
A Remote Mirroring Architecture with

Adaptively Cooperative Pipelining�

Yongzhi Song, Zhenhai Zhao, Bing Liu, Tingting Qin,
Gang Wang, and Xiaoguang Liu

Nankai-Baidu Joint Lab, College of Information Technical Science, Nankai University
94 Weijin Road, Tianjin 300071, China

syzcch@sina.com, zhaozhenhai1985@gmail.com, liubing87@126.com,

paula qin 1987@126.com, wgzwp@163.com, liuxg74@yahoo.com.cn

Abstract. In recent years, the remote mirroring technology has at-
tracted increasing attention. In this paper, we present a novel adaptively
cooperative pipelining model for remote mirroring systems. Unlike the
traditional pipelining model, this new model takes the decentralization of
processors into account and adopts an adaptive batching strategy to al-
leviate imbalanced pipeline stages caused by this property. To release the
heavy load on CPU exerted by compression, encryption, TCP/IP pro-
tocol stack and so on, we design fine-grained pipelining, multi-threaded
pipelining and hybrid pipelining. We implement a remote mirroring pro-
totype based on Linux LVM2. The experimental results show that, the
adaptively cooperative pipelining model balances the primary and the
backup sites - the two stages of the pipeline effectively, and fine-grained
pipelining, multi-threaded pipelining and hybrid pipelining improve the
performance remarkably.

Keywords: remote mirroring, cooperative pipelining, adaptive batching,
fine-grained, multi-threaded.

1 Introduction

Consistently, data protection is a hot topic in IT academia and industry. Espe-
cially in recent years, after several great disasters, some enterprises with perfect
data protection resumed quickly, while many others went bankrupt because of
data loss. So data protection technologies have attracted increasing attention.
Remote mirroring is a popular data protection technology that tolerates local
natural and human-made disasters by keeping a real-time mirror of the primary
site in a geographically remote place. There are two typical remote mirroring
strategies: synchronous and asynchronous [1]. The latter is preferable due to the
former’s heavy sensitivity to the Round Trip Time (RTT) [2].
� Supported partly by the National High Technology Research and Development Pro-

gram of China (2008AA01Z401), NSFC of China (60903028), SRFDP of China
(20070055054), and Science and Technology Development Plan of Tianjin (08JCY-
BJC13000).

C.-H. Hsu et al. (Eds.): ICA3PP 2010, Part I, LNCS 6081, pp. 215–225, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

216 Y. Song et al.

In this paper, we present a new cooperative pipelining model to depict remote
mirroring systems. By “cooperative” we mean that the pipeline is across the pri-
mary site, the network and the remote backup site. Since each subtask naturally
has an “owner”, so we cannot distribute them arbitrarily to balance the pipeline
stages. For this, we present an adaptive batching algorithm. Write requests are
propagated to the backup site in batches and the batch size (interval) is adjusted
dynamically according to the processing speed of the primary and the backup
sites. We implement data compression and encryption in our prototype to reduce
network traffic and enhance security respectively. These operations put a lot of
pressure on CPU. For this, we design three accelerating methods: fine-grained
pipelining, multi-threaded pipelining and hybrid pipelining.

The rest of this paper is organized as follows: In Section 2, we focus on the
related work in the recent years. In Section 3, we illustrate the basic architec-
ture of our system and present the adaptive cooperative pipeline. In Section 4,
we introduce the implementation and evaluate it from results of a quantity of
experiments. Finally, the conclusions and future work is given in Section 5.

2 Related Work

EMC Symmetrix Remote Data Facility (SRDF) [3] is a synchronous block-level
remote replication technique that will switch to semi-synchronous mode if the
performance is below the threshold. Veritas Volume Replicator (VVR) [4] is a
logical volume level remote replication technique. It supports multiple remote
copies and performs asynchronous replication using a log and transaction mech-
anism. Dot Hill’s batch remote replication service [5] schedules point-in-time
snapshots of the local volume, then transfers the snapshot data changes to one
or more remote systems.

Network Appliance’s SnapMirror [1] uses snapshot to keep the backup volume
up to date. The WAFL file system is used to keep track of the blocks that have
been updated. Seneca [6] delays sending a batch of updates to the remote site,
in the hope that write coalescing will occur. Writes is coalesced only within a
batch, and batches must be committed atomically at the remote site to avoid
inconsistency.

Our prototype is also implemented in the logical volume level like VVR and
Dot Hill’s remote replication service. Like Seneca, the updates are sent to the
backup site in batches for performance reasons. Our prototype also adopts an
adaptive mechanism. However, it is based on asynchronous mode and for pipeline
stage balancing rather than network conditions adapting.

There are many other remote replication products, such as IBM’s Extended
Remote Copy (XRC) [7], HP Continuous Access Storage Appliance (CASA) [8]
and so on. In recent academic studies, [9] presents a prototype in which the syn-
chronous and asynchronous mode are specified by the upper level applications or
the system. [2] uses Forward Error Correction (FEC) and “callback” mechanism
for high reliability.

A Remote Mirroring Architecture with Adaptively Cooperative Pipelining 217

3 Adaptively Cooperative Pipelining

Fig. 1 shows the architecture of our prototype. It is an asynchronous remote
mirroring system implemented in Linux LVM2 [10]. NBD (the Network Block
Device) [11] is used for data transmission between the primary and the backup
sites. When a write request arrives, it is duplicated, and then the original enters
the local queue and the replica enters the remote queue. The requests in the
remote queue are sent to the backup site in batches at intervals. Since NBD
transfers messages using TCP, the consistency is guaranteed as long as each
batch is committed atomically in the backup site. In order to reduce the net-
work traffic, requests are compressed before they are being sent. They are also
encrypted to provide good security. It is easy to see that the order of compressing
before encrypting is superior to the reverse order in computational complexity.
Therefore, in the backup site, the requests are decrypted and then decompressed
before being committed.

Upper Layer Application

LVM2

Device Mapper

Remote
Mirroring
Module

Local Disk

ioctrl, /proc interfaces

NBD
Client

Primary Site

Remote Queue

Backup

Site

NNBBDD
SSeerrvveerr

Disk

Compress

Encrypt

Fig. 1. Prototype architecture

3.1 Cooperative Pipelining

In order to maximize the throughput, an obvious way is to overlap the operations
in the primary site and the operations in the backup site. That is, after a batch is
sent, instead of waiting the reply, the primary site immediately throws itself into
processing the next batch while the backup site processes the previous one. So
we can describe the processing of the requests by a two-stage pipelining model.
We call the two stages the primary stage and the backup stage respectively. This
pipeline is “cooperative”, that is, each batch is processed by the primary site
and the backup site cooperatively. We know that, for a given task, the more
the stages and the nearer the size of the stages, the higher the performance

218 Y. Song et al.

of the pipeline is. However, the cooperative pipelining model has some unique
properties against this.

For traditional pipelining, to increase the speed of a single pipeline, one would
break down the tasks into smaller and smaller units. For example, pipelines
in modern CPUs typically have more than 20 stages. However, a cooperative
pipeline is naturally composed of eight subtasks including batch assembling,
compression, encryption, batch transmission, decryption, decompression, disk
writing and reply. Since it is a software pipeline, further task decomposition
will induce significant interaction overhead. Moreover, we can not accurately
predict the execution time of some stages (primarily the disk operations and
the network transmission whose performance depend on the current state of the
system heavily). This is a serious obstacle to high efficient pipelining.

Typical distributed pipelining models, such as the pipelined gaussian elimi-
nation algorithm [12], break down the tasks into subtasks with the same size
and assign them to proper processors. However, each subtask in a cooperative
pipeline has a specific “owner” so that it can not be assigned to other processors.
For example, the backup site can not perform data compression which must be
done at the primary site. This inherently immutable task mapping contributes
to the difficulty in load balancing. We must equal the speed of the primary stage
and the backup stage for perfect load balance. Otherwise, processor will still be
idle even if we break down the task into smaller subtasks with the same size.
Moreover, if we want to improve performance by deepening the pipeline, we must
further divide the primary stage and the backup stage identically.

3.2 Adaptive Batching

As mentioned above, the primary site can process the next batch immediately
after the previous batch is sent. In a single-user system, this “best-effort” strategy
guarantees the optimal performance. However, it has some drawbacks.

If the speed of the two stages are different, for instance, the primary stage
is faster than the backup stage, the two sites are out of step under best-effort
strategy. If the user application keeps up the pressure on the storage subsystem,
the gap between the primary site and the backup site becomes wider and wider
until the primary site exhausts system resource. Then the primary site will slow
down to wait for the replies from the backup site to release enough resource.
This brings unsteady user experience (response time of the primary site). More-
over, exhausting system resource by one process is not good for a multi-user
system. This will impact the stability of the system and the performance of
other processes seriously.

In a word, best-effort strategy does not coordinate the primary site and the
backup site well. Or, it “coordinates” the two sites by exhausting system re-
source. So we introduce an adaptive batching algorithm for coordination. We set
a batch interval when system initializing. This interval defines the request accu-
mulating and the batch processing periods. That is, the requests accumulated
in the previous period are processed in batches in the next period. Every time
a batch finishes, we adjust the batch interval to approach the execution time of

A Remote Mirroring Architecture with Adaptively Cooperative Pipelining 219

the primary stage and the execution time of the backup stage. Therefore, if the
batch interval converges to a stable condition eventually, the primary stage and
the backup stage will have the same execution time (both equal to the batch
interval). Note that the execution time of disk operations and network transmis-
sion is not proportion to the batch size. So, although interval adjusts lengthens
(or shortens) of both stages, the increment of the faster one (generally the pri-
mary stage) may be longer than that of the slower one (generally the backup site
which contains disk operations and network transmission), therefore the batch
interval converges.

Primary Site

Batch Assembling

Compression
Encryption
Sending

Backup Site

Decryption
Decompression

Disk Writing

Reply

req

reply

Initialization

If wait

Reply Received

curr priT T−curr priT T>
(1)next curr priT T Tα α= − × + ×

(1)next next backT T Tβ β= − × + ×
/next total total nextN N T T= ∗

priT

backT

Fig. 2. Adaptive batching algorithm

Unlike best-effort strategy, adaptive batching algorithm lets the faster site
sleep for a while instead of processing the next batch immediately when the two
sites are out of step, that is, slows down the faster site to force the two sites in
step. The advantage of this strategy is obvious: the faster site will not exhaust
system resource, therefore it does not impact other processes in the system.
Another advantage of adaptive batching is the good adaptability to change of
network conditions. If network fluctuates, by interval adjusting, the primary site
and the backup site adapt to the speed of network automatically and timely.
The following adaptive formulas are used to adjust the batch interval.

Tnext = (1 − α) × Tcurr + α × Tpri (1)
Tnext = (1 − β) × Tnext + β × Tback (2)

where Tcurr and Tnext denote the current and the next intervals respectively, and
Tpri and Tback denote the execution time of the primary stage and the backup
stage respectively. In our implementation, Tpri includes time spent in batch
assembling, compression, encrypting and batch sending, and Tback includes time
spent in batch receiving, decryption, decompression, disk write and reply. α and

220 Y. Song et al.

β are adjusting factors which are real numbers between 0 and 1. They control
how fast the batch interval approaches to real processing time and how fast the
pipeline adapts to network change. To counter continuous heavy load, we use a
batch size threshold to control the maximum number of requests in a batch:

Nnext = Ntotal/Ttotal × Tnext (3)

where Ntotal denotes the total number of requests that have been processed,
and Ttotal denotes the total processing time. That is, the processing capacity
is estimated by statistics and is used to set the next threshold Nnext. Fig. 2
illustrates the adaptive batching algorithm. When the primary stage finishes,
Formula 1 is used to adjust the batch interval and the primary site will sleep a
while if the primary stage is shorter than the current interval. Formula 2 is used
when the reply is received.

The adaptive batching algorithm has several variants for different purposes.
For example, we can set lower and higher thresholds for batch interval. This
implies the range of acceptable RPO (recovery point objective [13]). Moreover,
the batch size threshold can be used to provide QoS. We can fix the ratio of
threshold to interval which implies the fixed processing speed, therefore we fix
the resource occupation.

3.3 Accelerating Techniques

Data compression/decompression and encryption/decryption put a lot of pres-
sure on CPU. Considering the popularity of multi-core systems, accelerating
adaptively cooperative pipelines using parallel techniques is a natural idea. So
we design two accelerating approaches: fine-grained pipelining and multi-threaded
pipelining. A combination of these two approaches called hybrid pipelining is also
considered.

Fine-Grained Pipelining. A common way to accelerate a single pipeline is
to deepen the pipeline, that is, breaking down the tasks into smaller units, thus
lengthening the pipeline and increasing overlap in execution. However, as men-
tioned above, for a cooperative pipeline, we can not re-decompose the task arbi-
trarily. Instead, we must decompose the primary stage and the backup stage into
the same number of smaller stages with the same size. It is difficult to decompose
the two existing stages identically. We adopt two strategies for this:

- We decompose the two existing stages manually by experience. In our imple-
mentation, the primary stage is decomposed into two sub-stages: the com-
pression stage containing batch assembling and data compression, and the
encryption stage containing data encryption and batch sending. The backup
stage certainly is also decomposed into two sub-stages: the computation stage
containing batch receiving, data decryption and decompression, and the I/O
stage containing disk write and reply. Both primary and backup sites invoke
two threads. Each thread is responsible for a sub-stage.

A Remote Mirroring Architecture with Adaptively Cooperative Pipelining 221

- Obviously, experience only guarantees that the four stages are approximately
equal. In order to make them nearer and counter their dynamic change,
adaptive batching algorithm is used again. After each stage finishes, the cor-
responding adaptive formula is applied to adjust the batch interval.

Multi-threaded Pipelining. Another intuitive accelerating approach is to
decompose the each existing stage into subtasks in parallel instead of smaller
stages. Since each batch contains dozens to hundreds of requests, a simple and
effective decomposition technique is data decomposition. In our implementation,
each batch is decomposed into two sub-batches with the same size. Both primary
and backup sites invoke two threads. Each thread is responsible for a sub-batch.
They process the sub-batches in parallel, and then send them in serial for con-
sistency reasons.

Like fine-grained pipelining, multi-threaded pipelining also faces the difficulty
in load balancing. Fortunately, the problem is much easier in this method. Note
that the computation time of a request is proportional to the number of data
bytes in it. So, if the workload contains requests all of the same size (for ex-
ample, the workload in our experiments generated by Iometer), load balance is
guaranteed simply by partitioning sub-batches according to the number of re-
quests. Otherwise, we can partition sub-batches according to the total number of
bytes.

Serial network transmission seems to be a drawback of multi-threaded pipelin-
ing. However, time spent in this operation is only a small part of the total
execution time, thus serial network transmission does not impact the overall
performance much. Our experimental results verified this point.

In addition, multi-threaded pipelining is more flexible than fine-grained
pipelining. It can even be used to deal with unequal cooperative stages. For
example, if the backup stage is twice as long as the primary stage, the backup
site can use twice the threads than primary site to equal the execution time of
the two stages.

Hybrid Pipelining. Our experimental results showed that neither four-stage
pipelining nor double-threaded pipelining fully occupies CPU. Theoretically,
deepening the pipeline further or using more threads will make full use of CPU
power. However, as mentioned above, very deep pipeline will introduce significant
interaction overhead. For the latter strategy, decomposing a batch into too many
sub-batches may induce load imbalance and too many threads may increase inter-
action overhead. So we combine these two techniques. Both primary and backup
stages are decomposed into two sub-stages, and each sub-stage is accelerated
further by multi-thread technique. We call this method hybrid pipelining.

In fact, fine-grained pipelining is an inter-batch parallelization, that is, each
batch is processed by only one processor at a time, and several batches are
processed by multiple processors simultaneously. Multi-threaded pipelining is an
inner-batch parallelization, that is, batches are processed one-by-one, and each
batch is processed by multiple processors simultaneously. Hybrid pipelining is a
two-dimensional parallelization.

222 Y. Song et al.

4 Experimental Evaluation

4.1 Prototype Implementation

We implemented adaptive batching algorithm as a “remote copy” module in
Linux LVM2. Like snapshot module in LVM2, this module treats the remote
mirror as an attached volume of the original volume. Three accelerating tech-
niques were also implemented. The underlying OS was RedHat AS server 5 (ker-
nel version 2.6.18-128.el5). LVM2 2.02.39, device mapper 1.02.28 and NBD 2.8.8
were used. LZW algorithm [14] was chosen as the compression/decompression
algorithm, and AES algorithm [15] was chosen as the encryption/decryption al-
gorithm. A log mechanism was implemented in backup site for batch automatic
committing.

4.2 Experimental Setup

All experiments were performed on two single-core 2.66GHz Intel Xeon nodes.
One acted as the primary site, and another acted as the backup site. Each ma-
chine has 2GB of memory and a hardware RAID-5 composed of six 37GB SAS
disks. The two nodes were connected by a Gigabit Ethernet. In order to test
three parallel models, we turned off log mechanism in backup site to put enough
pressure on CPU. Both α and β were set to 0.5. The batch interval was initial-
ized to 30ms. Iometer [16] was used to generate workload. Since write requests
trigger remote mirroring module, we only test write workload. Unless otherwise
expressly stated, sequential write workload was used. In order to eliminate the
impact of asynchronous mode on performance, we recorded the experimental re-
sults after the performance curve reported by Iometer becomes stable over time.
Each data point is the average of three samples.

4.3 Experimental Results

We first performed a baseline test. Fig.3 shows the result. “Pri” denotes the
RAID-5 devices in the primary site and “back” denotes the RAID-5 devices in
the backup site.“LVM” denotes the original volume in the primary site. “Async”
denotes the asynchronous remote mirroring system without adaptive batching,

0
20
40
60
80

100
120
140
160

2 4 8 16 32 64 128 256 512

Th
ro

ug
hp

ut
 (M

B
/s)

Request size (KB)

back LVM pri simple batch async

Fig. 3. Baseline test

0
20
40
60
80

100
120
140

2 4 8 16 32 64 128 256 512

Th
ro

ug
hp

ut
 (M

B
/s)

Request size (KB)

compression batch encryption

Fig. 4. Computation pressure

A Remote Mirroring Architecture with Adaptively Cooperative Pipelining 223

0
20
40
60
80

100
120
140

2 4 8 16 32 64 128 256 512

Th
ro

ug
hp

ut
(M

B
/s)

Request size(KB)

batch thread hybrid fine-grained

Fig. 5. Parallel models

0
5

10
15
20
25
30
35
40

1 3 5 7 9 11 13 15 17 19

B
at

ch
 si

ze

Periods

T_init=30 ms T_init=15 ms

Fig. 6. Batch converging

0
10
20
30
40
50
60
70
80
90

2 4 8 16 32 64 128 256 512

Th
ro

ug
hp

ut
 (M

B
/s)

Request size (KB)

batch thread hybrid fine-grained

Fig. 7. 50% random write

0
10
20
30
40
50
60
70

2 4 8 16 32 64 128 256 512

Th
ro

ug
hp

ut
 (M

B
/s)

Request size (KB)

batch thread hybrid fine-grained

Fig. 8. 100% random write

“simple batch” denotes the one with adaptive batching but without data com-
pression and encryption. We can see that adaptive batching algorithm improves
performance greatly though it is far below raw devices yet.

Fig.4 shows the impact of data compression and encryption on performance.
“Compression” means with data compression but without encryption, “encryp-
tion” means with encryption but without decompression, and “batch” means
with both compression and decryption. As we expected, introducing compres-
sion improves performance significantly due to network traffic decreasing, and
encryption impacts performance seriously due to high computational complexity.
The complete version is between the other two versions.

Fig.5 shows how greatly the three parallel models improve performance. We can
see that all three models accelerate the pipeline remarkably. Fine-grained pipelin-
ing and Multi-threaded pipelining exhibit almost the same performance. Hybrid
pipelining improves the performance further because CPU is not overloaded - we
observed an about 87% CPU occupation during hybrid pipelining test.

We also traced the batch interval (batch size). The results are showed in Fig.6.
The batch interval was initialized to 30ms and 15ms respectively. The request
size is 4KB. The batch sizes of the first 20 periods were recorded. We can see
that the adaptive batching algorithm indeed coordinates the primary and the
backup sites well. The batch interval converged to a stable condition quickly.

We also test random write performance. As Fig.7 and Fig.8 shows, compared
with the result of sequential write test, the performance gap between the serial

224 Y. Song et al.

version and the parallel versions narrows. The reason is that the proportion of
I/O part in the total running time increases and three parallel models accelerate
only the computation part.

5 Conclusion and Future Work

In this paper, we presented a novel cooperative pipelining model for remote mir-
roring systems. Unlike traditional pipelining models, this new model considers
the decentralization of processors. To solve the imbalance between the primary
and the backup stages, we proposed an adaptive batching algorithm. To re-
lease the heavy load on CPU exerted by compression, encryption and TCP/IP
protocol stack, we designed three parallel models: fine-grained pipelining, multi-
threaded pipelining and hybrid pipelining. We implemented these techniques in
our prototype. The experimental results showed that, the adaptively cooperative
pipelining model balances the primary and the backup stages effectively, and the
three parallel models improve performance remarkably.

All the experiments were performed in a LAN environment. Testing our pro-
totype in the (emulated) WAN environment is an important future work. FEC
(Forward Error Correcting) by using efficient erasure codes is also planned.

References

1. Patterson, R.H., Manley, S., Federwisch, M., Hitz, D., Kleiman, S., Owara, S.:
SnapMirror: File-System-Based Asynchronous Mirroring for Disaster Recovery. In:
Proceedings of the 1st USENIX Conference on File and Storage Technologies, FAST
2002, Monterey, California, USA, January 2002, pp. 117–129 (2002)

2. Weatherspoon, H., Ganesh, L., Marian, T., Balakrishnan, M., Birman, K.: Smoke
and Mirrors: Reflecting Files at a Geographically Remote Location Without Loss of
Performance. In: Proceedings of the 7th USENIX Conference on File and Storage
Technologies, FAST 2009, San Francisco, California, USA, February 2009, pp. 211–
224 (2009)

3. EMC SRDF - Zero Data Loss Solutions for Extended Distance Replication. Tech-
nical Report P/N 300-006-714, EMC Corporation (April 2009)

4. VERITAS Volume Replicator (tm) 3.5 Administrator’s Guide (Solaris). Technical
Report 249505, Symantec Corporation, Mountain View, CA, USA (June 2002)

5. Secure Data Protection With Dot Hills Batch Remote Replication. White Paper,
dot Hill Corporation (July 2009)

6. Ji, M., Veitch, A.C., Wilkes, J.: Seneca: Remote Mirroring Done Write. In: Pro-
ceedings of the General Track: 2003 USENIX Annual Technical Conference, San
Antonio, Texas, USA, pp. 253–268 (June 2003)

7. DFSMS/MVS Version 1 Remote Copy Administrator’s Guide and Reference 4th
edition. Technical Report SC35-0169-03, IBM Corporation (December 1997)

8. HP OpenView continuous access storage appliance. White Paper, Hewlett-Packard
Company (November 2002)

9. Liu, X., Niv, G., Shenoy, P.J., Ramakrishnan, K.K., van der Merwe, J.E.: The
Case for Semantic Aware Remote Replication. In: Proceedings of the 2006 ACM
Workshop on Storage Security and Survivability, StorageSS 2006, Alexandria, VA,
USA, October 2006, pp. 79–84 (2006)

A Remote Mirroring Architecture with Adaptively Cooperative Pipelining 225

10. LVM, http://sources.redhat.com/lvm/
11. Breuer, P.T., Lopez, A.M., Ares, A.G.: The Network Block Device. Linux Jour-

nal 2000(73), 40 (2000)
12. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Comput-

ing, 2nd edn. Addison-Wesley, Essex (2003)
13. Keeton, K., Santos, C.A., Beyer, D., Chase, J.S., Wilkes, J.: Designing for Disasters.

In: Proceedings of the 3rd USENIX Conference on File and Storage Technologies,
FAST 2004, San Francisco, California, USA, March 2004, pp. 59–72 (2004)

14. Welch, T.A.: A Technique for High-Performance Data Compression. IEEE Com-
puter 17(6), 8–19 (1984)

15. NIST Advanced Encryption Standard (AES). Federal Information Processing Stan-
dards Publication (2001)

16. Iometer, http://www.iometer.org/

http://sources.redhat.com/lvm/
http://www.iometer.org/

	Lecture Notes in Computer Science
	Introduction
	Related Work
	Adaptively Cooperative Pipelining
	Cooperative Pipelining
	Adaptive Batching
	Accelerating Techniques

	Experimental Evaluation
	Prototype Implementation
	Experimental Setup
	Experimental Results

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

