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T-Code: 3-Erasure Longest Lowest-Density MDS
Codes
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Abstract—In this paper, we study longest lowest-density MDS
codes, a simple kind of multi-erasure array code with optimal
redundancy and minimum update penalty. We prove some basic
structure properties for longest lowest-density MDS codes. We
define a “perfect” property for near-resolvable block designs
(NRBs) and establish a bijection between 3-erasure longest
lowest-density MDS codes (T-Codes) and perfect NRB(3k +
1, 3, 2)s. We present a class of NRB(3k+1, 3, 2)s, and prove that
it produces a family of T-Codes. This family is infinite assuming
Artin’s Conjecture. We also test some other NRBs and find some
T-Code instances outside of this family.

Index Terms—3-erasure correcting codes, parity array codes,
near-resolvable design, perfect one-factorization.

I. INTRODUCTION

IN THE LAST two decades, along with the fast progress
of large-scale data storage systems, especially large-scale

networked storage systems, multi-erasure coding techniques
have attracted increasing attention. An m-erasure code for a
storage system is a scheme that encodes the content on n data
disks into m check disks so that the system is resilient to any
m disk failures [1]. Erasure codes have been used for many
applications, such as traditional disk arrays, data grids, peer-
to-peer applications, digital fountains, etc [1]. Unfortunately,
there is no consensus on the best coding technique for general
n, m > 1.
Reed-Solomon (RS) codes [2] are a well-known example of

a multi-erasure code. They are also the only known maximum
distance separable (MDS) codes for arbitrary n and m. MDS
codes have optimal storage efficiency. On the other hand,
the computational complexity of using MDS codes poses
a significant problem. To relieve this problem, optimized
algorithms have been developed for operations over a Galois
field [3].
Binary linear codes [4] are linear codes that are inherently

XOR-based. They have minimal computational complexity,
hence allowing for more efficient encoding and decoding
algorithms. Binary linear codes are divided into overlapping
parity groups, i.e., each data disk participates in multiple parity
groups (in our case m parity groups) in order to recover from
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disk0 disk1 disk2 disk3 disk4 disk5 disk6
P1 P2 P3 P4 P5 P6 D1,6

D3,6 D1,3 D2,4 D3,5 D4,6 D1,4 D2,5

D4,5 D5,6 D1,5 D2,6 D1,2 D2,3 D3,4

Fig. 1. A 7-disk B-Code.

m erasures. However, poor storage efficiency is a drawback
to binary linear codes.
In this paper, we consider parity array codes, which divide

each disk into stripe units (or strips [5]) all of the same size.
A collection of n stripe units from distinct disks, each having
the same offset, is called a stripe [5]. Individual stripes are
a self-contained m-erasure correcting unit. The disk layout is
just the cyclic repetition of a stripe, so we will typically focus
only on a single stripe when designing a code. Each stripe unit
is further divided into packets of a fixed size [5]. Each packet
either stores data or parity information, which will be called
a data packet or parity packet, respectively. Each packet is
organized into overlapping parity groups.
We say that a parity group i appears in a packet (data or

parity) if that packet has a non-trivial intersection with i. We
say that i appears in a disk if it appears in some packet in
that disk. If i does not appear in a disk, then it is called a hole
of the disk.
The purpose of parity array codes is to combine the most

favorable attributes of RS codes and binary linear codes.
Parity array codes possess the XOR-based architecture, while
packing the data and parity information into fewer disks.
In Fig. 1 we give an example of a 7-disk parity array

code, in which we decompose a given packet into one of the
following.

1. Six parity packets Pi in which parity group i appears.
2. Fifteen data packets Di,j in which parity groups i and j

appear.

For reasons of cost, performance and simplicity, we focus
on m-erasure parity array codes that satisfy the following
properties:

1. They are inherently XOR-based, allowing for efficient
practical computation.

2. They are MDS codes, minimizing redundancy and there-
fore minimizing storage space costs.

3. They have minimum update penalty in terms of both the
number of disk operations and the computational com-
plexity. Therefore, each data packet should participate in
exactly m parity groups.

4. They have a minimum number of packets for given
parameters n and m. We will show that an m-erasure
code with n disks is composed of either N = n(n−1)/m
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Fig. 2. The starter for GK8.

or N = n2/m packets if the previous three properties are
satisfied.

We call these properties the performance properties. Following
the terminology of [6], we call a code lowest-density if it
satisfies the first three properties. However, our definition does
not confine the codes to be F2-linear, unlike [6], although
this is not an undesirable property. We call a code satisfying
all four of the performance properties longest lowest-density.
Despite the tautology, we will write “lowest-density MDS
codes” and “longest lowest-density MDS codes” to emphasize
that they are a special type of MDS code.

For example, EVENODD [7], RDP [8] and their multi-
erasure extensions [9], [10] satisfy the first two performance
properties, X-Code [11] satisfies the first three performance
properties and, in the next section, we will show that B-
Code [12] satisfies all the four performance properties. There-
fore, a B-Code is a 2-erasure longest lowest-density MDS
code. Fig. 1 gives an example of a 7-disk B-Code. A horizontal
code contains only disks that consist entirely of data or entirely
of parity information [13]. On the other hand, the disks in a
vertical code have some data and parity packets stored within
a single disk [13]. EVENODD, RDP and their multi-erasure
extensions are examples of horizontal codes. B-Code and X-
Code are examples of vertical codes.

Some 2-erasure horizontal codes, such as EVENODD and
RDP have been generalized to multiple-erasure successfully.
However it is difficult to generalize 2-erasure vertical codes
such as B-Code. Using combinatorial means, we will construct
3-erasure longest lowest-density MDS codes from B-Codes,
which we call T-Codes. We also describe how to construct
a family of T-Codes, that is likely to be infinite, using a
combinatorial method. This family of T-Code is in fact equiv-
alent to the codes presented in [14] although we discovered
it independently of [14]. However, our contribution lies in a
new combinatorial construction method which might provide
some helpful insights to further research into finding longest
lowest-density MDS codes with even larger distances.

Due to the XOR-based architecture of parity array codes,
every bit within a packet may be treated independently. Thus,
for our purposes, packet size is not important.

01 02 03 04 05 06 07
27 13 24 35 46 57 16
36 47 15 26 37 14 25
45 56 67 17 12 23 34

Fig. 3. The perfect one-factorization GK8.

II. FROM B-CODES TO T-CODES

A. B-Code Review

An n-disk B-Code, for odd n, is identified with an (n −
1)/2×n array, as described in [12]. We give an example of this
array for n = 7 in Fig. 1. One disk contains only data packets
and every other disk contains exactly one parity packet and
(n−1)/2−1 data packets. Disks that only contain data packets
are called pure data disks. Deleting the pure data disk in Fig. 1
produces a 2-erasure longest lowest-density MDS code with
n − 1 disks.
Xu et al. [12] established a bijection between B-Codes and

so-called perfect one-factorizations (P1Fs) of complete graphs.
A one-factor of a graph G is a 1-regular spanning subgraph
of G, i.e., a subgraph such that each vertex is adjacent to
precisely one other vertex. A one-factorization of G is a
decomposition of G into one-factors. A one-factorization is
called perfect if the union any pair of distinct one-factors is a
Hamiltonian cycle. A complete graph, denoted Kn, is a graph
on n vertices such that every pair of vertices are adjacent.
Given a P1F of K2n, it is possible to construct a B-Code with
2n−1 disks. A B-Code with 2n−2 disk can then be found by
deleting the pure data disk, as mentioned above. We will later
explicitly describe the construction of a B-Code with 2n − 1
disks from a P1F.
There is a conjecture (see e.g. [15]) that every complete

graphK2n on 2n vertices admits a P1F. Should this conjecture
be true, it would imply that B-Codes exist for any number
of disks. Several infinite families and individual constructions
of P1Fs of complete graphs K2n have been identified [16],
[17]. Therefore, in many cases we can construct B-Codes from
P1Fs.
We will now describe a simple construction of a P1F

{F1, F2, . . . , F7} of K8 with vertices labeled 0, 1, . . . , 7. We
choose the one-factor F1 = {01, 27, 36, 45}, which we will
call the starter. We generate the remaining one-factors by
the cyclic automorphism α = (0)(1234567), i.e., we define
Fαk(1) = {αk(i)αk(j) : ij ∈ F1} for all 1 ≤ k ≤ 6. Fig. 2
depicts the starter in this construction; the remaining one-
factors are formed by rotating Fig. 2 about the vertex 0. The
one-factorization formed in this way is tabulated in Fig. 3, with
each column identifying a one-factor. It is straightforward to
verify that this one-factorization is indeed a P1F. In fact, this
method produces a P1F of K2n if and only if 2n−1 is prime.
This family of P1Fs is named GK2n [17].
We note that GK2n could be tabulated in numerous ways.

For example, in Fig. 3 if (a) we permute the columns or (b) we
permute the cells within a column, we will still have a table
that describes the perfect one-factorization GK2n. However,
the choice of table will be unimportant for our purposes.
Given a P1F ofK2n, we can construct a B-Code with 2n−1

disks in the following way. Each one-factor F of the P1F
corresponds to a unique disk d. To construct d from F , we
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P1 P2 P3 P4 P5 P6 07==
27== D1,3 D2,4 D3,5 D4,6 57== D1,6

D3,6 47== D1,5 D2,6 37== D1,4 D2,5

D4,5 D5,6 67== 17== D1,2 D2,3 D3,4

Fig. 4. The process of constructing a B-Code from GK8.

delete from F the edge that has 2n − 1 as an endpoint. We
then replace the edge 0j ∈ F (if we haven’t deleted it), by
the parity packet Pj . Finally, the remaining edges ij ∈ F are
replaced by the data packet Di,j . This process is illustrated in
Fig. 4 and gives rise to the B-Code in Fig. 1. Xu et al. [12]
have shown that the codes produced in this way are 2-erasure.

B. Structure Properties of Longest Lowest-Density MDS
Codes

Xu et al. [12] proved that B-Codes satisfy the first three
performance properties. We will now show that they also
satisfy the last performance property. We will also show that a
B-Code is composed of either N = n(n−1)/m or N = n2/m
packets. Upon inspection of Fig. 4, we can see that the layout
of this particular B-Code satisfies:
I. There is at most one pure data disk.
II. The packets from the same disk do not share parity

groups.
In general, we call these properties the structure properties.
We will show that not only B-Codes, but also all longest
lowest-density MDS codes satisfy these properties.
Theorem 1: Longest lowest-density MDS codes satisfy

structure property II.
Proof: Suppose that an m-erasure longest lowest-density

MDS code C is composed of n disks. Let p denote the number
of parity groups. Let N denote the total number of packets,
including both data packets and parity packets, over all stripe
units in every disk. Let k = N/n, i.e., k is the total number
of packets in any one disk. Since C is a MDS code, the
redundancy is

R = p/N = m/n (1)

and so k = p/m.
From C we construct a p × N (0, 1)-matrix H called the

parity check matrix [4]. Each column of H corresponds to
a packet in C and each row corresponds to a parity group.
A cell (i, j) contains 1 if that parity group appears in the
corresponding packet, otherwise it contains 0. We partition
H into n disjoint p × k submatrices, {Mi}1≤i≤n such that
each submatrix Mi is formed by the k columns of H cor-
responding to the packets within the i-th disk. Moreover, if
S ⊆ {1, 2, . . . , n}, we let HS be the submatrix of H formed
by the columns corresponding to the packets within the i-th
disk for all i ∈ S. A codeword X is similarly partitioned into
n disjoint segments Z = {Xi}1≤i≤n, such that each segment
is formed by the k elements (bits) of the packets within the
i-th disk. Again, if S ⊆ {1, 2, . . . , n}, we similarly define
XS to be the concatenation of the segments Xi with i ∈ S.
Codewords X satify

HX = �0 (2)

where �0 is the p × 1 zero vector. The process of decoding
is equivalent to solving (2). We observe the following four
equivalent statements [4].

P1 D3,6 D4,5 P2 D1,3 D5,6

1 1 0 0 0 1 0
2 0 0 0 1 0 0
3 0 1 0 0 1 0
4 0 0 1 0 0 0
5 0 0 1 0 0 1
6 0 1 0 0 0 1

Fig. 5. H{0,1} for the 7-disk B-Code in Fig. 1.

1) C is an m-erasure correcting code.
2) If we know the value of every segment {Xi}i∈S for some

S ⊆ {1, 2, . . . , n} with |S| ≥ n−m, i.e., if no more than
m erasures occur, then it is possible to find a unique
solution to the system of Equations (2).

3) For any subset S ⊆ {1, 2, . . . , n} with |S| = m, the
columns of the set of matrices {Mi}i∈S are linearly
independent over GF(2). Equivalently, any non-empty
XOR sum of columns of HS for any S ⊆ {1, 2, . . . , n}
is non-zero.

4) For any S ⊆ {1, 2, . . . , n} with |S| = m, the matrix HS

has full rank.
Fig. 5 displays the submatrixH{0,1}, corresponding to disk0

and disk1 in the B-Code shown in Fig. 1.
Suppose that a disk d is composed of ad data packets and bd

parity packets. Let xd be the total number of parity groups that
appear in d. Then xd ≤ mad + bd ≤ m(p/m) = p. There are
p = mk parity groups and k packets in each disk. Therefore,
we have xd = p if and only if bd = 0, ad = k = p/m and
each packet within the disk is disjoint.
If there is a parity group that does not appear in d, which

occurs if b > 0, then the submatrix Mi contains a row of
zeroes. For example, the parity group 2 does not appear in
disk0 in the B-Code shown in Fig. 1, thus the second row in
its submatrix M0 is a row of zeroes. Recall that, if a parity
group does not appear in a disk, we call it a hole. We define
the total number of holes in C is the sum of the number of
holes of each disk.
Claim: The total number of holes in C is at most p(m −

1). Otherwise, for some parity group i, there are at least m
holes, by the pigeonhole principle. Therefore, we can find S ⊆
{1, 2, . . . , n} of cardinality m for which each Mi in Y has i
as a hole. However, in this case, row i of HS consists entirely
of zeroes, implying it does not have full rank, contradiction
condition 4).
Claim: The total number of holes in C is at least p(m− 1).

We know xd ≤ mad+bd = m(ad+bd)−bd(m−1). Therefore
the total number of holes in C is

∑
d(p− xd) ≥ np−mN +

p(m − 1) = p(m − 1) by (1).
To review, we showed that there are exactly p(m−1) holes

in C. They all arise due to the existence of a parity packet
within a disk. Therefore, the packets from the same disk do
not share parity groups.
We will now use Theorem 1 to deduce that longest lowest-

density MDS codes also satisfy structure property I.
Corollary 2: Longest lowest-density MDS codes C satisfy

structure property I.
Proof: Theorem 1 implies that C satisfies structure prop-

erty II. Therefore if a disk d is a pure data disk, then every
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disk0 disk1 disk2 disk3 disk4 disk5 disk6
D1,3,9 P1 P2 P3 P4 P5 P6
D2,5,6 D2,4,10 D3,5,11 D4,6,12 D6,9,10 D1,6,8 D2,7,9

D4,10,12 D3,6,7 D4,7,8 D5,8,9 D1,3,8 D7,10,11 D8,11,12
D7,8,11 D8,9,12 D1,6,12 D1,10,11 D2,11,12 D2,4,9 D3,5,10

disk7 disk8 disk9 disk10 disk11 disk12
P7 P8 P9 P10 P11 P12

D3,8,10 D4,9,11 D5,10,12 D2,3,12 D1,7,12 D1,4,5
D4,6,11 D5,7,12 D1,2,11 D1,7,9 D2,8,10 D3,9,11
D1,2,5 D2,3,6 D3,4,7 D4,5,8 D5,6,9 D6,7,10

Fig. 6. A 13-disk T-Code.

parity group appears in d. Suppose, seeking a contradiction,
that there are two pure data disks in C. If we erase both
of those disks, then that data cannot be uniquely recovered.
Hence the code C is not an m-erasure correcting code. In fact,
C is not even a 2-erasure correcting code. We conclude that
C contains no more than one pure data disk.
Since we seek minimum number of packets, each disk

contains at most one parity packet. Hence p is either n− 1 or
n. From Equation (1), we can deduce that the total number of
packets in C is either N = n(n − 1)/m or N = n2/m.
The result in this section agree with [6]. However, our

derivation is based on a combinatorial method, thus not
requiring that the codes are F2-linear. We have identified some
structural properties of longest lowest-density MDS codes.
Moreover, we can now derive some necessary conditions for
the existence of a longest lowest-density MDS code. The
remainder of this paper is devoted to constructing an infinite
family of T-Codes.

III. T-CODES AND NRBS

We call a longest lowest-density MDS code a T-Code if it
is a 3-erasure code. In this section, following the methodology
used in [12], we will construct a bijection between T-Codes
and a certain type of so-called perfect near-resolvable block
designs. Since each disk contains k = p/m packets and m =
3 now, p must be divisible by 3 and therefore p = 3k and
n = p = 3k or n = p+1 = 3k+1. We will consider the case
when n = 3k + 1.
Fig. 6 displays a 13-disk T-Code. We observe that (a) it

satisfies all the structure properties, (b) packets from the same
disk do not share parity groups, (c) there is one pure data
disk d and (d) every disk other than d contains a parity packet
and has precisely two holes. We introduce a new parity group
∞ into the code in the following way. To each disk d that
contains a parity packet, we add a new data packet consisting
of the parity group ∞ and the two parity groups originally
missing from d. To the unique pure data disk, we instead add
P∞. This completes the construction, which we will call the
complement transformation, denoted T . In Fig. 7 we give the
complement transformation T of the T-Code in Fig. 6.
We see that each pair of distinct parity groups, i and j, si-

multaneously appear in exactly two data packets in T . Taking
the structure properties into account, this system is a so-called
near-resolvable design [17] with parameters (13, 3, 2).
A balanced incomplete block design, abbreviated

BIBD(v, m, λ), is a pair (V, B), where V is a set of
cardinality v and B is a collection of subsets of V each of
cardinality m such that |B| = b and (a) every element x ∈ V
appears in exactly r blocks and (b) every pair of distinct

P∞ P1 P2 P3 P4 P5 P6
D1,3,9 D2,4,10 D3,5,11 D4,6,12 D6,9,10 D1,6,8 D2,7,9
D2,5,6 D3,6,7 D4,7,8 D5,8,9 D1,3,8 D7,10,11 D8,11,12

D4,10,12 D8,9,12 D1,6,12 D1,10,11 D2,11,12 D2,4,9 D3,5,10
D7,8,11 D5,11,∞ D9,10,∞ D2,7,∞ D5,7,∞ D3,12,∞ D1,4,∞

P7 P8 P9 P10 P11 P12
D3,8,10 D4,9,11 D5,10,12 D2,3,12 D1,7,12 D1,4,5
D4,6,11 D5,7,12 D1,2,11 D1,7,9 D2,8,10 D3,9,11
D1,2,5 D2,3,6 D3,4,7 D4,5,8 D5,6,9 D6,7,10

D9,12,∞ D1,10,∞ D6,8,∞ D6,11,∞ D3,4,∞ D2,8,∞

Fig. 7. T-Code→NRB.

elements x, y ∈ V appears simultaneously in λ blocks.
Every set in B is called a block. It is necessary that the
r = λ(v − 1)/(m − 1) and b = vr/m, so these parameters
are uniquely determined by v, m and λ.
A near-resolvable (block) design, abbreviated

NRB(v, m, λ), is a balanced incomplete block design
BIBD(v, m, λ) with the additional property that B can
be partitioned into near parallel classes, i.e., there exists a
partition Q of B, such that (a) each part q ∈ Q has cardinality
|q| = m, (b) each element x ∈ V appears in at most one part
q ∈ Q and (c) for each x ∈ V there exists a unique q ∈ Q
with x /∈ Q.
We can construct an NRB(v, 3, 2) B from the complement

transformation T of a T-Code C in the following way. The
parity groups form V and each data packet t identifies a block
in B corresponding to the parity groups that appear in t. The
partition Q is formed by the set of data packets in each disk.
The missing element in each q ∈ Q corresponds to the parity
group of the parity packet.
We can reverse this construction by performing the follow-

ing steps on each near parallel class q ∈ Q to construct a
disk.
1) We convert the missing element into the corresponding
parity packet.

2) We convert each block into a data packet – the three
elements in the block designate the parity groups which
appear in the data packet.
We then pick a parity group e and delete every packet

(both data and parity) in which e appears. We call this
the elimination transformation. This raises a question: is the
code constructed from an NRB(v, 3, 2) necessarily a 3-erasure
code? Actually, it turns out not to be the case, therefore we
will need to introduce a stronger property.
Let V be a set. SupposeG is a collection of subsets (blocks)

of V , and S = ∪G, we say that G is a cover of S and that
S is the base set of G, denoted by S = BASE(G). We say
||G|| := |S| is the size of the cover G. If each element of S
appears in an even number of blocks in G, then we call G an
even cover of S. Define MC(G) = minG′(||G′||) where the
minimum is taken over all even covers G′ ⊆ G of BASE(G).
We call MC(G) the minimum even cover size. If G does not
possess a subset G′ that is a even cover of S, then we use the
convention MC(G) = ∞.
Given a block g of an NRB(3k +1, 3, 2), it is contained in

a unique near-parallel class q ∈ Q. If x ∈ V and x �∈ ∪q then
P := q ∪

{
{x}

}
is a partition of V into k parts of cardinality

3 (the original blocks of q) and one part of cardinality 1
(i.e. {x}). We call P the complement block of g. We call
an NRB(3k + 1, 3, 2) perfect, if for any three complement
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blocks B1, B2 and B3, we have MC(B1 ∪ B2 ∪ B3) =
|V | = 3k + 1. That is, every three complement blocks
B1, B2 and B3 in a perfect NRB(3k + 1, 3, 2) are such
that every even cover G′ of B1 ∪ B2 ∪ B3 must have size
||G′|| = |V |. Observe that the union B1 ∪ B2 of any pair of
complement blocks of an NRB(3k + 1, 3, 2) is an even cover
of V , thus MC(B) ≤ |V | = 3k + 1. Therefore, a perfect
NRB(3k + 1, 3, 2) maximizes the minimum even cover size
of every B1 ∪ B2 ∪ B3. We will now identify a bijection
between T-Codes and perfect NRB(3k + 1, 3, 2).
We can associate any subset G ⊆ B of an NRB(3k+1, 3, 2)

with a (0, 1)-matrix HG in the following way. Each row cor-
responds to an element x ∈ V and each column corresponds
to a block g ∈ G. The cell in row x ∈ V and column g ∈ G
contains 1 if x ∈ g, otherwise it contains 0. The matrix HG

is a submatrix of parity check matrix H of the code produced
by the elimination transformation on B.
Lemma 3: MC(G) = ∞ for every G ⊆ B if and only if

HG has full rank.
Proof: If MC(G) < ∞, then there exists a non-empty

subset G′ ⊆ G that is an even cover. Therefore the XOR sum
of the columns of HG′ is the zero vector, implying that HG′

and hence HG does not have full rank. Conversely, if HG

does not have full rank, then there exists some cover G′ ⊆ G,
for which the XOR sum of the columns of HG′ is the zero
vector. Moreover, G′ must be an even cover, otherwise for
some x ∈ BASE(G′), the row of HG′ corresponding to x
contains an odd number of 1 entries, giving a contradiction.

Lemma 4: Performing complement transformation on a T-
Code C with n = 3k +1 disks produces a system T in which
each pair of distinct parity groups, i and j, appears in precisely
two pairs of data packets of T .

Proof: Observe that T contains n(n−1)/3 data packets.
Precisely three parity groups appear in each data packet. There
are

(
n
2

)
= n(n−1)/2 pairs of distinct parity groups. Therefore,

each pair of distinct parity groups simultaneously appears in
two data packets on average. We will now show that each pair
of distinct parity groups simultaneously appears in at most
two data packets. Suppose, seeking a contradiction, that there
exists a pair of distinct symbols i and j that simultaneously
appear in three data packets.
Case I: i = ∞ or j = ∞. Without loss of generality,

suppose that i = ∞. Since j must be a hole in C and each hole
appears exactly twice in C, this pair (∞, j) appears exactly
twice in T .
Case II: i �= ∞ and j �= ∞. If both i and j appear in

three data packets, then structure property II implies that these
data packets appear in distinct disks in C. Let S index those
disks and so HS is a square (0, 1)-matrix (since m = 3) with
identical row i and row j, by structure property II. Therefore,
the rows are not linearly independent and HS does not have
full rank, giving a contradiction.
Theorem 5: There is a bijection between T-Codes with n =

3k + 1 disks and perfect NRB(3k + 1, 3, 2).
Proof: We have shown that an NRB(3k +1, 3, 2) B can

be converted into a code C satisfying the structure properties
by the elimination transformation. By definition, if B is a
perfect NRB(3k +1, 3, 2), then any three complement blocks

1

2

3

Base
12 Base13 Base23

Fig. 8. Illustration of an even cover excluding ∞, marked by ovals.

B1, B2 and B3 in B have MC(B1∪B2∪B3) = |V | = 3k+1.
During the eliminiation transformation we have deleted the set
containing e from each of B1, B2 and B3 to form B∗

1 , B∗
2

and B∗
3 , respectively. Therefore, if G′ is an even cover and

G′ ⊆ B∗
1 ∪B∗

2 ∪B∗
3 , then |BASE(G′)| ≤ |V \ {e}| = |V |− 1.

Moreover, G′ ⊆ B1∪B2∪B3, contradicting that B is perfect.
Hence MC(B∗

1 ∪ B∗
2 ∪ B∗

3) = ∞ and Lemma 3 implies that
C is a T-Code.
Conversely, according to Lemma 4, performing complement

transformation on a T-Code C with 3k + 1 disks yields an
NRB(3k +1, 3, 2) B. If B is not perfect, there must be three
complement blocks B1, B2 and B3 with MC(B1∪B2∪B3) <
|V | = 3k + 1. So there is an even cover R ⊆ B1 ∪ B2 ∪ B3

of size less than |V |. Since R is an even cover, any element
that is in some set in R is in exactly two sets in R. If ∞ is
not in some set in R, then R is fully contained in C. Thus
some columns selected form C’s parity check matrix are linear
dependent, implying that C is not a 3-erasure code, giving a
contradiction. Thus ∞ is in exactly two sets in R. Without
loss of generality, assume ∞ appears in B1 and B2. Let

BR
1 = R ∩ B1 BR

2 = R ∩ B2 BR
3 = R ∩ B3

Since each element is in exactly two sets in R and B1, B2

and B3 are mutually disjoint, we have

BASE(BR
1 ) ∩ BASE(BR

2 ) ∩ BASE(BR
3 ) = ∅.

Thus (
B1 \ BR

1

)
∪

(
B2 \ BR

2

)
∪ BR

3

is an even cover excluding ∞. This is depicted in Fig. 8,
where BASEij = BASE(BR

i )∩BASE(BR
j ) and, by assumption,

BASE12 contains∞. Solid lines denote BR
i and the even cover

excluding ∞ is marked by dotted ovals. This contradicts the
assumption that C is a 3-erasure code. Thus B is perfect.
In Fig. 6 we gave an example of a T-Code for n = 13. In

next section, we will show that T-Code exists for many other
values of n.

IV. CONSTRUCTING T-CODES

We will now identify a method of constructing T-Codes
from a specific class of NRB(v, 3, 2), as constructed in [17].
We will show that this kind of NRB is perfect when both
p = 3k + 1 is a prime and 2 is a primitive root modulo
p. Artin’s Conjecture [18] asserts that for any a, that is not
a square or −1, there exists an infinite number of primes
with primitive root a. In particular, Artin’s Conjecture implies
that there exists infinitely many primes with primitive root 2.
However, we additionally require that p ≡ 1 (mod 3). The
first few primes of this form are 13, 19, 37, 61, 67, 139, etc.
Since 2 is a primitive root modulo p, the non-zero elements

of GF(p) form a cyclic group GF(p)∗ under multiplication
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modulo p generated by 2. Since 2 is a primitive root modulo
p, we know that 23k ≡ 1 (mod p). We define the near parallel
classes by{

{2i + j, 2i+k + j, 2i+2k + j}|0 ≤ i ≤ k − 1
}

0≤j≤p−1

working modulo p. For example, when p = 13 and k = 4, we
construct the near parallel classes

j = 0
{
{1, 3, 9}, {2, 5, 6}, {4, 10, 12}, {7, 8, 11}

}
j = 1

{
{2, 4, 10}, {3, 6, 7}, {0, 5, 11}, {8, 9, 12}

}
j = 2

{
{3, 5, 11}, {4, 7, 8}, {1, 6, 12}, {0, 9, 10}

}
j = 3

{
{4, 6, 12}, {5, 8, 9}, {0, 2, 7}, {1, 10, 11}

}

and so on, up to j = p − 1. The NRB(p, 3, 2), denoted Bp,
is the union of the parallel classes, which we will call a 2-
NRB, since it is generated by a primitive root 2. We know
that Bp can be converted into a code C by the elimination
transformation. We will now show that C, constructed from Bp,
is a T-Code, so Theorem 5 verifies that Bp is indeed an perfect
NRB(v, 3, 2). Note that, in the elimination transformation, the
blocks containing 0 are deleted. It is straightforward to show
that C satisfies the performance properties. Therefore, it is
sufficient to prove that C is a 3-erasure code.
For this, we will identify C with a polynomial of the quotient

ring R of polynomials in GF(2)[x] modulo the ideal generated
by

fp(x) := 1 + x + x2 + · · · + xp−1.

Observe that

xp − 1 = (x − 1)(1 + x + x2 + · · · + xp−1) = (x − 1)fp(x).

Therefore xp = 1 in R. An arbitrary polynomial g ∈ R can
be written in the form

g(x) = a0 + a1x + a2x
2 + · · · + ap−1x

p−1, (3)

where a0, a1, . . . , ap−1 ∈ GF(2). Observe that xtg(x), for
any integer t, is the polynomial formed by cyclicly shifting
coefficients a0, a1, . . . , ap−1 in (3) of g(x) to the right by t
steps.
For any 0 ≤ i ≤ k − 1, let

gi(x) = x2i

+ x2i+k

+ x2i+2k

.

Let V = GF(2)k+1 be the direct product of k + 1 GF(2)’s.
For arbitrary v ∈ V we can write v = (a0, a1, . . . , ak) for
some a0, a1, . . . , ak ∈ GF(2). We define hv(x) ∈ R to be the
polynomial

hv(x) = a0 +
k−1∑
i=0

ai+1gi(x)

for all v ∈ V .
For all 0 ≤ j ≤ p−1, we let Bj denote the parallel class in

which j is not an element of any of the blocks. We assign an
total order to the blocks in each near parallel class Bj ∈ Bp so
that we can consider the i-th block of Bj , where 0 ≤ i ≤ k−1.
Given a near parallel class Bj ∈ Bp which produces the j-th
disk of C, we construct a vector vj = (a0, a1, . . . , ak) ∈ V by
making the following assignments.

• a0 is the value of the parity packet Pj if Pj appears in
disk j and a0 = 0 otherwise.

• ai+1 is the value of the packet defined by the i-th block
of Bj if the data packet appears in disk j and ai+1 = 0
otherwise, for each 0 ≤ i ≤ k − 1.

Hence the j-th disk of C gives rise to the polynomial
xjhvj (x) ∈ R. Observe that xi corresponds to the i-th parity
group of C, and the coefficient of xi is the value of the packet
in which the i-th parity group appears. Therefore adding the
coefficients of xi from different disks over GF(2) is equivalent
to taking the XOR sum of the packets that intersect with the
i-th parity group. So we have

p−1∑
j=0

xjhvj (x) = 0. (4)

Lemma 6: For all 0 ≤ i ≤ k − 1, gi(x) = gi(x)2
k

=
gi(x)2

2k

.
Proof: To begin, observe that, for any a, b, c,

(xa + xb + xc)2 = x2a + x2b + x2c + 2(xa+b + xa+c + xb+c)

= x2a + x2b + x2c,

since coefficients are in GF(2). By repated application we find
that

(xa + xb + xc)2
k

= x2ka + x2kb + x2kc.

In our case a = 2i, b = 2i+k and c = 2i+2k. Hence

gi(x)2
k

= x2k2i

+ x2k2i+k

+ x2k2i+2k

= x2i+k

+ x2i+2k

+
(
x23k)2i

= x2i+k

+ x2i+2k

+ x2i

= gi(x)

since 23k ≡ 1 (mod p) and xp = 1 in R. The second equality
follows from the first.
Theorem 7: Equation (4) admits a solution whichever three

disks of C fail.
Proof: Without loss of generality, suppose that the 0-th

disk, the a-th disk and the b-th disk fail, 1 ≤ a < b ≤ p − 1.
Let H(x) be the sum of the polynomials corresponding to the
surviving disks. Equation (4) can be rewritten as

H(x) = hv0(x) + xahva(x) + xbhvb
(x). (5)

Lemma 6 implies that
⎧⎪⎨
⎪⎩

H(x) = hv0(x) + xahva(x) + xbhvb
(x)

H(x)2
k

= hv0(x) + xa2k

hva(x) + xb2k

hvb
(x)

H(x)2
2k

= hv0(x) + xa22k

hva(x) + xb22k

hvb
(x).

(6)

Let

ν =

⎛
⎝

1 xa xb

1 xa2k

xb2k

1 xa22k

xb22k

⎞
⎠ .

The system of equations (6) admits a solution if and only if
det(ν) �= 0.

det(ν) = xaxb

∣∣∣∣∣∣

1 1 1
1 xa(2k−1) xb(2k−1)

1 xa(22k−1) xb(22k−1)

∣∣∣∣∣∣
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Let c = a(2k − 1) and d = b(2k − 1). Since a �= b and p is
a prime, c �≡ d mod p.

det(ν) = xaxb

∣∣∣∣∣∣
1 1 1
1 xc xd

1 xc(2k+1) xd(2k+1)

∣∣∣∣∣∣

= xaxb

∣∣∣∣∣∣
1 1 1
0 xc − 1 xd − 1
0 xc(2k+1) − 1 xd(2k+1) − 1

∣∣∣∣∣∣
= xaxb

((
xc − 1

)(
(xd)2

k+1 − 1
)

−
(
xd − 1

)(
(xc)2

k+1 − 1
))

= xaxb(xc − 1)(xd − 1)
( 2k∑

i=0

xdi −
2k∑
i=0

xci
)

Since the two monomials and the two binomials are all
reversible [9], it follows that det(ν) is identically 0 if and
only if

2k∑
i=0

xdi =
2k∑
i=0

xci. (7)

For each 0 ≤ s ≤ p − 1 define �s ∈ R to be the polynomial
�s(x) =

∑2k

i=0 xsi. By (7), det(ν) = 0 if and only if �c = �d

for some c �≡ d (mod p) and c, d �≡ 0 (mod p). Suppose
d ≡ c+ r (mod p) where r �≡ 0 (mod p). Then �c = �c+r =
�c+2r = �c+3r and so on. Since r �≡ 0 (mod p) and p is
prime, we eventually find that �c = �1 = �0 = 1 since there
are an odd number of terms in (7). However, by (3), if �1 =
�0 = 1, then the number of terms in �1 is 2k+1 ≡ 1 (mod p),
giving a contradiction.
At first sight, vj �→ xjhvj (x) is not an injection. For

example, if vj = (0, 0, . . . , 0) ∈ V and v′j = (1, 1, . . . , 1) ∈ V ,
then xjhvj (x)+xjhv′

j
(x) = 1+x+x2 + · · ·+xp−1 = fp(x).

However, in the process of constructing the j-th disk d of C
from Bp, if j �= 0 then we have deleted some block (0, u, v)
and inserted the j-th parity packet Pj . Hence, the coefficients
of xu+j and xv+j in xjhvj are both zero, which implies that
xu+j and xv+j should not appear. For j = 0, while no block
has been deleted, there is no parity packet in this disk, so
x0 should not appear. Therefore for the v ∈ V that we are
interested in, this situation cannot arise.
Theorem 7 shows that the codes C, formed from Bp using

the elimination transformation, are indeed 3-erasure codes, i.e.
they are T-Codes.
To review, in this section we presented a combinatorial

construction of a family of T-Codes that is likely to be infinite.
However, the methodology presented is unable to resolve
every case of n ≡ 1 (mod 3). For other cases, inspecting
all possible layouts, even with the aid of a computer, is not
feasible. A more promising way is to check some special
layouts that are likely to be T-Codes.
We have proved that 2-NRBs are perfect NRBs. An in-

tuitive idea is to test NRBs based on Galois fields GF(p)
that have a primitive root 3, 5, and so on. We have tested
all prime of the form p = 6c + 1 less than 1000 and the
results are tabulated in TABLE I. We were unable to find
T-Codes for all primes p of this form, however, we have
succeeded in resolving many cases. For 4 disks, there is a

TABLE I
T-CODE SEARCHED BY COMPUTER.

primitive
root

prime numbers p = 6c + 1 < 1000
T-Code found not found

2

13, 19, 37, 61, 67,139, 163, 181,
211, 349, 373, 379, 421, 523, 541,
547, 613, 619, 661, 709, 787, 829,

853, 859, 877, 883, 907

3
31, 43, 79, 127, 199, 223, 283,
331, 463, 487, 571, 607, 631,
691, 739, 751, 811, 823

7

5
97, 103, 157, 193, 277, 307, 397,
433, 577, 673, 727, 937, 967 73

7
229, 241, 499, 601, 733,

919, 991, 997 151

11 109, 367, 643, 769
13 457
17 313, 439
19 337
29 409
43 271

simple construction of a T-Code – four-way mirroring. For
p = 7 we performed an exhaustive search to prove that no
T-Code exists with 7 disks. Therefore perfect NRBs and T-
Code do not exist for all n of the form 3k + 1. For n = 10,
we were unable to exhaustively search every possible layout.

V. CONCLUSION

In this paper, we studied longest lowest-density MDS codes,
a simple class of multi-erasure parity array codes with good
performance. We proved some structure properties of this kind
of codes. We defined a property, which we called “perfect”, for
near-resolvable block designs (NRBs) and found a bijection
between T-Codes, i.e., 3-erasure longest lowest-density MDS
codes, and perfect NRB(3k + 1, 3, 2). We also presented a
combinatorial construction of a family of T-Codes that is likely
to be infinite. This family of T-Codes is constructed from
NRBs based on prime fields that have a primitive root 2.
We proved that this kind of NRB is perfect, verifying that the
codes we produced are indeed T-Codes. We also tested some
other NRBs and found some T-Codes outside of this family.
An important avenue for future exploration would be to find
more T-Codes, either in families or individual instances, by
both theoretic and computational means. It would also be of
value to develop efficient encoding and decoding algorithms
for these codes.
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