Top-k Queries Processing With Uncertain Data on Graphics Pocessing Units

Haozhe Chanf Tingting Qir?, Xiaoguang Lid, Gang Wang, Airu Yin!
ICollege of Software, Nankai University, Tianjin, 30007 hjr&
2College of I.T., Nankai University, Tianjin, 300071, China

AngelClover@yahoo.cn, PaulaQin@163.cdiiyxguang,wgzwp,yinairh@gmail.com

Abstract Table 1. A sample of uncertain dataset
) .] Time Sensor Loc.| Temperature] Confidence
Considering the complex uncertain database, kogdery 11: 30 L1 98°C 0.4
processing in uncertain databases is semantically and com- 11: 47 L2 95°C 0.8
tationally diff 0 f lassical t ina. S 11: 51 L3 97°C 0.6
putationally different from classical topprocessing. Score 15 T1 99°C 05

is not the only factor we should concern. The interplay
between score and membership uncertainty makes compu-
tation complex. Powerful computing capability of Graphic In this paper, we present two new GPU algorithms for
Processing Unit(GPU) is needed in the processing of thisTop-k Query processing.

kind of queries if we want to acquire the results as soon as The paper is organized as follows. An overview of the
possible. Using GPU with batch mode, we present a CPUUncertain Topk Queryproblem will be given in Section 2,
GPU cooperative computing framework to processing kop- as well as the advantages in using GPU. Section 3 presents
gueries in uncertain database. Two parallel GPU algorithmsthe GPU Topk query algorithm. Section 4 presents two
are designed to solve the problem specifically. Moreover, atrategies based on the new algorithm. Experimental sesult
“label-confidence” data format conversion is proposed to are arranged at Section 5. Conclusion and future work is
reduce CPU-GPU communication. We also suggest an erroreiscussed in Section 6.

correction method with the heap-based algorithm to improve

the accuracy and correction of the results. Experimental2. Uncertain Top-k Definition and GPU Archi-
results show that the CPU-GPU framework provides a bettetacture

performance and it is quite efficiency in handling uncertain
top-k problem. In this section, we introduce two definition of uncertain
top-k problem. Our algorithms are based on definition 2.
We also introduce the GPU and CUDA architecture, which

1. Introduction _ s
is also the base of our optimization.

In recent years, many advanced technologies have been1 Uncertain Top-k Definition
developed to store and record large quantities of data. In
many cases, the data may contain errors or may only be Top-k queries have been recently studied in the setting
partially completed. Uncertain databases have received moof uncertain data, which is shown in [1]. Given a ranking
and more attention recently due to the enlargened numbéqnction, the goal is to find the top-ranked tuples in a
of applications which require the management of uncertaigjiven uncertain dataset. In [10§olimanet al. defined two
or fuzzy data. For example, sensor networks typically ereattypes of topk queries over an uncertain dataset, called U-
large amount of uncertain data, maybe with certain probafopk and U%Ranks. In [4]Huaet al. defined a probabilistic
bility. In some other cases, the data points may corresponthreshold topk query, denoted PT- We choose the first
to objects which are only vaguely specified, or mistaken bykind of definition U-tog as an illustration.
manual work which always be correct with probability. It — Definition1 Uncertain Top-k query(U-Topk)[10]. Let
has become an important issue to process uncertain data i be an uncertain database with possible worlds spéice
many applications. For anyWW € W, let ¥(W) be the topk tuples inTW by

For a given uncertain dataset, there are many possiblihe score attribute; ifiV| < k, define¥ (W) = 0. Let T
instances calledvorlds and thepossible worldssemantics be any set of: tuples. The answef” to a U-Top: query
has been widely used. In practical, a reliable sét fplesis on D is T° = argmaxr Y., Pr[W]. Ties can be broken
proved to be kinder than a disordered one. With an uncertaiarbitrarily.
dataset, Toge query processing can always give us a more Here is an example of possible world of heat sensor
reliable k-set. network. Table 1 shows an uncertain dataset sample of a

Table 2. A sample of possible world tree, in O(klogklogn) time to handle an update and in

O(logn + j) time to handle a tog-query, in [2].Jin and

World Probability

PWT ={L1,L2,L3, L4} | 0.09 Yi proposed sliding-window tog- queries and solve it in

PW?Z={L1, L2, L3} 0.096 [6]. They also suggested an optimizing algorithm with x-

i%i = 21722724% 0.064 relations which runs in near linear or low polynomial time
= {L1,L3,L4 0.024 : . :

PWS = {13 3. L1} Sidd and cover both types of top-queries which are mentioned

in definition1 and2 respectively in uncertain databases[13].

, , 2.2. GPU And CUDA Architecture
heat sensor network, with confidence values. Therelére

possible worlds for all the heat sensors. Here, a possible | top-k queries in uncertain database, the processing
world is a set of heat sensor readings associated with gpeed and the degree of parallelism are significant factors
pI’Obablllty of the Set, which is Computed based on bOt%eop'e concerned. In this paper, we proposed a CPU-GPU
the existence of all the tuples in the possible world andcopperative processing framework which will be introduced
the absence of all tuples in the dataset that are not in thg, section 3.2 in detail. Using GPU brings advantages in
possible world, assuming mutual independence among th@p-% queries processing in uncertain database. A GPU is a
tuples. Everyk-set of tuples constructs a possible world, collection of multiprocessors at the hardware level. Anchea
which was shown iffable 2, with k > 3. Considering the multiprocessor has several elements to support thousdnds o
5-th possible world{L2, L3, L4}, in which the existence threads simultaneously, named scalar processors (SP).
probabilities are).8, 0.6, 0.5, and the absence probability of |n this paper, we use Compute Unified Device Architec-
L1is (1 — 0.4). Therefore the probability of the possible ture (CUDA) [9] platform released by Nvidia Inc. CUDA

world is 0.144(= (1 — 0.4) x 0.8 x 0.6 x 0.5). supports a programming interface for parallel general pur-
In order to make clear of the possibility, we come to thispose computing . In CUDA, threads are organized into
definition: thread blocksand distinguished byhreadldx Another im-

Definition2 Let D = (D,p, f) be an uncertain dataset. portant feature is that memory space has different hiei@sch
For anyW C D, let (W) be the topk elements inl¥ with different access speeds. It brings us a challenge te sto
by the score functiory; if W] < k, defineW (W) = 0. data effectively to upgrade the access efficiency.

Let T be any set ofk tuples. The answefl™ to a U-

Topk query onD is T" = argmaxr Prw.p[¥x(W) = 3. GPU Algorithm for Uncertain Top- k£ Queries
T] = argmaxr 3 g, (w)—r Pr[W|D]. Ties can be broken
arbitrarily.[2] As we known, the massive on-chip parallelism of GPU

The top# result gives us a quite good idea of where the May greatly reduce the processing time if the computing
highest temperature occurs. As a convention, we assume thafocess is good designed. But there is the extra cost in
all the scores are distinct arfd is given in the decreasing transmitting data from CPU to GPU. In order to make use
score order, for examplef(1) > f(2) > ... > f(n). Thus, Of the powerful computing ability of GPU, and liberate
the probability of a sef” of sizek being the topk elements CPU from complicated computing task, we propose a GPU

Prywp[Vy(W) = T] comes out to be algorithm to solve the uncertain tdpguery problem.
1260] @-pG) 3.1. Data format conversion
JET JSUT),jET

We propose a “label-confidence” data format conversion
wherel(T') is the last element if". The problem becomes to reduce communication between CPU and GPU, which is
finding the set containing elements™ that maximizes the generally the bottleneck of GPU algorithms. We label tuples
above quantity. Ties can be broken by choosing a smalleipy natural numbers, so each tuple is represented by a unique
I(T) or a smaller label. label number, and in our GPU algorithm, each tuple can

Neglecting the naive enumerative algorithm, there arebe converted into a combination of a label number and a
several excellent CPU algorithms proposed in recent yeargonfidence value.
In [10], Solimanet al. proposed &(nk) dynamic program- For example, we regards the temperature of the heat
ming methods avoiding redundant calculation by compresssensor as a score function, then the datas@able 1 will
ing the optimal subspace. After transformed this problenbe converted intdTable 3. When we transmit this dataset
using definition 2Yi et al. proposed a heap-based algorithm,to the GPU, only the label and the confidence of each tuple
which takesO(nlogk) operations to get the answer, in [12]. are transmitted to the GPU memory. After processing the
Then there outcomes many variants of the tomuuery queries on GPU, CPU will gets the tdpset of a query, in
problem. For exampleChen and Yi proposed a problem the form of labels. By contracting to the original dataset, w
maintaining topk tuples in a dynamic set, using a binary can easily acquire the top-set.

Table 3. A sample of label-confidence format based algorithm, and a typical vector sample algorithm
proposed in [5], [3]. All the algorithms mentioned above are

Label Time Sensor Loc.| Temperature|] Confidence - . ’
) 1130 i 98°C 0.4 designed for CPU. In this paper, we proposed two algorithms
4 11: 47 L2 95°C 0.8 based on GPU, according to the framework discussed on the
3 11: 51 L3 97°C 0.6 last section
1 11:53 4 99°C 0.5 '

4.1. The algorithm in CPU part

In the CPU part, we will transform the dataset from
the uncertain databases to label-confidence pairs. Detail

algorithm is shown inAlgorithm 1.
Algorithm 1: CPU part

@ Output answer

begin
for each batch of queriedo
| s ‘ read the batch of queries
L L | for each querydo
‘ ; T «—— dataset corresponding to the query
convertT into label-confidence paiP
end
upload the batch oP from CPU to GPU

- invoke GPU kernel

i
i i
i i
i 7 I i
‘ % B ‘ ‘
i — — I i
Uncertain Database ! i
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, end

e download the results from GPU to CPU
end

-9 Graphic Processor

‘ I0AeT 3uIssad01g ‘

oy £ |

memory +\ ¢ l i
hd i

i

Read Data
&
S
T
N
\ 10Ae] 936101 \

. 4| GPU Memory

Figure 1. GPU processing framework The GPU kernel implements the actual uncertain £op-
query processing.

3.2. CPU-GPU Framework 4.2. The GPU Dynamic Programming Algorithm

Since uncertain data is likely to be stored in a traditional In [10], Solimanet al. proposed @ (nk) dynamic pro-
database, most of current uncertain database system prgramming method. Our GPU algorithm is similar to it.
totypes rely on relational DBMSs for efficient retrieval and Since GPU processes queries in batching mode, we assign
guery processing. In [10Eolimanet al. propose a novel pro- each query to a unique GPU block. Since the dynamic
cessing framework that leverages RDBMS storage, indexinggrogramming(DP) algorithm can be regarded as a process
and query processing techniques to compute uncertain togalculating elements in & x k& matrix, we assign each
k query answers. However, GPU can not directly accessolumn of the matrix to a distinct GPU thread in the
RDBMS residing in the CPU host, so we propose a CPU-query’s host block. Therefore, each row of the matrix can
GPU cooperative processing framework consisting of twobe calculated byt GPU threads in parallel, and rows are
main parts(CPU and GPU part), and two layers(storage anstill calculated one by one. Therefore, the ideal compjexit
processing layer), as Figure 1 shown. of the GPU algorithm igD(n).

Using this framework, we can tackle the tépguery
with GPU effectively. In next section, two GPU algorithms 4.3. GPU Heap-based Algorithm
based on this framework will be introduced, and the methods

handle the problem will be introduced as well. In [12], Vi et al.proposed an efficient serial uncertain top-
k algorithm. Our second GPU uncertain tbmlgorithm is
4. GPU Algorithms based on it. This algorithm uses a minimum heap to maintain

k tuples with largest confidences. It initially constructs
GPU is used in many applications, such as inverted listhe heap using any tuples, and then iterates remaining
compression, list intersection, and tépscoring. For the tuples. For each tuple, its confidence is compared with the
classic topk query problem, many distributed algorithms confidence of the heap root. If the tuple has the lower
have been proposed [8], [11]. While there exist many algoconfidence, it is simply discarded, otherwise it will take th
rithms calculating the tog- query, such as efficient exact place of the heap root. In each iteration, the probabilitthef
algorithm, fast sampling algorithm, Poisson approximatio world composed of the tuples in the new heap is calculated.

Algorithm 2: GPU DP algorithm
Input: con fidence Input: con fidence
Output: value,result_set Output: value,result_set
begin begin

Algorithm 3: GPU heap-basedlgorithm

bid «—— block index number in grid
fetch thebid-th query
tid «—— thread index number in block

bid «— block index number in grid
tid — thread index number in block
constructs a minimum heafi using the firstk

if tid > k then tuplesPy Pi_1

| dreturn constructs the probability trég according toH
en res«—
if tid == 0 then the probability of the world constructed by tuples
end value — res
else _ result set«— currentworld
| ddp(oatld) «—0 for i=k..n-1 do
en

if confidence(i}> confidence(root off) then

value<— 0 delete the root off

_syncthreads() insertP; to H

for i =0.n -1 do adjustT accoding toH
dp(i + 1, tid) «— max(dp(i, tid — 1) x res

con fidence(i), dp(i, tid) x (1—con fidence(i))) the probability of the new world
record thefootprint - the choice ofmin if res>d valuethen

operation value «— value

if tid== K then result set —— newworld
| value «— maz(value,dp(i + 1, tid)) en
end end
end end
if tid ==k then end

result_set «— ¢
result_set «— construct topk results from the

footprint multiplication operations in this tree. Moreover, to avoid
returnvalue and theresult_set

end the float number precision lost in multiply operation, we
end substitute the corresponding log value for the possibility
Furthermore, we can use a method in numerical calculation
to reduce the influence of precision lost, for example, Kahan
summation algorithm[7].

If it is larger than the previous largest probability, it atte
world are recordedyi et al. have proved the correctness of 5, Experimental Results
this algorithm [12].

Since parallel heap maintaining is inefficient, our GPU We implemented our GPU framework on tih&/IDIA
heap-based algorithm assigns each query to a unique GPGeForce GTX 48Q which has 2GB memory and the CUDA
thread rather than a GPU block. That is, this algorithm usesersion is 3.1. For the two algorithms we proposed in the
a “query partition” rather than “query parallel” stratedys last section, the implementation of the corresponding CPU
described above, if the tuplg takes the place of the heap version is accomplished also. All of these experiments are
root P;, the probability should be recalculated. It should performed on &.inux server (RedHat 5.1) with Intel i7
be divided byconfidence(j) an 1 — confidence(i) and 930 CPU (2.8GHz)
multiplied by con fidence(i) and 1 — confidence(j), that We created synthetic datasets each witid, 000 cases.
is, eliminating?; from the world, and including; in. Since For each casep denotes the number of tuples, while
division operation will bring rounding error, we propose denotes the size of required tépanswer. We performed
a probability tree to avoid division operations. This treefour groups of experiments, shown kigure 2. Where the
has the same structure as the confidence heap. Each nod®-GPU line describes the processing timeAtgforithm 2,
in this tree records the probability of the world composedHeap-GPU line describesigorithm 3, DP-CPU and Heap-
of the tuples in its sub-tree. Therefore, when the heap i€PU lines describe the processing time of the corresponding
updated, the new probability can be recalculated using onlglgorithms implemented on CPU. The dataset of each group

100000

10000
1000 M 10000
100 | l £
.

10 50 100 500 B 100 00

time(ms)

time(ms)

B Heap-GPU

~4-DP-CPU
- Heap-CPU

n(k=10) n(k=50)
100000 100000
10000 %
1000 ‘
|
100 V

_—

10000

time(ms)

IS

100

5 0 50 100
n(k=100) n(k=rand[1,n])

g

Figure 2. Processing time with a fixed k(= 10)

determined a different upper bound »of 10, 50, 100, 500,
and got a random numbet, guaranteeing: > k. In our
first three groups of experiments, we fixéd= 10, 50, 500,

respectively, while that in the fourth group of experiments
we randomly choosé in the rangd1, n], shown in the last
group. The probability of each tuple is uniformly distribdt

in [0, 1] with the precisior0.001.

All the four groups suggest that, processing the top-
k query on GPU is much faster than the classic CPU
algorithms. On GPU, two algorithms run nearly the same.
The heap-based algorithm is obviously faster with a quite
larger batch wherk or n is small. Wherk is small, the rate

is about200, and flops to 100 whek > 500.

7. Acknowledgments

This paper is partially supported by NSFC of China
(60903028, 61070014, 61170184), Key Projects in the
Tianjin Science & Technology Pillar Program (11ZCK-

FGX01100).
References

[1] C. Aggarwal and P. Yu. A survey of uncertain data algarith

and applicationslEEE Transactions on Knowledge and Data

Engineering pages 609-623, 2009.

[2] J. Chen and K. Yi. Dynamic structures for top-k queries on

uncertain dataAlgorithms and Computatiompages 427-438,
2007.

[8] T. Ge, S. Zdonik, and S. Madden. Top-k queries on un-
certain data: On score distribution and typical answers. In
Proceedings of the 35th SIGMOD international conference

on Management of datgpages 375-388. ACM, 2009.

[4] M. Hua, J. Pei, W. Zhang, and X. Lin. Efficiently answering

probabilistic threshold top-k queries on uncertain data.
Proc. of ICDE volume 8. Citeseer, 2008.

[5] M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries on

uncertain data: a probabilistic threshold approactrrbteed-

ings of the 2008 ACM SIGMOD international conference on

Management of datgpages 673-686. ACM, 2008.

[6] C. Jin, K. Yi, L. Chen, J. Yu, and X. Lin. Sliding-window
top-k queries on uncertain strean®oceedings of the VLDB
Endowment1(1):301-312, 2008.

In our GPU heap-based algorithms, in order to get an [7] W. Kahan. Pracniques: further remarks on reducing ttioa

accurate answer, we use another heap and Kahan summation

errors. Communications of the ACM3(1):40, 1965.

algorithm to maintain the probability of possible world, so [g] S. Michel, P. Triantafillou, and G. Weikum. Klee: a frame-

that it looks a bit slower. But in general application,is

usually not big, and we will get a better effect if use the
GPU heap-based algorithm. In this case, it suggests that the

work for distributed top-k query algorithms. FRroceedings

of the 31st international conference on Very large data base

pages 637-648. VLDB Endowment, 2005.

GPU heap-based algorithm is better, while in other casesg] c. Nvidia. Programming guide, 2008.

the difference of cost time between two GPU algorithms

seems not obvious.

6. Conclusion

Top-k queries is arguably one of the most important
gueries in uncertain databases. This paper based on one of
the uncertain toge query problem’s definitions mentioned
above, proposed a CPU-GPU cooperative computing frame-
work and two parallel GPU algorithms to tackle the problem.[12]
Besides, a “label-confidence” data format conversion is als
proposed and implemented to decrease the transmission cost

[10] M. Soliman, I. llyas, and K. Chang. Top-k query procesgsi

in uncertain databases. [2007 IEEE 23rd International
Conference on Data Engineeringpages 896-905. IEEE,
2007.

[11] A. Vlachou, C. Doulkeridis, K. Ngrvag, and M. Vazirgiais.

On efficient top-k query processing in highly distributed
environments. InProceedings of the 2008 ACM SIGMOD
international conference on Management of data, Jyrages
09-12. Citeseer, 2008.

K. Yi, F. Li, G. Kollios, and D. Srivastava. improved top
k query processing in uncertain databaseschnical report,
ATT Labs, Inc.2007.

from CPU to GPU. Moreover, an error-correction technique[13] K. Yi, F. Li, G. Kollios, and D. Srivastava. Efficient press-

is also suggested to improve the accuracy and correction of
the results. Experimental results confirms the efficienay an

scalability of our framework and algorithms.

ing of top-k queries in uncertain databases with x-relation

Knowledge and Data Engineering, IEEE Transactions on

20(12):1669-1682, 2008.

