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Abstract 
 
This paper analyzes churn impact on replicated data 

duration with different node lifetime distributions. In 
structured overlay networks, churn includes node-join 
churn and node-failure churn, caused by the arrival and 
departure of nodes separately. The paper introduces a 
duration model of replicated data under node-failure 
churn for node failure directly leads to data loss. 
Furthermore, it investigates the impact of node-join churn 
on the duration of replicated data for different node-
lifetime distributions. The paper presents that node-churn 
will negatively impact on replicated data duration for 
heavy-tailed distribution and Weibull distribution except 
exponential distribution. Then we evaluate the impact on 
replicated data duration with two real-world trace 
datasets. The experimental results show the negative 
impact of node-join churn for different node-join churn 
degrees. Finally, the paper discusses an enhancement by 
setting a trial period for every fresh node. By experiment, 
it is an effective way to reduce the negative impact of 
node-join churn due to the memory property of node 
lifetime distributions. 
 
1. Introduction 
 

Structured overlay network is a high logical level 
network architecture built on the existing networks, 
depending on the distributed hash table (DHT) 
infrastructure to store data objects. As shown in the recent 
research, the approach can supply resilience to node 
failures, scalability, and location independence using only 
local routing information. However, various DHTs don’t 
offer preferable guarantees about data availability for the 
networks are commonly faced with high rates of churn, 
i.e., nodes join and fail frequently in systems. In the large 
scale systems, the preserved increasing data collections 
are the base supports for upper-level services and 
applications. To efficiently share and preserve data, data 
availability is the fundamental issue expected to solve in 
these systems.  

To achieve high data duration, there are at least the 
following required aspects. First, the churn characteristics 
should be understood for the large scale systems. Second, 

data redundancy should be employed properly in the 
systems. Motivated by the aspects, this paper focuses on 
the analysis of churn impact on replicated data duration in 
structured P2P networks. The paper provides a duration 
model of replicated data under node-failure churn 
according to reliability theory. The model mainly involves 
the number of replicas and node lifetime distribution. 
However, it ignores the impact of node-join churn in the 
model. Even though node-join churn does not lead to data 
loss, it causes data migration in structured P2P networks. 
The data migration may change replicated data duration 
for different replica placements. Therefore, node-join 
churn may impact on replicated data duration indirectly. 
The paper analyzes the impact of node-join churn on data 
duration for different node lifetime distributions. And 
then the evaluation verifies the negative impact of node-
join churn on the replicated data duration based on two 
empirical trace datasets. Moreover, the paper discusses 
the enhancement by setting a trial time for every fresh 
node to reduce the negative impact.  

The rest of the paper is organized as follows. Section 2 
briefly introduces the related work. Then in the next two 
sections, our paper presents replicated data duration 
model and reveals that the implicit reason of data 
unavailability is node-join churn for different node 
lifetime distributions. In section 5, we evaluate the above 
analysis including lifetime characteristics and the negative 
impact of node-join churn. In section 6, the paper 
discusses an enhancement.  
 
2. Related work 
 

Some widely-deployed internet systems, such as 
PlanetLab [6], Skype [21], provide a platform to study 
dynamics of peers in the large-scale real environment. For 
a node, a cycle time of a node from its join till its leave is 
called a session time. In this paper it is called node 
lifetime as in reliability theory. Replicas are stored in 
different nodes. The replicated data duration is the 
convergence lifetimes of the nodes replicas stored in [1-
3,8,21]. Node lifetime distribution is indispensable to 
analyze replicated data duration. By measurements in 
these real-world systems, some observations about node 
lifetime distributions were proposed. But the observations 
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are different in real different systems. For example, 
heavy-tailed distribution was adopted in [11,12] and 
Weibull or lognormal distribution was employed in [13] 
while some still took it as exponential distribution in 
[9,10].  

Leonard et al [12] studied about the isolated node 
lifetime, which gives us some inspiration on data duration 
model. In paper [5], it presents the guides to minimize 
churn by different node selection strategies. However, the 
related work focuses on network resilience to improve the 
node duration rather not on the resided data. These efforts 
facilitate our work on data duration under churn. Based on 
referencing the model and trace observations, we can 
analyze and evaluate replicated data duration under churn.  

In DHTs, replica placement strategies were discussed 
in [8,5], classified as root set scheme and random scheme. 
For any placement scheme, churn may lead to replica 
migration among related nodes and furthermore the 
migration may change the data duration. Some work 
[14,15] studied the availability relationship among the 
mean availability of peers, the number of replicas and the 
required data availability. But they assumed each replica 
could not migrate to other node. Therefore, they ignored 
the impact of churn, especially node-join churn. Moreover, 
replication maintenance is an indispensable part to 
achieve high data availability [16,18,19].  
 
3. Duration model 
 
3.1. Replica placement 
 

We assume that an item initially is duplicated into m 
replicas. The number of replicas of item at any time is 
called replication factor (f). An item is called alive if f>0; 
otherwise, an item will be lost if f=0. The period of 
replication factor of an item from m to 0 is called the 
duration of an item. 

For managing replicas in structured P2P networks, two 
common replica placement strategies, root set and 
random, are employed for replica placement, as stated in 
[5]. In root set strategy, the node whose key most closely 
follows k serves as the owner of an item which key is k, 
and replicates the item into (m-1) neighbors. In random 
strategy, the responsible node of each replica is 
determined by a set of known re-hash functions in the 
global space. According to the strategies, the selected 
nodes fully depend on consistent hash functions and these 
nodes have existed for random amount of time before the 
item is put into a system. That is, the selection does not 
concern about the residual lifetimes of the resided nodes 
in the system. Therefore, all replicas randomly reside on 
different nodes from the nodes already present in the 
networks when an item is put into a system. Thus it 
guarantees that node random selection for replicas is 
independent of node lifetimes and their current ages. 
 

3.2. Model 
 

Consider an item of which each replica for a variable 
length of time having a distribution function Fi(t) and then 
fails [7]. After a length of time t has elapsed, the 
probability that each replica remains alive is given by 

replica lifetime > t( ) { } 1 ( )i iF t P F t≡ = − .      (1) 
Therefore, the probability that an item will be alive for 

a length of time t or greater is given by  
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At time t when an item is put into the system, each 
replica is fully random resided on a node and t is 
uniformly random within each node life. Therefore, the 
replica lifetime is equivalent to the residual lifetime of the 
resided node. According to [7], the residual lifetime of 
each node, that is the lifetime of each replica is given by 
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where H(t) is the distribution function of each node 
lifetime L and E[L] is the expected value. The probability 
of each replica alive can be obtained by the formula at 
any time t. Assuming that m replicas of an item are 
independent, and each of which lifetime distribution 
function is Fi(t)=R(t), then the expected lifetime of an 
item is derived as follows. 
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As result, we obtain the formula (4). It gives the 

expected time interval before all the resided nodes fail. 
The result shows the expected duration of an item, E[T], 
is the convergence the residual lifetimes of all selected 
nodes, and it is dependent on the distribution of node 
lifetime, H(t), and replication factor, m. The model 
represents the expected convergence duration of 
originally selected nodes for replicas until all the nodes 
fail. However, each replica of an item may not reside on 
the originally selected node till the node fails in fact. That 
is, replicas may migrate to other nodes. What causes the 
replica migration? How does the replica migration 
influence on the model? In next section, we analyze these 
problems. 
 
4. Analysis 
 
4.1. Impact analysis 
 

It is inevitable that some replicas may migrate to other 
nodes during their lifetimes. As we know, when a new 
node joins in structured P2P networks, the related data 
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may be migrated to the new node from its original one in 
the both placement strategies, root set and random replica 
placement strategies. Figure 1 shows that the replica 
migration happens from the original node p to the new 
node q for an item k for the both placement strategies. 
When the new node q joins which is closer than node p 
for item k, it replaces the original node p and takes the 
responsibility for a replica of item k. 

In the process, the related data is emigrated to it from 
the original node in a proactive way when a new node 
joins the systems. The data migration may impact data 
duration even though node-join churn does not cause data 
lost. 

identification space

k forgotten replica

migrated
new node q

original
node p

 
(a) root set placement strategy 

identification space

migratednew node q

original
node pk

item key =k

 
(b) random placement strategy 

Figure 1. Data migration due to node-join churn 

The proposed model only considers node-failure churn 
from originally selected nodes and ignores node-join 
churn from new joined nodes. In fact, node-join churn is 
inevitable and brings impact on the data duration.  

In figure 2, an item is put into systems at time t and one 
replica of an item is replicated to the responsible node p. 
At time s, the replica migrates to a new node q from the 
original node p. Let Rt denote the residual lifetime at time 
t of a node representing an interval of time till the node 
fails and let L denote the overall lifetime of new node. 
Intuitively, it seems that the lifetime L of a new node is 
larger that the residual lifetime Rs of the replaced node 
after time s. But the intuition is wrong since the result is 
dependent on the node lifetime distribution. 

As known from [7], the comparison between the 
expected lifetime (L) and the expected residual lifetime (R) 
uniquely lies on the failure rate of node,  

z(t)=h(t)/R(t)                     (5) 
where f(t) is the density of L . The failure rate function is 
an indicator of the proneness to failure of the node after 
time t has elapsed. If z(t) is a decreasing function of t, 
then the node lifetime distribution is a decreasing failure 
rate distribution. Therefore, the impact of node-join churn 
depends on the failure rate of node lifetime which is a 
decreasing or increasing function. 

original
node p

t

new node
     q

s

Rt

L
r

Rs

replace
fail

join

 
Figure 2. The relationship between E[L] and E[R]. 

 
4.1.1. Exponential distribution. Some prior work [9,10] 
employed exponential distribution to study churn in P2P 
networks for simplicity. For the exponential distribution 
of node lifetime, ( ) 1 , >0, t 0tH t e λ λ−= − ≥ . Derived from 
(3), the residual lifetime distribution is the same as the 
lifetime distribution, H(t)= R(t). Therefore, E[L] equals to 
E[R]. It can be also explained by the memory-less 
property of exponential distribution, i.e., a node does not 
age with time whether it is replaced or not. Therefore, it 
can be summed up that node join churn can’t influence 
lifetimes of data items for exponential distribution. 
4.1.2 Pareto distribution. Currently, some studies 
[11,12] revealed that the lifetimes of nodes in P2P 
systems exhibit the heavy-tailed characteristic. As a 
typical heavy-tailed distribution, Pareto distribution can 
allow arbitrarily small lifetimes to represent node 
lifetimes in systems, with the distribution function given 

by ( ) 1 (1 ) ktH t
α

−= − + , t>0. For the distribution, the 

mean lifetime of a new node is E[L]= a/(k-1). The 
residual lifetime distribution of the node replaced by the 
new joined node obtained from (3) is 1( ) 1 (1 ) ktR t

α
−= − +  

and the expectation is E[R]= a/(k-2). Therefore, the 
comparison result is E[L]<E[R]. From the point of view 
of the failure rate, z(t)=k/(a+t), which is monotonically 
decreasing as a function of t, we also obtain the same 
result. Therefore, Pareto distribution exhibits a strong 
memory property. If the time interval (s-t) approximates 
to 0, then L tends to equal R. As the interval (s-t) 
increases, the inequality L<R holds much more. That is, 
the larger the current age of a peer, the longer it is 
expected to remain online. If a node is fresh, then its life 
may be short to some degree. Therefore, it can be 
summarized that node-join churn negatively influence the 
duration of replicated data for heavy-tailed distribution. 
4.1.3. Weibull distribution. Other observations suggest 
that the lifetimes are neither exponential distribution nor 
heavy-tailed distribution, but Weibull distribution [13]. 
For Weibull distribution, ( ) 1 exp[ ( ) ],  t 0H t t αλ= − − ≥ , 
the mean and the squared coefficient of variation are 

1 1( ) (1 )E L
λ α

= Γ +  and 1( ) ( )az t a tλ λ −= respectively. 
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Therefore the shape parameter, 0<a<1, ensures that the 
failure rate is decreasing. As shown in [13], the Weibull 
distribution provided a tighter fit with shape parameters 
(a) in three different systems are 0.34, 0.38 and 0.59 
separately. So for these distribution, E[L]<E[R]. 
Therefore we can safely summarize that node-join churn 
negatively influence lifetime of data items for the Weibull 
distribution with shape parameter a<1. 

All in all, we summarize that node-join churn 
negatively impact on the duration of replicated data. The 
impact is coming from the memory property of node 
lifetime distribution, Pareto distribution and Weibull 
distribution, in most existing measurements. The 
replicated duration in the model can be taken as the upper 
bound of the duration of replicated data approximately. 
 
5. Evaluation 
 

To evaluate our analysis of replicated data duration, we 
developed a trace-driven simulator. The used datasets 
come from two real-world traces, PlanetLab [2, 5, 6] and 
Skype [4] trace datasets. The trace datasets of these 
systems are collected over a long term and publicly 
available [22].  
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Figure 3. Node lifetime distributions in the trace 
datasets�

The trace datasets contain a list of time intervals for 
which each node was online contiguously. PlanetLab is a 
large-scale, distributed testbed with nodes located around 
the world. PlanetLab trace dataset recorded the living 
status of 669 nodes in about 18 months (4.557*107 s) 
which was collected by the CoMon project [21]. The 
other trace dataset was got from Skype system with 2081 
nodes in about one month (2.4782*106s). Guha et. al. [4] 
presented a study of peer behavior in the Skype system. 
We utilized these system traces as well-suited tools to 
study churn characteristics of large-scale distributed P2P 
platform. In figure 3, it shows that node lifetimes in the 
traces fit tightly to Weibull distribution at a 95% 
confidence interval. For the two fits, the Weibull 
distribution parameters (a, λ ) are (0.378, 133268) for 
PlanetLab trace and (0.644, 39108.5) for Skype trace 
separately. Therefore, as analyzed in section 4.3, the 

failure rates are decreasing due to the shape parameters 
a<1. In the next subsection, we can verify that node-join 
churn negatively influence lifetime of data items for the 
distribution by our experiments. 

In the experiments, we evaluated the duration of 
replicated data and the impact of node-join churn on the 
duration. In our evaluation, the following node sets are 
randomly generated. Replica node set (RS) is defined as 
the chosen nodes to store replicas of a data item. Joined 
node set (JS) is defined as the chosen nodes to join the 
system in a period.  

First, we made the comparison between the expected 
lifetime of the fresh node and the expected residual 
lifetime of replaced node after the fresh node joins.  In an 
experiment, the nodes of RS are randomly selected from 
all living nodes at a sample time clock. The size of RS is 
equal to replication factor (m=10). During the duration of 
RS, the nodes of JS are determined. One node is randomly 
chosen among JS to replace a living node in RS. Thus, the 
lifetime of a fresh node and the residual lifetime of a 
replaced node are obtained. The sample interval is fixed 
and sampled times is 11 in one experiment during the 
trace. The above procedure is repeated 20 times and the 
average lifetime (E[L]) and the residual lifetime (E[R]) 
are got by the experiments. The results are shown in 
figure 4. In the figure, the X-axis is discrete samples and 
the Y-axis is the expected lifetime of nodes. It clearly 
shows that E[R] is greater that E[L]. Therefore, the 
observation verifies the analysis in section 4.3. 
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Figure 4. The comparison between the expected 
lifetime of a fresh node and residual lifetime of 
replaced node. 

Next, we evaluated the impacts of different degrees of 
node-join churn on the duration. To evaluate the impacts 
of different extents of node-join churn, we define a metric 
join churn degree,  

j=s*E[T]/m     (6) 
where s presents node join rate relative to each living peer 
and E[T] presents the expected duration of m replicas 
without node-join churn. Thus the product of s and E[R] 
is the number of nodes joining the system during the 
period E[R]. The metric j presents the ratio of the number 
of joined nodes to the size of RS during the replicated data 
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duration. Therefore, in the experiments the size of JS is 
set the value j*m.  
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Figure 5. The expected durations for different 
parameters with/without node-join churn 

According to the given parameters m and j, we 
evaluated the impact of node-join churn on replicated data 
duration. RS firstly was built and then during the duration 
of m replicas without node-join churn, a number of joined 
nodes (j*m) were selected to replace the resided nodes, 
that is, JS is randomly generated. Every node in JS joined 
the system in the trace data time order and randomly 
replaces an existing node in RS. If a selected node to be 
replaced has failed when a node joins the system, then the 
join was ignored. Therefore the replicated data duration 
was obtained with node-join churn in the simulation. 

In the experiments, the expected durations were 
obtained for 2000 items for the different replication 
factors: m=5, 10, and 20. We ran the experiments without 
and with node-join churn. With node-join churn, different 
churn degrees were set, j=0.2, 0.6, 1, 1.6, 2 and 2.4. 
Figure 5 shows the experimental results. In each plot, the 
X-axis indicates the node-join churn degrees and the Y-
axis indicates the replicated durations. From the plots, for 
each m without join churn, the expected duration 
fluctuates about a constant duration. However, for each m 
with join churn, the duration curve is below the curve 
without join churn and the curve with greater node-join 
churn degrees is a downward trend, i.e., the average 
duration decreases as the join-churn degree increases.  

In summary, our evaluation results indicate the 
following observations. Obviously, with a larger 
replication factor (m), the replicated data duration is 
larger. Even though increasing replication factor can 
improve the duration, it would bring some overheads, 
such as storage space and replication maintenance 
bandwidth. It's worth noting that the expected duration of 
replicated data is negatively impacted by node-join churn. 
When node-join churn occurs frequently (the higher value 
j), the negative impact is more evident. Next section 
discusses replication maintenance to reduce the negative 
impact of churn, especially node-join churn impact. 
 
6. Discussion 
 

According to the above model and analysis, heavy-
tailed distribution and Weibull distribution have memory 
property that guarantees that node future lifetime could be 
predicted based on the current age of node [14]. Therefore, 
it is a preventive way to set a trial period for every fresh 
node to reduce the negative impact of node-join churn.  

We evaluated the effects of different trail periods by 
simulation using the traces as section 5.  In the 
experiments, every fresh node is observed and determined 
whether it should replace an existing node for some 
related replicas. During the trial period, the fresh node is 
inspected and reserve of its responsible data. After the 
trial period, it becomes the formal node in networks to 
serve its responsible data. Different replication strategies 
in the trial period could be chosen between the fresh node 
and the original node. Whether does the fresh node serve 
data service during the period? When does data migration 
happen? In our simulation, the fresh node joins the system, 
replicates data from the original node and provides 
routing and data service in a normal way of structured 
overlay network requirement during the trial period. 
During the period, the original node could provide the 
data voluntarily. After the period, the original node could 
not hold the replicated if the fresh node is still alive.  

We evaluated the average durations by setting 
different trial periods under the parameters: j = 1and m=5 
for 2000 items. To eliminate the churn impact from an 
amount of short-lived peers (as shown in table II), 
different trial periods were set in the simulation. Figure 6 
shows that the enhanced curves with node-join churn are 
lower than the ones without node-join churn. Clearly, the 
enhanced duration is larger than the durations with node-
join churn before enhancement. Figure 6 also shows that 
the average durations increase with increasing trial 
periods. Therefore, the enhancement reduces the negative 
impact of node-join churn, and extends the durations of 
replicated data.  However, the trial period setting is need 
to tradeoff between storage space and the expected data 
duration. If the trial period is too large, then the storage 
space would be need more and much maintenance 
workload would be imposed on some nodes. If the period 
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is too small, the extending effect on the duration is not 
obvious. So a moderate length of the trial period can be 
decision, e.g., 2 hours for PlanetLab and 5 hours for 
Skype are the proper values.  
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Figure 6. The expected survival duration of data item 
by setting different trial period to joined nodes 
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