
Top-k Queries Processing With Uncertain Data on Graphics Processing Units

Haozhe Chang1, Tingting Qin2, Xiaoguang Liu2, Gang Wang2, Airu Yin1

1College of Software, Nankai University, Tianjin, 300071, China
2College of I.T., Nankai University, Tianjin, 300071, China

AngelClover@yahoo.cn, PaulaQin@163.com,{liuxguang,wgzwp,yinairu}@gmail.com

Abstract

Considering the complex uncertain database, top-k query
processing in uncertain databases is semantically and com-
putationally different from classical top-k processing. Score
is not the only factor we should concern. The interplay
between score and membership uncertainty makes compu-
tation complex. Powerful computing capability of Graphic
Processing Unit(GPU) is needed in the processing of this
kind of queries if we want to acquire the results as soon as
possible. Using GPU with batch mode, we present a CPU-
GPU cooperative computing framework to processing top-k

queries in uncertain database. Two parallel GPU algorithms
are designed to solve the problem specifically. Moreover, a
“label-confidence” data format conversion is proposed to
reduce CPU-GPU communication. We also suggest an error-
correction method with the heap-based algorithm to improve
the accuracy and correction of the results. Experimental
results show that the CPU-GPU framework provides a better
performance and it is quite efficiency in handling uncertain
top-k problem.

1. Introduction

In recent years, many advanced technologies have been
developed to store and record large quantities of data. In
many cases, the data may contain errors or may only be
partially completed. Uncertain databases have received more
and more attention recently due to the enlargened number
of applications which require the management of uncertain
or fuzzy data. For example, sensor networks typically create
large amount of uncertain data, maybe with certain proba-
bility. In some other cases, the data points may correspond
to objects which are only vaguely specified, or mistaken by
manual work which always be correct with probability. It
has become an important issue to process uncertain data in
many applications.

For a given uncertain dataset, there are many possible
instances calledworlds, and thepossible worldssemantics
has been widely used. In practical, a reliable set ofk tuples is
proved to be kinder than a disordered one. With an uncertain
dataset, Top-k query processing can always give us a more
reliablek-set.

Table 1. A sample of uncertain dataset

Time Sensor Loc. Temperature Confidence
11 : 30 L1 98

◦C 0.4

11 : 47 L2 95
◦C 0.8

11 : 51 L3 97
◦C 0.6

11 : 53 L4 99
◦C 0.5

In this paper, we present two new GPU algorithms for
Top-k Query processing.

The paper is organized as follows. An overview of the
Uncertain Top-k Queryproblem will be given in Section 2,
as well as the advantages in using GPU. Section 3 presents
the GPU Top-k query algorithm. Section 4 presents two
strategies based on the new algorithm. Experimental results
are arranged at Section 5. Conclusion and future work is
discussed in Section 6.

2. Uncertain Top-k Definition and GPU Archi-
tecture

In this section, we introduce two definition of uncertain
top-k problem. Our algorithms are based on definition 2.
We also introduce the GPU and CUDA architecture, which
is also the base of our optimization.

2.1. Uncertain Top-k Definition

Top-k queries have been recently studied in the setting
of uncertain data, which is shown in [1]. Given a ranking
function, the goal is to find the top-k ranked tuples in a
given uncertain dataset. In [10],Solimanet al. defined two
types of top-k queries over an uncertain dataset, called U-
Topk and U-kRanks. In [4],Huaet al. defined a probabilistic
threshold top-k query, denoted PT-k. We choose the first
kind of definition U-topk as an illustration.

Definition1 Uncertain Top-k query(U-Topk)[10]. Let
D be an uncertain database with possible worlds spaceW .
For anyW ∈ W , let Ψ(W) be the top-k tuples inW by
the score attribute; if|W | < k, defineΨ(W) = Ø. Let T

be any set ofk tuples. The answerT * to a U-Topk query
on D is T * = arg maxT

∑
w Pr[W]. Ties can be broken

arbitrarily.
Here is an example of possible world of heat sensor

network. Table 1 shows an uncertain dataset sample of a

Table 2. A sample of possible world

World Probability
PW 1 = {L1, L2, L3, L4} 0.096

PW 2
= {L1, L2, L3} 0.096

PW 3 = {L1, L2, L4} 0.064

PW 4 = {L1, L3, L4} 0.024

PW 5
= {L2, L3, L4} 0.144

heat sensor network, with confidence values. There are16
possible worlds for all the heat sensors. Here, a possible
world is a set of heat sensor readings associated with a
probability of the set, which is computed based on both
the existence of all the tuples in the possible world and
the absence of all tuples in the dataset that are not in the
possible world, assuming mutual independence among the
tuples. Everyk-set of tuples constructs a possible world,
which was shown inTable 2, with k ≥ 3. Considering the
5-th possible world{L2, L3, L4}, in which the existence
probabilities are0.8, 0.6, 0.5, and the absence probability of
L1 is (1 − 0.4). Therefore the probability of the possible
world is 0.144(= (1 − 0.4)× 0.8× 0.6× 0.5).

In order to make clear of the possibility, we come to this
definition:

Definition2 Let D = (D, p, f) be an uncertain dataset.
For anyW ⊆ D, let Ψk(W) be the top-k elements inW
by the score functionf ; if |W | < k, defineΨ(W) = Ø.
Let T be any set ofk tuples. The answerT ∗ to a U-
Topk query onD is T * = arg maxT PrW∼D[Ψk(W) =
T] = arg maxT

∑
Ψk(W)=T Pr[W |D]. Ties can be broken

arbitrarily.[2]
The top-k result gives us a quite good idea of where thek

highest temperature occurs. As a convention, we assume that
all the scores are distinct andD is given in the decreasing
score order, for example,f(1) ≥ f(2) ≥ ... ≥ f(n). Thus,
the probability of a setT of sizek being the top-k elements
PrW∼D[Ψk(W) = T] comes out to be

∏

j∈T

p(j)
∏

j≤l(T),j 6∈T

(1− p(j))

wherel(T) is the last element inT . The problem becomes
finding the set containingk elementsT ∗ that maximizes the
above quantity. Ties can be broken by choosing a smaller
l(T) or a smaller label.

Neglecting the naive enumerative algorithm, there are
several excellent CPU algorithms proposed in recent years.
In [10], Solimanet al. proposed aO(nk̇) dynamic program-
ming methods avoiding redundant calculation by compress-
ing the optimal subspace. After transformed this problem
using definition 2,Yi et al. proposed a heap-based algorithm,
which takesO(nlogk) operations to get the answer, in [12].
Then there outcomes many variants of the top-k query
problem. For example,Chen and Yi proposed a problem
maintaining top-k tuples in a dynamic set, using a binary

tree, in O(klogklogn) time to handle an update and in
O(logn + j) time to handle a top-j query, in [2]. Jin and
Yi proposed sliding-window top-k queries and solve it in
[6]. They also suggested an optimizing algorithm with x-
relations which runs in near linear or low polynomial time
and cover both types of top-k queries which are mentioned
in definition1 and2 respectively in uncertain databases[13].

2.2. GPU And CUDA Architecture

In top-k queries in uncertain database, the processing
speed and the degree of parallelism are significant factors
people concerned. In this paper, we proposed a CPU-GPU
cooperative processing framework which will be introduced
in section 3.2 in detail. Using GPU brings advantages in
top-k queries processing in uncertain database. A GPU is a
collection of multiprocessors at the hardware level. And each
multiprocessor has several elements to support thousands of
threads simultaneously, named scalar processors (SP).

In this paper, we use Compute Unified Device Architec-
ture (CUDA) [9] platform released by Nvidia Inc. CUDA
supports a programming interface for parallel general pur-
pose computing . In CUDA, threads are organized into
thread blocksand distinguished bythreadIdx. Another im-
portant feature is that memory space has different hierarchies
with different access speeds. It brings us a challenge to store
data effectively to upgrade the access efficiency.

3. GPU Algorithm for Uncertain Top- k Queries

As we known, the massive on-chip parallelism of GPU
may greatly reduce the processing time if the computing
process is good designed. But there is the extra cost in
transmitting data from CPU to GPU. In order to make use
of the powerful computing ability of GPU, and liberate
CPU from complicated computing task, we propose a GPU
algorithm to solve the uncertain top-k query problem.

3.1. Data format conversion

We propose a “label-confidence” data format conversion
to reduce communication between CPU and GPU, which is
generally the bottleneck of GPU algorithms. We label tuples
by natural numbers, so each tuple is represented by a unique
label number, and in our GPU algorithm, each tuple can
be converted into a combination of a label number and a
confidence value.

For example, we regards the temperature of the heat
sensor as a score function, then the dataset inTable 1 will
be converted intoTable 3. When we transmit this dataset
to the GPU, only the label and the confidence of each tuple
are transmitted to the GPU memory. After processing the
queries on GPU, CPU will gets the top-k set of a query, in
the form of labels. By contracting to the original dataset, we
can easily acquire the top-k set.

Table 3. A sample of label-confidence format

Label Time Sensor Loc. Temperature Confidence
2 11 : 30 L1 98◦C 0.4

4 11 : 47 L2 95◦C 0.8

3 11 : 51 L3 97◦C 0.6

1 11 : 53 L4 99◦C 0.5

Uncertain Database

memory

GPU Memory

Graphic ProcessorCPU

Label-conf
m

odel

P
ro

b
a
b

il
it

y
ru

le

Top-k

set

O
u

t p
u

t
a
n

sw
e
r

R
e
a
d

 D
a
ta

External

Figure 1. GPU processing framework

3.2. CPU-GPU Framework

Since uncertain data is likely to be stored in a traditional
database, most of current uncertain database system pro-
totypes rely on relational DBMSs for efficient retrieval and
query processing. In [10],Solimanet al. propose a novel pro-
cessing framework that leverages RDBMS storage, indexing,
and query processing techniques to compute uncertain top-
k query answers. However, GPU can not directly access
RDBMS residing in the CPU host, so we propose a CPU-
GPU cooperative processing framework consisting of two
main parts(CPU and GPU part), and two layers(storage and
processing layer), as Figure 1 shown.

Using this framework, we can tackle the top-k query
with GPU effectively. In next section, two GPU algorithms
based on this framework will be introduced, and the methods
handle the problem will be introduced as well.

4. GPU Algorithms

GPU is used in many applications, such as inverted list
compression, list intersection, and top-k scoring. For the
classic top-k query problem, many distributed algorithms
have been proposed [8], [11]. While there exist many algo-
rithms calculating the top-k query, such as efficient exact
algorithm, fast sampling algorithm, Poisson approximation

based algorithm, and a typical vector sample algorithm
proposed in [5], [3]. All the algorithms mentioned above are
designed for CPU. In this paper, we proposed two algorithms
based on GPU, according to the framework discussed on the
last section.

4.1. The algorithm in CPU part

In the CPU part, we will transform the dataset from
the uncertain databases to label-confidence pairs. Detail
algorithm is shown inAlgorithm 1 .

Algorithm 1 : CPU part

begin
for each batch of queriesdo

read the batch of queries
for each querydo

T ←− dataset corresponding to the query
convertT into label-confidence pairP

end
upload the batch ofP from CPU to GPU
invoke GPU kernel
download the results from GPU to CPU

end
end

The GPU kernel implements the actual uncertain top-k

query processing.

4.2. The GPU Dynamic Programming Algorithm

In [10], Solimanet al. proposed aO(nk) dynamic pro-
gramming method. Our GPU algorithm is similar to it.
Since GPU processes queries in batching mode, we assign
each query to a unique GPU block. Since the dynamic
programming(DP) algorithm can be regarded as a process
calculating elements in an × k matrix, we assign each
column of the matrix to a distinct GPU thread in the
query’s host block. Therefore, each row of the matrix can
be calculated byk GPU threads in parallel, and rows are
still calculated one by one. Therefore, the ideal complexity
of the GPU algorithm isO(n).

4.3. GPU Heap-based Algorithm

In [12], Yi et al.proposed an efficient serial uncertain top-
k algorithm. Our second GPU uncertain top-k algorithm is
based on it. This algorithm uses a minimum heap to maintain
k tuples with largest confidences. It initially constructs
the heap using anyk tuples, and then iterates remaining
tuples. For each tuple, its confidence is compared with the
confidence of the heap root. If the tuple has the lower
confidence, it is simply discarded, otherwise it will take the
place of the heap root. In each iteration, the probability ofthe
world composed of the tuples in the new heap is calculated.

Algorithm 2 : GPU DP algorithm

Input : confidence

Output : value,result set

begin
bid ←− block index number in grid
fetch thebid-th query
tid ←− thread index number in block
if tid > k then

return
end
if tid == 0 then

dp(0, tid) ←− 1
end
else

dp(0, tid) ←− 0
end
value←− 0

syncthreads()
for i = 0..n− 1 do

dp(i + 1, tid)←− max(dp(i, tid− 1)×
confidence(i), dp(i, tid)×(1−confidence(i)))
record thefootprint - the choice ofmin

operation
if tid== K then

value←− max(value, dp(i + 1, tid))
end

end
if tid == k then

result set ←− φ

result set ←− construct top-k results from the
footprint

returnvalue and theresult set
end

end

If it is larger than the previous largest probability, it andthe
world are recorded.Yi et al. have proved the correctness of
this algorithm [12].

Since parallel heap maintaining is inefficient, our GPU
heap-based algorithm assigns each query to a unique GPU
thread rather than a GPU block. That is, this algorithm uses
a “query partition” rather than “query parallel” strategy.As
described above, if the tuplePi takes the place of the heap
root Pj , the probability should be recalculated. It should
be divided byconfidence(j) an 1 − confidence(i) and
multiplied by confidence(i) and 1 − confidence(j), that
is, eliminatingPj from the world, and includingPi in. Since
division operation will bring rounding error, we propose
a probability tree to avoid division operations. This tree
has the same structure as the confidence heap. Each node
in this tree records the probability of the world composed
of the tuples in its sub-tree. Therefore, when the heap is
updated, the new probability can be recalculated using only

Algorithm 3 : GPU heap-basedAlgorithm

Input : confidence

Output : value,result set

begin
bid ←− block index number in grid
tid ←− thread index number in block
constructs a minimum heapH using the firstk
tuplesP0 Pk−1

constructs the probability treeT according toH
res←−
the probability of the world constructed by tuples
in H

value←− res

result set←− currentworld

for i=k..n-1 do
if confidence(i)> confidence(root ofH) then

delete the root ofH
insertPi to H

adjustT accoding toH
res←−
the probability of the new world
if res>d valuethen

value←− value

result set←− newworld
end

end
end

end

multiplication operations in this tree. Moreover, to avoid
the float number precision lost in multiply operation, we
substitute the corresponding log value for the possibility.
Furthermore, we can use a method in numerical calculation
to reduce the influence of precision lost, for example, Kahan
summation algorithm[7].

5. Experimental Results

We implemented our GPU framework on theNVIDIA
GeForce GTX 480, which has 2GB memory and the CUDA
version is 3.1. For the two algorithms we proposed in the
last section, the implementation of the corresponding CPU
version is accomplished also. All of these experiments are
performed on aLinux server (RedHat 5.1) with Intel i7
930 CPU (2.8GHz).

We created synthetic datasets each with100, 000 cases.
For each case,n denotes the number of tuples, whilek
denotes the size of required top-k answer. We performed
four groups of experiments, shown inFigure 2. Where the
DP-GPU line describes the processing time ofAlgorithm 2 ,
Heap-GPU line describesAlgorithm 3 , DP-CPU and Heap-
CPU lines describe the processing time of the corresponding
algorithms implemented on CPU. The dataset of each group

Figure 2. Processing time with a fixed k(= 10)

determined a different upper bound ofn: 10, 50, 100, 500,
and got a random numbern, guaranteeingn ≥ k. In our
first three groups of experiments, we fixedk = 10, 50, 500,
respectively, while that in the fourth group of experiments,
we randomly choosek in the range[1, n], shown in the last
group. The probability of each tuple is uniformly distributed
in [0, 1] with the precision0.001.

All the four groups suggest that, processing the top-
k query on GPU is much faster than the classic CPU
algorithms. On GPU, two algorithms run nearly the same.
The heap-based algorithm is obviously faster with a quite
larger batch whenk or n is small. Whenk is small, the rate
is about200, and flops to 100 whenk ≥ 500.

In our GPU heap-based algorithms, in order to get an
accurate answer, we use another heap and Kahan summation
algorithm to maintain the probability of possible world, so
that it looks a bit slower. But in general application,k is
usually not big, and we will get a better effect if use the
GPU heap-based algorithm. In this case, it suggests that the
GPU heap-based algorithm is better, while in other cases,
the difference of cost time between two GPU algorithms
seems not obvious.

6. Conclusion

Top-k queries is arguably one of the most important
queries in uncertain databases. This paper based on one of
the uncertain top-k query problem’s definitions mentioned
above, proposed a CPU-GPU cooperative computing frame-
work and two parallel GPU algorithms to tackle the problem.
Besides, a “label-confidence” data format conversion is also
proposed and implemented to decrease the transmission cost
from CPU to GPU. Moreover, an error-correction technique
is also suggested to improve the accuracy and correction of
the results. Experimental results confirms the efficiency and
scalability of our framework and algorithms.

7. Acknowledgments

This paper is partially supported by NSFC of China
(60903028, 61070014, 61170184), Key Projects in the
Tianjin Science & Technology Pillar Program (11ZCK-
FGX01100).

References

[1] C. Aggarwal and P. Yu. A survey of uncertain data algorithms
and applications.IEEE Transactions on Knowledge and Data
Engineering, pages 609–623, 2009.

[2] J. Chen and K. Yi. Dynamic structures for top-k queries on
uncertain data.Algorithms and Computation, pages 427–438,
2007.

[3] T. Ge, S. Zdonik, and S. Madden. Top-k queries on un-
certain data: On score distribution and typical answers. In
Proceedings of the 35th SIGMOD international conference
on Management of data, pages 375–388. ACM, 2009.

[4] M. Hua, J. Pei, W. Zhang, and X. Lin. Efficiently answering
probabilistic threshold top-k queries on uncertain data. In
Proc. of ICDE, volume 8. Citeseer, 2008.

[5] M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries on
uncertain data: a probabilistic threshold approach. InProceed-
ings of the 2008 ACM SIGMOD international conference on
Management of data, pages 673–686. ACM, 2008.

[6] C. Jin, K. Yi, L. Chen, J. Yu, and X. Lin. Sliding-window
top-k queries on uncertain streams.Proceedings of the VLDB
Endowment, 1(1):301–312, 2008.

[7] W. Kahan. Pracniques: further remarks on reducing truncation
errors. Communications of the ACM, 8(1):40, 1965.

[8] S. Michel, P. Triantafillou, and G. Weikum. Klee: a frame-
work for distributed top-k query algorithms. InProceedings
of the 31st international conference on Very large data bases,
pages 637–648. VLDB Endowment, 2005.

[9] C. Nvidia. Programming guide, 2008.

[10] M. Soliman, I. Ilyas, and K. Chang. Top-k query processing
in uncertain databases. In2007 IEEE 23rd International
Conference on Data Engineering, pages 896–905. IEEE,
2007.

[11] A. Vlachou, C. Doulkeridis, K. Nørvåg, and M. Vazirgiannis.
On efficient top-k query processing in highly distributed
environments. InProceedings of the 2008 ACM SIGMOD
international conference on Management of data, June, pages
09–12. Citeseer, 2008.

[12] K. Yi, F. Li, G. Kollios, and D. Srivastava. improved top-
k query processing in uncertain databases.Technical report,
ATT Labs, Inc., 2007.

[13] K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient process-
ing of top-k queries in uncertain databases with x-relations.
Knowledge and Data Engineering, IEEE Transactions on,
20(12):1669–1682, 2008.

