
NLOV: An Innovative Object-oriented Storage System Based on BerkeleyDB *

Ge GuangHe, Deng Wanxi, Qi Lu, Li Yuqing, Wang Gang, Liu Xiaoguang, Liu Jing
Dept. of Computer, College of Information Technical Science,

Nankai University, 300071, Tianjin, China
gypromise@163.com

Abstract*

An object-oriented storage system NLOV (Network
Logical Object Volume) based on BerkeleyDB is
implemented. It provides a block level object-oriented
storage interface. It uses NBD and AOE as transport
protocols and supports interoperation between the two
protocols. Compared with other object-oriented
storage system, such as Lustre and Ceph, NLOV has
good simplicity, better flexibility and applicability.
Some experiments are also done to examine the
performance of NLOV.

1. Introduction

Recently, with the progress of Internet and storage
technology, a storage based on network has become
more and more prevalent. Traditional block-oriented
storage devices are non-intelligent. This gets novel
large-scale network storage systems into a
performance/management mess. Object-oriented
storage technology solves this problem very well
because of the intelligence of OSD (Object-oriented
System Device) [1,2]. OSD organizes user data into
objects instead of blocks. OSD knows space utilization.
This ability helps synchronization, reconstruction and
extension performance. OSD also has inherent
advantages in security, management and so on.

In this paper, an object-oriented storage system
NLOV is developed. It provides a block level object-
oriented storage interface. It is simple, flexible and has
high applicability.

The rest of this paper is organized as follow.
Related works are introduced in the next section. In
Section 3, we describe key ideas of NLOV.

* This paper is supported partly by the National High Technology
Research and Development Program of China (2008AA01Z401),
NSFC of China (90612001), RFDP of China (20070055054), and
Science and Technology Development Plan of Tianjin
(08JCYBJC13000)

Experimental results and analysis are given in Section
4. Finally, conclusion and future works are given.

2. Related Work

Object-oriented storage technology originates from
NASD (Network Attached Secure Disks) [4] project.
The main idea is organizing data as vary size object by
which we can visit the storage system through object
interface as well as management and visit security are
supervised by device itself. ANSI-X3T10 [5] standard
had been issued by object-oriented storage device
group which is a bench of SNIA (storage Networking
Industry Association) established in 1999.

PanFS [6] is an object-oriented file system
developed by Panasas Company. It is composed of
four parts: network, MDS (Metadata Server), OSD and
client. Client can access OSD bypassing MDS. Only
file metadata is managed by MDS.

Lustre [7] is an open source distributed file system
developed by Cluster File System Company. It consist
of client、MDS and OST (Object Storage Target).
Transport protocol used is Portals which is bring
forward by Sandia Company. It supports multiple
networks such as TCP/IP, Quadrics, Infiniband etc.
XML, LDAP and SNMP are used to manage system.

Centera [8] is an object-oriented system developed
by EMC. It uses the hash value of the content of a
object as its ID. Therefore, it is just suitable for the
application in which updating is less frequent.

Ceph [9] is a distributed file system developed by a
group in UCSC. Both data and metadata are stored in
OSD and EBOFS is used for management. An object
distribution algorithm CRUSH places objects properly
considering multi-level hardware configuration.

pNFS [10] offers a general storage system for
various storage systems based on block, file or object
etc. LAYOUT is introduced in its transport protocol
NFSv4. The data LAYOUT must be fectched from
server for data access.

3. The Design of NLOV

3.1. System Structure

NLOV is consisted of 3 logical parts: storage node,
MDS and client. Fig 1 shows the system structure.
3.1.1. Object. An object is consisted of three segments:
ID, attributes and data. ID is a 96 bits integer. High 32
bits denotes object type and low 64 bits is the object
number. There are four kinds of objects: user data
objects, LOV objects, mapping table objects, and node
information objects. Namely, we store data and
metadata consistently by objects. Object number has
different meaning according to object type. The
attributes are divided into general attributes and user
defined attributes. The former likes inode, contains
general information of object such as size, access time,
access control and so on. The latter can store any
information.

client

client

client

OSD

OSD

OSD OSD

MDS MDS

OSD

OSD

TCP/IP

Ethernet

MDS cluster

network

clients

OSD
cluster

Figure 1. System structure.

3.1.2. Storage node. A storage node is just an OSD.
We implement OSD by traditional hard disk +
Berkeley DB [3] based software because of rarity of
“real OSD”. The software has three modules: Data
Server is in charge of receiving requests from clients
and sending replies back; Manager reports to MDS
when the node joins or leaves; Migrator moves data to
other node when nodes join or leave.

3.1.3. MDS. MDS performs two kinds of operations:
One kind includes LOV creation, deletion and
activation required by clients. The other is node status
maintaining operations. MDS maintains a key data
structure - mapping table which records object id hash
space distribution across storage nodes. The MDS
software is consisted of four modules: OSD module
stores metadata in object fashion; MDS Handler deals

with the requests from client and storage node; OSD
map module maintains the mapping table; Map
Updater maintains connecting message between clients
and storage nodes as well as a update list.

3.1.4. Client. Client provides an access interface to
users. It is a logical volume device driver running in
kernel. It is consisted of two modules. The top layer is
LOV module which is in charge of translating block
fashion requests into object requests. A logical volume
is split into fixed-size segments, and each segment is
treated as an object. Therefore, each object ID is a
triple (object type, LOV number and segment number).
The hash value of each object is calculated, and the
lowest 32 bits of it is truncated and stored in the
mapping table with together with the ID. The lower
layer of client is OSD_Map_Updater - a daemon
process which maintains the mapping table.

3.2. Object Distribution Algorithm

The object distribution algorithm of NLOV is DIM
(Dynamic Interval Mapping) [11]. The main idea is a
two-stage mapping. At the first stage, all objects are
mapped to the range [0, 1) using MD5 algorithm. At
the second stage, the range is mapped to storage nodes
according to relative ability of storage nodes. Fig 2
shows the mapping method.

0 2
32

lv

objects

OSD

MD5(oid)

Figure 2. Mapping method.

When new storage nodes are added, we assign hash
subranges to new nodes by cutting subranges from
every old node instead of re-dividing the whole range
for all nodes. When nodes leave, the reverse method is
applied. Apparently, this method ensures optimal
migration load.

We extend DIM to support two-way replication.
We maintain a replica mapping table for each storage
nodes. The basic mapping method and join/leave
strategy are similar to DIM algorithm. The only
difference is that the hash range is mapped to all nodes
except the node in which original objects reside. Fig 3
shows the method. The first storage node stores the
original objects, and the mapping table distributes
replica objects over all other nodes. This method can’t

guarantee optimal load balance when storage nodes are
different. But the simulation result shows that the
distribution is near-optimal.

Figure 3. Replica mapping.

3.3. Transport protocols

NLOV supports two protocols: NBD [14] (Network
Block Device) and AOE [15] (ATA over Ethernet).
NBD is a fast lightweight protocol over TCP/IP
developed by Pavel Machek in 1997. AOE is
developed by Brantley Coile. It transports ATA
requests at Ethernet layer. NLOV supports using the
two protocols mixedly. So users can choose proper
protocol according to different network condition and
application requirement. We implement a virtual
protocol layer in Linux kernel to hide the difference
among concrete protocols. This layer acts like virtual
filesystem layer (VFS) in Linux kernel. It makes
adding new protocols easy.

get_agent()

get_agent()

pers

private

node info

list

pers

private

node info

list

agent_list Personality_list

nbd_device

aoe_device

nbd personality

aoe personality

agent

agent

put_agent()

put_agent()

list

list

Figure 4. Virtual protocol layer.

To implement virtual protocol layer, we mainly
define two structures: agent and agent_personality.
Each agent represents an initiator. It stores the
common attributes of protocols. The field “private”
stores the specific attributes and methods of a concrete
protocol. The field “agent_personality” points a
function hook table, which provides a common
template for every initiator. Fig 4 shows the structure:

In kernel space, agents are implemented using
devices. In user space, we use class inheritance to

implement agents. Fig 5 shows the class diagram.

+make_request(in cmd : osd_cmd_t, in data : void*, in len : long) : bool

Agent
-node : node_info_t

NBD_Agent AoE_Agent
Figure 5. Agent class diagram.

We modified NBD and AOE to provide the
interface for NLOV. We modified NBD message
format to handle object requests. The new format (we
call it NOD) is showed in Fig 6. In which the field
“osd_cmd” stores the object request message. The
format of the object request message is omitted
because of the length limit of the paper. Similar
modification is applied to AOE.

request magic NBD_CMD_OSD

handle

N/A

N/A

osd_cmd

0 32 63

nod_request报文格式

osd_cmd

reply magic error

handle

0 32 63

nod_reply报文格式

osd_cmd

Figure 6. NOD message format.

3.4. Implement OSD by BerkeleyDB

The OSD in system is implemented by BerkeleyDB.
BerkeleyDB is an embedded database library which
supports many languages such as C, C++, Java, Perl,
Python, PHP, Tcl etc. It stores each data value with an
associated key. It also supports one key to multiple
values mapping. It has been implemented in many
platforms such as UNIX, Linux, Windows and some
real time OS. OSD interface is showed in Table 1.

Table 1. OSD Interface.

Interface explanation
read Read the data from object
write Write the data to object
remove Delete the object
get_attr Get the attribution of object
set_attr Set the attribution of object
exists Whether is the object exist
list List the object current exist

Fig 7 shows the organization of the objects in an
OSD. Every OSD has a unique root object with a
specific key and the data is a list of object IDs which
reside in this OSD. The list will be updated when the
object are added or deleted. The operation “list” is
implemented by getting the ID list from the root object.

For each object, the pair (ID, data) is stored in

Berkeley DB. Therefore “read” and “write” operations
can be implemented through get and put methods of
BerkeleyDB using object ID as the key.

oid1

s

object data

oid3

… …

oid1i

oid1a

oid1

oid2

object
inode

attr_name1

attr_name3

… …

attr_name2

attr value

attr_name1

root key

object key

inode key

attrs key

single attr key

Figure 7. Object organization.

An “inode pair” is consisted of the object ID
appended with a character ‘i’ as the key and the
common object attributes as the data. Every object has
a unique inode. Transaction mechanism provided by
Berkeley DB is used to maintain consistency between
a object and its inode.

Similarly, an “attribute pair” is composed of the
object ID appended with a character “a” as the key and
the names of user-defined object attributes as the data.
For each attribute, the (name, value) pair is stored in
Berkeley DB. Therefore, we can query all user-defined
attribute names of an object from its attribute list, and
then query any attribute value by its name as the key.
The attribute list and the attributes are not necessary
components of an object. They are constructed by
“set_attr” operation and destroyed when the object is
destroyed.

4. Experimental Results

4.1. Environment

Because the client software is just a device driver
running in kernel, so we choose RedHat Linux AS4
(kernel version is 2.6.9) as our OS platform. The
software running on MDS and storage nodes is in user
space, so we developed them by ACE (Adaptive
Communication Environment) [12, 13] that provides a
lot of cross-platform C++ communication modules.
4.2. Performance of BerkeleyDB

We test the performance of OSD based on
BerkeleyDB. The configuration is as follow: an Intel
Celerlon 3.06 GHz CPU, a 80GB Seagate hard disk
and a 40GB hard disk, 1GB memory, Red Hat
Enterprise Linux AS4 update3, BerkeleyDB 4.5.20,

ext2, ext3, reiserfs and xfs as underlying file system
separately. Because traditional test tools aim at block
device or file system is incompatible with OSD which
is based on object, so we use OSD test tools
OSDbench developing by myself.

Fig 8 shows the write performance. Fig 8.a shows
the write (create) performance. We can see that the I/O
rate increases steadily before the object size is less than
256KB and holds the line after this point. Ext3 exhibits
the worst performance, reiserfs and ext2 are
comparable and xfs is the best. The rewrite (update)
performance is showed in Fig 8.b. xfs reaches the peak
when object size is 256KB and then decreases as
object size climbs while others hold the line. We also
see that rewrite performance is a bit lower than write
performance because of Berkeley DB.

0

5

10

15

20

25

30

16 64 256 1024 4096 16384

Object-size(KB)

I
/
O

r
a
t
i
o
（
M
B
/
s
）

Ext2

Ext3

ReiserFS

XFS

a. write

0

5

10

15

20

25

16 64 256 1024 4096 16384

 Object-size(KB)

I
/
O

r
a
t
i
o
（
M
B
/
s
）

Ext2

Ext3

ReiserFS

XFS

b. rewrite

Figure 8. Write performance.

Read performance is shown in Fig 9. Fig 9.a shows
the sequential read performance. The curves of ext3
and reiserfs fluctuate fiercely compared with ext2 and
xfs. The performance of ext2 is just half of xfs.
Random read performance is same. Reiserfs performs
badly when object size is small because it packs many
small files into single big block. Xfs have good
performance attribute to every distributing group has a
B++ tree which provides fast searching.

4.3. Impact of Object-size

We test the impact of object size. The configuration
of the two computers used is showed in Table 2

The underlying file system is ext2. Iozone is used.
other parameters is as follow: 64KB request size, NBD
transport protocol, 500MB test file size.

Table 2
 CPU memory HD

Storag
e node

AMD Sempron
2500+

1GB DDR Seagate
160G

MDS
client

Intel Celeron
CPU 3.06GHz

512M DDR Seagate
80G

0

50

100

150

200

250

300

350

16 64 256 1024 4096 16384

Object-size(KB)

I
/
O

r
a
t
i
o

(
M
B
/
s
)

Ext2

Ext3

ReiserFS

XFS

a. sequential read

0

50

100

150

200

250

300

350

16 64 256 1024 4096 16384

Object-size(KB)

I
/
O

r
a
t
i
o
（
M
B
/
s
）

Ext2

Ext3

ReiserFS

XFS

b. random read

Figure 9. Read performance.

0

5000

10000

15000

20000

25000

30000

35000

40000

16 32 64 128 256 512

Object-size(KB)

I
/
O

r
a
t
i
o
(
K
B
/
s
)

write

re-write

read

re-read

Figure 10. Impact of Objec-size.

Fig 10 shows the NLOV performance when object
size between 16KB and 512KB. We can see that
rewrite performance is low no matter how variety of
object size. In the OSD experiment (section 4.2), we
have came to a conclusion that the performance of
OSD become better as the object size climbs. The bad
rewrite performance attributes to the object size is
small in this test. The write performance decreases
after object size is greater than 256K because each

object is part read/write by reason of the request size is
64K far smaller than object size and BerkeleyDB
whole read/write is better than part read/write. As to
re-read is better than read performance just because
having the cache both in the client file system and
OSD of storage node.

4.4. Impact of Request-size

We find that the NLOV performance is best when
object size is 64KB (section 4.3), so we choice 64KB
as the constant object size, other configurations were
same with section 4.3.

0

5000

10000

15000

20000

25000

30000

35000

40000

16 32 64 128 256 512

Request-size(KB)
I
/
O

r
a
t
i
o
(
K
B
/
s
)

write

re-write

read

re-read

Figure 11. Impact of Request-size.

Fig 11 shows the NLOV performance when request
size between 16KB and 512KB, we can see that both
write and rewrite performance have not distinct
fluctuation with the change of request size. On the
contrary, read and re-read performance have great
fluctuation for the reason of cache in both client and
OSD.

4.5. Scalability

Scalability is very important for distributed systems.
We have tested NLOV systems with different sizes.
The configuration is showed in Table 3

Table 3

 CPU memory HD
Node 1 Sempron 2500+ 1GB 160G
Node 2 PentiumD double 1GB DDR2 160G SATA

Node 3 Sempron 2500+ 512MB 60G
Node 4 Celeron 3.06GHz 1G MB 80G
Node 5 Celeron 3.06GHz 512MB 80G
MDS and
client

Celeron 3.06GHz 512M DDR 80G

From Table 3 we can see that configuration of each
node is different, so we give a weight for every node
according to it’s memory ensure that the node with less

memory to deal less request. The underlying file
system is ext2. Iozone is used. Other parameters are as
follow: 64KB request, 64KB object, 1GB test file
NBD transport protocol.

From Fig 12 we can see that write performance
raises sharply with adding storage node, however,
rewrite performance is not increase correspondingly
for the bad performance of rewrite (section 4.2). The
read and re-read performance have no distinct ascend
attribute to two reasons. First, one node has big
fluctuation. That will counteract each other when more
nodes were added. Second, we just considered the
weight of memory but neglected other aspects which
also affect the performance, such as CPU, HD etc.

6. Conclusion

We implemented an object-oriented storage system
NLOV (Network Logical Object Volume) based on
BerkeleyDB. It provides a block level object-oriented
storage interface. It uses NBD and AOE as transport
protocols and supports interoperation between the two
protocols. Compared with other object-oriented storage
system, such as Lustre and Ceph, NLOV has good
simplicity, better flexibility and applicability. Some
experiments are also done to examine the performance
of NLOV.

At present, the performance of OSD is restricted by
BerkeleyDB because it is a database software. We will
research continually in some aspects include
optimizing performance of OSD, developing an object-
oriented QoS and enhancing the security of NLOV.

References

[1] M. Mesnier, G.R. Ganger, and E. Riedel. “Object-based

storage.” Communications Magazine, IEEE, 2003, Vol
41:84~90.

[2] Michael Factor, Kalman Meth and etc. “Object storage:
The future building block for storage systems.” IBM
technology paper, 2005.6.

[3] Oracle, BerkeleyDB release4.5 Documentation, 2006
[4] G. Gibson et al, “A cost-effective, high-bandwidth

storage architecture”, Proceedings of the ACM 8th
International Conference on Architectural Support for
Programming Languages and Operating Systems, pp.
92–103, 1998.

[5] T10 work group. SCSI object-based storage device
command revision 1.0 [S]. T10/1355-D working draft,
2004.7.

[6] Panasas. Panfs, “Object-based architecture.” Panasas
technology whitepaper, 2004.1.

[7] P. J. Braam, “The Lustre storage architecture.” Lustre
Technical Report, 2002.2.

[8] EMC Centera, content addressed storage, product
description.
http://www.emc.com/pdf/products/centera/centera
guide.pdf. 2002

[9] Sage Weil, Scott A. Brandt, Ethan L. Miller, Darrell D.
E. Long, Carlos Maltzahn, Ceph, “A Scalable, High-
Performance Distributed File System”, Proceedings of
the 7th Conference on Operating Systems Design and
Implementation (OSDI ‘06), November 2006.

[10] Dean Hildebrand and Peter Honeyman, "Exporting
Storage Systems in a Scalable Manner with pNFS," in
Proceedings of the 22nd IEEE - 13th NASA Goddard
(MSST2005) Conference on Mass Storage Systems and
Technologies, Monterey, California, April 2005.

[11] Liu Zhong, Zhou XingMing. “A Data Object
Distribution Algorithm Based on Dynamic Interval
Mapping” , Journal of Software, 2005,16(11):1886-
1893.

[12] Douglas C. Schmidt, Stephen D. Huston, “C++
Network Programming, Volume 1: Mastering
Complexity with ACE and Patterns”, Addison Wesley,
2001.

[13] Douglas C. Schmidt, Stephen D. Huston, “C++
Network Programming, Volume 2: Systematic Reuse
with ACE and Frameworks”, Addison Wesley, 2002.

[14] P T Breuer, A Marin Lopez, Arturo Garcia. The
Network Block Device, [J].Linux Journal, 2000 ,73.

[15] http://www.coraid.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

