contain less than 10,000 docIDs). That
is to say, problem size is small generally. To the best of our
knowledge, no previous work focuses on GPU algorithm for
this type of input. However, we believe that small problem size
is a common character of real search engine systems, because
most of user queries contain multi-keyword. The intermediate
result might become smaller after first one or two intersections.

Our contributions mainly deal with this property:
1) We design a batched GPU algorithm. The experimental

results show that for small queries, this new algorithm
is far superior to other GPU algorithms.

2) We design an input preprocessing method to get the best
performance of our algorithm.

3) Tradeoff between throughout and response time is con-
sidered.

II. RELATED WORK

List intersection is well studied in these years because of
its importance in search engines. Some important results are
published [1, 5, 6, 7]. But most of them perform well only for
large lists.

Generally, document IDs in a list are sorted. So an intuitive
GPU algorithm for intersection operation of two lists is: each
thread fetches one element from the shorter list, then all
threads do binary search in the longer list simultaneously and
independently. However, if the two lists are both very large
(say, both contain millions of elements), quite a lot compare
operations are wasteful. Thus an improvement called partition
is presented in [1]. The shorter list is divided into several
segments, and the last element of each segment is searched in
the longer list by a unique thread. Whether the representative
element is found or not, its segment is confined to a subregion
of the longer list. Fig. 1 illustrates this idea. After partition,
each segment in the shorter list corresponds to a segment in
the longer list. The number of compare operations decreases
dramatically.
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Fig. 1. Partition parallel algorithm.

As experimental results shown in [1], when the length of
lists is larger than 100K, partition algorithm is about 4 times
faster than simple binary algorithm.

However, the data set we deal with contains a lot of short
lists, so the overhead of partition stage may cancel out its gain.
Our experimental results confirmed this conjecture.

The CPU algorithm we use for comparison is designed by
Ling Jiang, Baidu Inc. It is specially optimized for our data
set. As Fig. 2 presents, the longer list is divided into several
segments all of equal length. Each element of shorter list is
searched in the longer list sequentially, however, the step is
one segment instead of one element. If the element is greater
than the last element of the current segment, we move to the
next segment. Otherwise, we turn around to search backwards
in the current segment.



ele

segment0 segment5

if smaller 
then skip

if smaller 
then skip

if smaller 
then skip

if larger 
then turn around

Fig. 2. Stride sequential algorithm.

III. ARCHITECTURE

We start out with a typical CPU single stream model.
Whenever a search query arrives, CPU puts it in the process
queue. It is starting to be processed when the predecessor
query is completed.

We can convert this model into GPU processing model
simply by offloading each intersection calculation to GPU.
CPU hands over the query which it receives to GPU, then
waits until GPU returns the result. This simple GPU model
is just that we used in our preliminary work, called “Serial
GPU” model. However, this model can not take full advantage
of GPU’s computing power when queries are short.

Fig. 3 shows the improved model. In order to make hundreds
of GPU shaders busy, queries are pumped to GPU in batches
instead of one by one. In this model, CPU is only in charge
of task scheduling and data transfering. All calculation tasks
are offloaded to GPU.
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Fig. 3. Batched GPU model.

The schedule procedure consists of four steps:
1) Transfer inverted index lists to GPU memory. If the size

of data set is smaller than the capacity of GPU memory,
only one transfer operation is performed.

2) Prepare query batch. CPU waits n queries arrive, pack
them into one batch, then calls the GPU function (GPU
kernel) to calculate.

3) GPU runs the kernel function to perform list intersection,
and then writes the result to a buffer.

4) The result is transferred back to main memory.
Our main work is to refine step 3. We assign each query

to a unique block. So, n blocks all contain t threads, where
t depends on the size of input. If all inverted index lists are
large, we need more threads per block. So step 3 is refined as:

1) Find the corresponding inverted index lists according to
the key words in the query. We sort these inverted index
lists by length in ascending order. If perform intersection
in this order, there is a strong possibility of achieving
optimal computational complexity.

2) Intersection. First, we calculate the intersection of the
shortest list and the second shortest list. The result
is stored in a “result array”. Then we calculate the

intersection of the result array and the third shortest list,
and so on.

3) Write the length of final result array to a predefined
global memory location, so CPU can fetch the result.

The most time consuming part of the whole procedure is
step 2. It is composed of three steps:

1) Search: Each thread fetches some elements in the shorter
list, then do binary searches in the longer list. If an
element is found, its corresponding cell in a temporary
array is set to 1 (this array is zeroed when initializing).

2) Scan: We perform a scan (prefix sum) operation on the
0-1 array, so we get the locations of common elements
of the two lists in the result array.
There are some considerations for scan phase:

a) The number of threads per block is fixed, so
we must divide the whole 0-1 array into several
segments. Each segment contains the same number
of elements as the number of threads. The last
segment may be an incomplete segment. We deal
with it specially.

b) An efficient scan algorithm must be adopted, as
scan is a frequent operation in the whole procedure.
The scan algorithm we adopted is based on the al-
gorithm presented by Hillis and Steele[2], showed
in Fig. 4.
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Fig. 4. Scan algorithm.

The main part of the algorithm is a loop. In each
iteration, the i-th element is added to the (i + offset)-
th element. Offset is initialized as 1, and is doubled after
each iteration. We can see that this algorithm calculates
“inclusive prefix sum”. We can see that if 0-1 array con-
tains N elements, the loop will finish after log(N) steps.
The j-th iteration performs N − 2j − 1 add operations.
Thus the algorithm performs Nlog(N)− (N − 1) add
operations in total. In order to avoid memory copy, we
allocate two buffers both of length N . They are both
allocated in shared memory which is much faster and
smaller than global memory. After finishing calculat-
ing the first segment, we copy the result from shared
memory back to global memory. Next we copy the last
element of each result segment to the first location in
the next segment. Then this element is added to every
other element in the second segment. Then the same
operation is performed on the second segment and its
successor segment, and so on. So the global scan result
is calculated correctly. This algorithm is called “naive
algorithm” [2]. Although other algorithms exist [2], our



experimental results show that this simple algorithm is
the best for our data set.

3) Compacting: each thread is in charge of several elements
in the shorter inverted index list. If the corresponding
element in 0-1 array is 1, the thread should store the
element into the result array. The corresponding element
in the scan result designates the right position of this
element in the result array.

Fig. 5 illustrates the whole procedure of step 2.
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Fig. 5. Calculate final position in result array.

We also implemented an algorithm based on the serial GPU
model for comparison. Namely, queries are delivered to GPU
one by one. To maximize the degree of parallelism, each
intersection operation is processed by multiple blocks, and
each thread is in charge of only one element in the shorter
list. For example, there are 1271 elements in the shorter list
and 128 threads per block, so we will deploy 10 blocks when
we call the GPU kernel function. The scan routine used in this
algorithm is cudppScan from cudpp library. The compacting
step is the same as that in batched algorithm.

IV. EXPERIMENTAL RESULTS

Our experiments are based on CUDA platform version 2.3,
detailed experimental results are listed below.

Host: Intel i7 920 CPU, 2GB×2 DDR3 1333 memory.
GPU: Nvidia Tesla C1060, which has 30 streaming multi-

processors, 240 scalar processor cores in total. The frequency
of processor cores is 1.3GHz. The card is equipped with 4GB
DDR3 memory of bandwidth 102GB/s.

Bandwidth between GPU memory and main memory is
about 5.13 GB/s.

The number of threads per block is fixed at 128.
The inverted index lists are stored in one file, named

ind data, which occupies 860MB disk space. As it is smaller
than 4GB, so we upload it into GPU memory once. It takes
188.8ms. Host-GPU bandwidth occupancy is about 88.8%.

The test data includes 33337 search queries, and we sim-
ulate it as a query stream comes into search server in short
time. Since the test data is a fraction of actual search query
stream, the workload of each query is quite random, which
is an important influence factor to GPU response time. CPU
schedules the queries to GPU, and fetches the result after GPU
finishes its work.

Fig. 6 shows the distribution of the length of shortest
inverted index lists of queries. When we refer to “shortest”,
we mean that it is the shortest list in its query. For example,
query0 has six key words, which are corresponding to six

inverted index lists. We can select the shortest list out. So, we
will have 33337 shortest inverted index lists in total. Since
queries have been uploaded to GPU memory, the sort of each
query is implemented with only one GPU thread. The number
of lists in one query is less than 8, so we adopt insertion sort
algorithm. While the procedure of sort, other threads are all
waiting. Our experimental results show that the overhead of
this step occupies only 20ms in total.
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Fig. 6. Query size distribution.

The length of the shortest list reflects the workload of the
query directly. For example, the length of the shortest list in
query0 is 259, so after five intersections, the length of result
array is smaller or equal to 259. We can see that 91% of
shortest lists in our data set are shorter than 10k docIDs.

We now perform a preliminary evaluation of our two GPU
models. The queries are delivered to GPU according to their
original order in file test data. In the “serial processing”
model, we deploy 128 threads per block. Thus for 77.2%
queries, at most 30 blocks are invoked. Tesla C1060 has 30
multiprocessors, so the workload can not feed it.

Fig. 7 shows the runtime of the two algorithms. We can see
that the batched algorithm is obviously superior to the plain
algorithm because it utilizes more processor cores. When the
size of batch is larger than 8192, the runtime remain stable at
about 3016ms.
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Fig. 7. Original order result.

TABLE I shows the performance gap between the CPU
algorithm and the batched GPU algorithm. The CPU program
is still much faster than the GPU one.

Further examination on the data set exposes serious load
imbalance. If queries are fed to GPU in their original order in
test data, the queries in a batch will vary in size. Therefore
when some queries have completed, other queries may be still



TABLE I
ORIGINAL ORDER RUNTIME ON CPU AND GPU.

calculating time (ms)
GPU batch model (test data) 3016
CPU (test data) 1569

in process. Since a batch is processed by a single kernel call
and current CUDA version can not execute multiple kernels
simultaneously, perhaps only a minority of GPU processor
cores are busy in the later stages of query processing. Besides,
the different number of key words is also the reason for load
imbalance. The main objective of batched algorithm - making
full use of GPU processor cores - fails.

To solve the problem, we must pack the queries of similar
size into a batch. We can estimate the problem size of each
query by the length of its shortest list. Our experimental
results shows that this estimation is reasonable. How to find
queries of similar size? Sorting queries completely by size
is unpractical. We adopted semi-sort: divide the range of list
length into several buckets and assign each query to a bucket
according to the length of its shortest list. In general, Here
comes n queries which will be allocated into c buckets, each of
them needs c-1 comparison times at most. This preprocessing
is implemented by CPU, and is a linear time operation.
Compared with complete sorting, this method introduces much
lower overhead. Certainly, we will divide a big bucket into
multiple batches.

We performed this preprocess on our data set. The length
range is divided into 20 buckets. 0-10K is divided into 10
buckets all of interval 1K, and 10K-100K is divided into 10
buckets all of interval 10K. Then we test the CPU algorithm
and the two GPU algorithms using this rearranged test data.
For batched GPU algorithm, batch size is set to 16384. Fig. 8
shows the result. We can see that new input order improves
the performance of batched GPU algorithm dramatically. GPU
batched algorithm spent 421 ms on calculating and 150 ms on
dynamic transfer. It decreases calculating time 6 times com-
pared with the unordered input. Now, batched GPU algorithm
is 2.7x faster than CPU algorithm, and 5.2x faster than plain
GPU algorithm.
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Fig. 8. Runtime on ordered input.

We also test CPU algorithm and batched algorithm using
individual bucket. Each bucket is divided into batches of fixed
length. The result is shown in Fig. 9. We can see that if the
number of queries per batch is over 512, GPU algorithm is

faster than CPU algorithm for all buckets. As the batch size
decreases to 64, the runtime increases. The reason is that 64
queries can not take full advantage of GPU.
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Fig. 9. Runtime on single bucket.

Since the batch size (equals to the number of blocks per
GPU kernel call) influences the performance greatly, we tested
batched GPU algorithm using different batch sizes. The whole
data set instead of individual buckets is used. Fig. 10 shows
the result. We can see that the algorithm always exhibits good
performance unless the batch size is extremely small (32). It
achieves peak performance at 1024 and holds the line as the
batch size continues to increase.
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Fig. 10. Runtime of different batch size.

There are three data transfer steps in the batched algorithm:
1) Transfer inverted index lists to GPU memory. In our

case, all lists can be stored in GPU memory, so this type
of transfer needs once only. We call it “static transfer
overhead”. Step 2 and 3 are called “dynamic transfer
overhead”.

2) Transfer queries onto GPU memory. The transfer must
be invoked before every GPU kernel call. Since the space
occupancy of queries is quite small (all 33337 queries
only occupy 549KB), so it induces a light overhead.

3) Transfer result arrays back to main memory. There are
two methods for the task:

a) Transfer result arrays separately. For example,
there are 128 queries in the batch applied to GPU.
When GPU kernel function returns, we invoke 128
times cudaMemcpy to fetch the result respectively.

b) Transfer result arrays at a time. A large result
array will be allocated on GPU memory before
each GPU kernel call, whose size is the length
sum of the size of all shortest lists in this batch.
It is sufficient for GPU to use as the intersection
result is shorter than the length of the shortest list.
However, memory space is wasted. For example,



the length of shortest list is 1271, while the inter-
section result contains only 125 docIDs. Now we
still need transfer 1271 docIDs and allocate 1271
docIDs memory space to receive the result.

The transfer time is not only determined by the size of data,
but also be influenced significantly by the number of transfer
operations. TABLE II compares the performance of these two
transfer methods. The batch size is set to 2048. There exists
dramatic performance gap between the two methods. If we
transfer the result one by one, transfer overhead will cancel
out the advantage of batched processing. So the best method
is to transfer all results together, despite some memory space
is wasted. Fig. 10 shows the detailed dynamic transfer time
under different batch sizes. We can see that the transfer time
is only a small part of total time.

TABLE II
TRANSFER TIME OF THE TWO METHODS.

time used by step 2 and 3 (ms)
transfer separately 461.6
transfer as a whole 155.1

Besides the total calculating time and total dynamic transfer-
ring time, the response time of each batch is also an important
factor we care about. For example, if batch size is 16384, there
are 3 batches. The total calculation time is 421ms, and the
total transferring time is 150ms. So, each batch takes about
190ms. It means that the response time is about 190ms which
is obviously not acceptable. Fig.11 shows the response time
curve when batch size varies.
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Compared with Fig. 10 and Fig. 11, we can determine the
best choice of batch size. On our data set, 1024 or 2048 queries
per batch will achieve the good tradeoff between throughput
and response time.

V. CONCLUSION

We have proposed an efficient GPU algorithm for high
performance intersection of inverted index lists. This algorithm
fed enough queries to GPU in batch, thus takes full advantage
of GPU processor cores. We also proposed an input prepro-
cessing method which alleviates load imbalance effectively.
Our experimental results based on a real world test set show
that the batched algorithm is much faster than the fastest CPU
algorithm and plain GPU algorithm.

We believe that GPUs will play an important role in actual
large-scale distributed systems such as search engines in the
future. However, a lot of work needs to be done to make our
algorithm more practical. Our experiments are all performed
off line. Designing an online input preprocessing algorithm is
an important future work. Since the data set in real search
engine systems may be much larger than our test set, a
streamed GPU algorithm should be developed to hide transfer
overhead. Multi-GPU algorithm is also an interesting topic.
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