
ESnap – A Cached Dependent Snapshot System

Guangjun Xie, Genxi Fu, Yusen Li, Gang Wang, XiaoGuang liu and Jing Liu
Department of Computer Science

Nankai University
Tianjin, China

{xieguangjun1980,fgx_4321, li.yusen, wgzwp}@163.com liuxg74@hotmai.com jingliu@nankai.edu.cn

 Abstract - Snapshot technology is becoming prevalent to
perform data protection and other tasks such as data mining and
data cloning. To improve the performance and reliability of the
traditional Linux LVM snapshot, we propose a novel cached
dependent snapshot system, Esnap. Esnap decreases the total
amount of data copy effectively using the data dependency
among snapshot volumes. A new snapshot metadata organization
scheme is designed to support massive snapshot volumes and the
corresponding read / write algorithms are put forward. Also the
automatic extending of snapshot volumes is implemented in
Esnap to avoid the failure of the whole dependent snapshot chain
due to space overflow of one snapshot. Experimental results show
that Esnap has higher performance, reliability and the resource
utilization rate than traditional Linux LVM snapshot system.
 Index Terms - dependent snapshot, LVM, storage
virtualization, automatic extending .

I. INTRODUCTION

Snapshot is the instantaneous image of storage system in
specific time. LVM (Logical Volume Manager) builds a
virtual view of physical storage devices. It supports snapshot
of LV, which is used to record the data view of LV at given
time. The main idea of LVM snapshot is COW (Copy-on-
Write), which means that the data are only copied to snapshot
before they are updated for the first time. However, there are
some problems in LVM snapshot, which depress the
availability and performance of systems.

First, in Linux LVM, it consumes many resources when
the snapshot is very large because the whole mapping
information is kept in memory. Second, if an origin has more
than one continuous snapshot, a write operation will cause
more than one COW to every snapshot. It’s possible to
depress the performance sharply. At last, snapshot may
overflow if there are many COW operations to origin.

In this paper an enhance LVM snapshot, called ESnap, is
presented. In order to reduce the memory occupation of
snapshot, a new organization scheme of metadata is designed.
According to this scheme, all metadata are stored on disks
initially. A dynamic schedule algorithm is used to load
metadata into memory if needed. To improve write
performance, we present a new concept – “dependent
snapshot”, which chains all snapshots for the same original
volume according their time sequence. The COW is only
performed on the recent snapshot. ESnap also has a monitor to
watch the use rate of snapshot. If use rate of snapshot exceeds
a threshold, an expanding process will be run to expand the
size of snapshot.

II. GENERAL SNAPSHOT TECHNOLOGIES

A. Snapshot in Linux LVM
 There are four main snapshot technologies: split-mirror,
copy on demand, virtual view and incremental snapshot. The
split-mirror technology [1][3] can get full copy of the original
volume and has very low snapshot creation latency, but has
very poor flexibility. The copy on demand technology [5] can
create snapshot at any time. The virtual view technology
[2][4] doesn’t create full copy of the original volume. When
the original volume update was dispatched, the COW (copy on
write) is performed before the update operation to save the old
content, the metadata of the snapshot is also updated to
maintain the mapping between the snapshot volume address
and the original volume address of COW chunks. The
incremental snapshot technology [8][9] aims for efficient
supporting for the sequential points snapshot of the same
original volume. The duplicate block copying is avoided and
correct snapshot content is guaranteed through an extra
incremental bitmap.

Fig. 1 Linux LVM snapshot technology.

Linux LVM[6][7] uses virtual view technology. When
create snapshot, Linux LVM only allocate snapshot storage
space and initialize snapshot metadata. When LVM receives
an original volume update request, it checks whether the block
is updated for the first time. If the block has been updated,
LVM performs the update directly. Otherwise, LVM does
COW first - copies old content of the block to the snapshot
space and records address pair (snap addr, org addr) in
mapping table, and then perform the update operation. Figure
1 gives an example. The original volume ORG has 4 blocks: A,
B, C and D. The snapshot volume S1 is created at 8:00am.
The user updates A at 8:15am, then LVM copies A to S1 and
writes new value A’ to ORG. The snapshot volume S2 is
created at 9:00am. When an update request for B arrives at
9:15am, LVM copies B to S1 and S2, and write B’ to ORG. At
10:00am, another snapshot volume S3 is created. At 10:15am,
the user updates C, LVM copies C to S1, S2 and S3, and then
write C’ to ORG. This paper is sponsored by NSF of China (No.90612001), Science and

Technology Development Plan of Tianjin (043185111-14), Foundation of
Tianjin Education Committee Research (No.20061016) and Nankai
University Innovation Fund and ISC

1-4244-1092-4/07/$25.00 © 2007IEEE. 783

Proceedings of the 2007 IEEE
International Conference on Integration Technology

March 20 - 24, 2007, Shenzhen, China

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 4, 2009 at 20:05 from IEEE Xplore. Restrictions apply.

B. LVM1 Metadata Organization
 The snapshot is a container of COW chunks, but it must
show users a “virtual view” with the same size as the original
volume. How can we distinguish between modified and
unmodified data to decide read the original data from the
original volume or from the “snapshot container”, and where
can we find the original data in the snapshot? So the metadata
maintenance is a key problem.

Fig. 2 Linux LVM1 snapshot metadata organization.

Linux LVM version 1 (LVM1) organizes the snapshot
metadata into an “exception table” which resides in the main
memory. Each exception table entry gives the original volume
address and the snapshot volume location of a COW chunk.
The entries are also organized into a chained hash table to
speed COW chunk search. The mapping entries are also stored
in the disk as a “COW table”. The COW table is split into
many parts, and each part is stored in the first chunk of a
certain snapshot PE and records the mapping entries of the
COW chunks stored in the rest chunks of the same PE. The
figure 2 illustrates the memory layout and the disk layout of
LVM1 snapshot metadata.

C. LVM1 Snapshot Algorithms
The original volume write algorithm and the snapshot

volume read algorithm are described below.(The snapshot
volume write algorithm is implemented in LVM 2.)
Procedure: write_origin(buf, origin , addr)

for each snapshot of origin do
hash_table.search(add, &exception);
if fail then

call cow_data(origin, snapshot, addr);
end if
endfor

write(buf, origin, addr, chunk_size);
 end procedure

Procedure:cow_data(origin, snapshot, addr)

exception.origin_addr = to_phy(addr);
exception.snap_addr = snapshot.current_addr;
add exception to hash table;
write exception to disk COW table;
read(buf, origin, exception.origin_addr, chunk_size);
write(buf, snapshot, exception.snap_addr, chunk_size);
snapshot.current_addr += chunk_size;

end procedure

Procedure: read_snapshot(buf, snapshot, addr)

hash_table.search(addr, &exception);
if succ then

read(buf, snapshot, exception.snap_addr, chunk_size);

else
read(buf, snapshot.origin, addr, chunk_size);

end if
end procedure

Procedure: write_snapshot(buf, snapshot, addr)//LVM2

origin = snapshot.origin;
hash_table.search(addr, &exception);
if fail then

call cow_data(origin, snapshot, addr);
hash_table.search(addr, &exception);

end if
write(buf, snapshot, exception.snap_addr, chunk_size);

end procedure

It is easy to see some defects of LVM1 from these
algorithms.

First, because LVM1 places the whole exception table in
the main memory, and the size of the exception table is linear
with the amount of the updated original volume chunks, thus
large volumes with heavy write workload may exhaust
memory quickly.

Second, the time complexity of the function COW data is
linear with the number of the snapshots of the original
volume. For the original volume with a great lot of snapshots,
the performance is poor.

Third, as the more chunks of the original volume are
modified, the more COW chunks are stored in the snapshot
volume. So deciding the initial size of the snapshot volume is
great dilemma: if create a small snapshot, it maybe overflows
quickly; if create a snapshot with the same size or larger than
that of the original volume, most space maybe is wasted.

III. THE DESIGN OF ESNAP

A. New Metadata Organization
We redesigned metadata organization of LVM1 to reduce

memory consumption. The main idea is that not place all the
metadata in the main memory, but use cache mechanism like
file systems. The detailed ameliorations are introduced below.

First, we change the metadata disk layout. The COW
table entries are not arranged according to the snapshot
volume address, but the original volume chunk number. The
original volume chunk number needn’t to be stored in the
COW table any longer, because it can be derived from the
table index of the entry. The figure 3 gives an illustration of
the new metadata layout. We describe the metadata layout
both in memory and on disk.

Second, the structure of the exception table is changed.
We split the COW table into fixed length (such as 4KB)
segments, and treat them as cache blocks. The in memory
metadata is still organized into a hash table and each hash
entry contains one COW table segment. Since not all the
metadata resides in the main memory, the search algorithm
must be modified. Given an original volume chunk number,
we can easily compute which COW table segment it belongs
to. If the segment is in the hash table, we can check whether
the entry corresponding to the chunk is -1 to determine the
search fails or succeeds. But if the segment is not in the hash
table, we must go to check the disk COW table, return fail if
the entry is -1, and return success otherwise. Whether

784

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 4, 2009 at 20:05 from IEEE Xplore. Restrictions apply.

succeeds or not, the segment need to be read from disk to main
memory and to be linked into the hash table. If the search
fails, we perhaps need to do COW and update the segment.
The cache replacement strategy is described in detail in
subsection C.

Third, we do lazy initializing strategy through a fixed
length (such as 64KB) bitmap called initialization bitmap.
Each bit of the initialization bitmap corresponds to some
continuous segments of the COW table, and denotes whether
theses segments are initialized. So at the time snapshot
initializing, we need only zero the initialization bitmap and
write it to the disk. When we do metadata search, we check
the initialization bitmap first. If the bit corresponding to the
metadata segment is clear, we return fails directly and
initialize all the segments the bit corresponds to (write -1 to
disk).

Fig. 3 ESnap snapshot metadata organization.

B. Dependent Snapshot
As described above, the performance of the original

volume write will be reduced the seriously if there are a lot of
active snapshots of the original volume. Moreover, a mass of
snapshot volume space is wasted because each snapshot
records the same COW chunk. ESnap provides a new kind of
snapshot called dependent snapshot, which only copies the old
data chunk to the recently created snapshot for multi-
snapshots based on the same original volume. So one original
volume write operation can only cause at most one COW
operation. The ESnap organizes all the snapshot volumes of
one original volume into a chain, each dependent snapshot
volume will be added to the tail of the chain when created.

Figure 4 shows an example of dependent snapshot, the
sequence of snapshot creations and data modifies are same as
Figure 1.

The dependent snapshot technology optimizes time and
space complexity of original volume write operations greatly,
but makes the snapshot volume read, write and delete
algorithms sophisticated. We can’t go to read the original
volume directly if searching snapshot volume S metadata fails,
we should go on searching metadata of other snapshots along
the dependent chain. Only if all the snapshots follow S
(include S) don’t contain the required COW chunk, Enap
reads the old content of the chunk from the original volume.
Otherwise, Enap reads the old content from S or one of its
dependent snapshots.

Fig. 4 dependent snapshots.

The snapshot volume write algorithm also becomes very
complicated. The key is that updating snapshot S can’t destroy
the correct views of the snapshots which depend on S. When
the user writes S, ESanp tries to found the COW chunk from S
to the end of the dependent chain first. If found, ESnap
perhaps need copy the COW chunk to S’s predecessor T (if T
doesn’t contain a COW chunk with same original address),
and then write the new data to S. Otherwise, ESnap do COW
to T (similarly, if T doesn’t contain a COW chunk with same
original address), and then do COW to S and perform write
request on S.
C. Cache Replacement Strategy

When a metadata segment is loaded into the main
memory, the total amount of memory consumed by all the
cached segments perhaps reaches the threshold. Under this
circumstance, we must select one segment which is not being
used and replace it by the new segment. We implement three
different metadata cache replacement strategies: round robin,
FIFO and LRU. The round robin strategy maintain a counter c,
when cache overflow happens, the cth hash table entry is
replaced by the new segment. The FIFO strategy replaces the
oldest cache segment. The LRU strategy selects the “Least
Recently Used” segment like many file systems do. The
performance of different strategies is determined by the
storage system access pattern and metadata size.

Nowadays, there are many storage subsystem products
have non-volatile memory. We can use it to optimize the
performance of ESnap. The simplest idea is postponing
metadata update. We needn’t write the metadata segment to
snapshot every time it is modified. We can write it back to
disk only when it is to be replaced. Even if the system broke
down before the metadata is written back to disk, we can get it
from the non-volatile memory after the system restarted. This
optimization will improve the original volume write
performance effectively.
D. Snapshot Automatic Extending

In order to save storage space, system administrators
usually create snapshots smaller than their origin. After a great
lot of COW operations are performed on a snapshot, it may
overflow. Although system administrators can use command
lvextend to extend the snapshot volume space, it is hard to do
this timely. The case is more serious for dependent snapshot.
If one dependent snapshot fails, the whole dependent chain
will be invalid. Therefore we designed and implemented the
automatic extending mechanism in ESnap.

785

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 4, 2009 at 20:05 from IEEE Xplore. Restrictions apply.

When the cow_data function detects that the free space of
the snapshot becomes smaller than the threshold user set, an
automatic extending thread is waken up. The automatic
extending thread tries to allocate storage space from VG and
extends the snapshot volume, and then the cow_data function
resumes doing COW.
E. ESnap Algorithms
Procedure: find_exception(snapshot, addr, exception)

if !test_bit(init_bitmap, addr_to_segno(addr)) then
 initialize corresponding metadata segments
read metadata segment or do replacement
 link the segment into hash table
 return fail

else
hash_table.search(addr, &exception);
 if fail then

read metadata segment or do replacement
 link the segment into hash table
hash_table.search(addr, &exception);

endif
if exception.addr = INVALID then

 return fail;
else exception.tag = COW then

return succ;
else

return WRI;
 endif

endif
end procedure

Procedure: write_origin(buf, origin , addr)

for each snapshot of origin do
if snapshot.type = dependent and snapshot is not the newest dependent

snapshot then
continue;

endif
find_exception(snapshot, addr, &exception
if fail then

 exception.tag = COW
call cow_data(origin, snapshot, addr, exception);

endif
endfor
write(buf, origin, addr, chunk_size);

end procedure

Procedure :cow_data(origin ,snapshot, addr, exception)

exception.addr = snapshot.current_addr;
write segment of exception to disk COW table;
read(buf, origin, addr, chunk_size);
write(buf, snapshot, exception.addr, chunk_size);
snapshot.current_addr += chunk_size;

end procedure

Procedure: read_snapshot(buf, snapshot, addr)

snap = snapshot;
do_COW = find_exception(snap, addr, &exception);
if snapshot.type = dependent then

while do_COW <> succ and snap.next <> NULL do
snap = snap.next;

 COW=find_exception(snap,addr,&exception);
enddo

endif
if do_COW = succ then

read(buf, snap, exception.addr, chunk_size);
else

read(buf, snapshot.origin, addr, chunk_size);
endif

end procedure

Procedure: write_snapshot(buf, snapshot, addr)

origin = snapshot.origin;
snap = snapshot;
do_COW = find_exception(snap, addr, &exception);
while do_COW <> succ and snap.next <> NULL do

snap = snap.next;
do_COW = find_exception(snap, addr, &exception);

enddo
snap1 = snapshot.prev;
if snap1 <> NULL then

do_COW1=find_exception(snap1,addr, &exception);
if do_COW1 = fail then

if do_COW = succ then
 copy COW chunk from snap to snap1;

else
find exception and do COW for snap1;

endif
endif

endif
do_COW = find_exception(snapshot, addr, &exception);
if do_COW = fail then

exception.tag = UPDATED;
all cow_data(origin, snapshot, addr, &excpetion);
find_exception(snapshot, addr, &exception);

endif
write(buf, snapshot, exception.addr, chunk_size);

end procedure

IV. IMPLEMENTATION

Because Linux LVM2 is unstable, we implemented
ESnap based on Linux LVM1. We first migrated LVM1 from
RedHat Enterprise AS 3.0 (Kernel 2.4) to RedHat Enterprise
AS 4.0 (kernel 2.6), and then implemented our new
technologies described in section III based on the migrated
version. Some implement problems are described below in
brief.

Linux LVM1 uses a data structure named lv_t to
represent logical volumes. We add a list_head field to lv_t to
organize all the dependent snapshots of an original volume
into the dependent chain. The creation timestamp is used as
the unique ID of the dependent snapshot. So finding
dependent snapshot can be implemented by traversing the
dependent chain forwards, and deleting dependent snapshot
need traverse the chain backwards. We also add a boolean
field to lv_t to distinguish between traditional snapshots and
dependent snapshots. For traditional snapshots, ESnap uses
old version algorithms.

LVM1 does most pv/vg/lv management including
volume extending in user level, while ESnap starts the
dependent snapshot automatic extending in kernel. This hot
potato motivates us migrate LVM1’s user level codes into
kernel. The migrated functions including:
1. PV/VG/LV creation and extending, the main work of

these codes is allocating storage space.
2. VGDA(Volume Group Descriptor Area) management,

VGDA is the metadata of LVM.
3. We designed an array chain structure. ESnap doesn’t

destroy old mapping array, but add a new array to the
chain.
Based on these works, the automatic extending thread can

call kernel extending function to do extending. The
experiment shows that, the snapshot overflow doesn’t happen
even if workload is heavy.

786

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 4, 2009 at 20:05 from IEEE Xplore. Restrictions apply.

We haven’t implemented snapshot volume write function
till now.

V. EXPERIMENTS

We tested ESnap on a virtual machine environment. The
hardware platform is a PC with an Intel Pentium D 820 CPU,
1GB main memory and a WD1600JS-75NCB3 hard disk. The
virtual machine software is VMWARE v5.5, the main
memory size of the virtual machine is set as 256MB, the guest
operating system is RedHat Linux AS 4.0, and the benchmark
tool is iozone. In all experiments we create a 24GB original
volume and a same size snapshot volume except the dependent
snapshot experiment, and the chunk size is 64KB. The
metadata memory occupation threshold is set as 8KB / 1GB
original volume space and the metadata segment size is set as
4KB. We tested four snapshot systems: the original LVM1,
ESnap with round robin cache replacement strategy, ESnap
with LRU strategy and ESnap with non-volatile memory
optimization (LRU strategy) which are represented by
“LVM1”, “RR”, “LRU” and “NV” respectively.

�

����

����

����

����

����

����

	
�� �� 	� �

�
��
��

��
��
�
��
��

��
��
�
��
��

��
��
�
�
!"

Fig.5 original volume sequential writing performance.

We first tested origin sequential write performance by
creating an original volume and a snapshot volume for it, and
then writing 1GB data to the original volume sequentially.
Figure 5 shows the result of throughput. We can see that RR,
LRU and NV have comparative performance. This result is
comprehensible. In our case, 1GB / 64KB = 16K COW entries
were read and then modified, and they are all continuous. So
16K / 1K (4KB / 4B) = 16 cache misses happened. ESnap did
about 16 metadata initializing, 16 metadata segment reading,
and 16K metadata segment writing (LVM1 did about 16K
metadata block writing). There is no difference among RR,
LRU and NV.

After this, we went on to do snapshots sequential reading
test. As we calculate, all the metadata of the 1GB data are all
in memory, metadata updating counts and extra metadata
operation counts of RR, LRU and NV are all zero. Figure 6
shows the snapshot sequential reading performance. We can
see that LVM1’s performance is higher than others, and the
performance of RR, LRU and NV is almost same. The reason
is similar to the first experiment.

�

����

����

����

#���

�����

�����

	
�� �� 	� �

�
��
$!
%&

��
��
��

��
��
��

��
��
'�

��
��
��

 !
"

Fig. 6 snapshot sequential reading performance.

Figure 7 shows the result of original volume random
writing test. LRU and RR have almost same performance
because we did complete random writing. But even if the
requests have high locality, the LRU is not superior to RR.
The reason is that the metadata has coarse grain, the local
requests usually fall the same metadata segment, so the two
replacement strategy are same here. Data locality isn’t equal to
metadata locality. LVM1 has the best performance because it
has no extra metadata operations. NV can decrease the number
of metadata updating, figure 7 shows that its performance is
higher than RR and LRU, and is close to LVM1 as we
expected.

�

���

����

����

����

	
�� �� 	� �

��
��

��
��
�
�'

&(
��

��
��

��
��

��
 !

"

Fig. 7 original volume random writing performance.

We also tested random reading on empty snapshots.
LVM1 still exhibited the best performance as figure 8 shows
because its metadata all resides in memory. We closed
initialization bitmap to test the impact of cache misses, so RR,
LRU, NV have almost same extra metadata operation counts
the slight difference is cause by the random number generator.

Because we haven’t implement snapshot write till now,
we didn’t test snapshot writing performance.

�

���

����

����

����

����

����

����

	
�� �� 	� �

�
��
$
!%
&
��
�
��
'
&(
�
��
�'

��
�
��
�
�
!
"

Fig. 8 snapshot random reading performance.

787

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 4, 2009 at 20:05 from IEEE Xplore. Restrictions apply.

�

����

����

����

����

����

����

�)�� �*�$ �)��

*
�
$
�
�
'
�
�
�
�
!
�
�
$
!
%
&
�
�
+
�
�
�
�

$
�
�
,
&
�
(
�
�
-
�
�
�
�

!
"

!��������

���'&(

Fig.9 original volume (with dependent snapshots) sequential writing
performance.

Finally, we tested writing performance of original volume
with dependent snapshots. we created 5 traditional snapshots,
5 dependent snapshots and 1 traditional snapshot respectively.
All three cases are based on ESnap with LRU strategy. Figure
9 show the result. Apparently, dependent snapshot technology
improves the performance greatly. Of course, the performance
is not improved as theoretic analysis because of the impact of
the hard disk cache and the virtual machine.

VI. CONCLUSION

In this paper, we introduced the design and implement of
ESnap, a cached dependent snapshot system which can
improve the performance and reliability of Linux LVM1
snapshot module. ESnap reduces the amount of data copy
greatly using dependent snapshot technology. A new snapshot
metadata organization scheme is designed to support massive
snapshots and the corresponding read / write algorithms are
presented. We also implemented snapshot automatic
extending function through migrating metadata management
code to kernel and enhance the reliability of ESnap.
Experimental results show that the write performance of the
dependent snapshots is greatly improved compared with the
traditional LVM1 snapshots. The new metadata organization
improves the scalability and availability greatly and pays a
little in read/write performance.

Shah proposed an optimization of LVM snapshot [10],
which can improve performance 18% - 40% compared with
the traditional method. But if users want to extend the original
volume or snapshots, the method will be disabled completely.
The Blue Whale system implements iterative snapshot
mechanism[11]. ESnap can achieve the same object by
creating two simultaneous dependent snapshots simply and
setting the older one as a read-only volume.

Future work will focus on then implement of snapshot
write function, the further improvement of COW performance
though multi-thread copy technique, performance optimization
though non-volatile memory (such as asynchronous COW,
virtual pointer strategy, and so on), performance optimization
though snapshot volume layout and the optimization of
VGDA data layout.

REFERENCES

[1] EMC Time Finder[M].EMCorporation. http://www.emc.com/products/
product_pdfs/ds/timefinder_1700-4.pdf,2000

[2] RAMAC Virtual Array. http://www.redbooks.ibm.com/redbooks/
pdfs/sg244951.pdf

[3] Hitachi ShadowImage. http://www.hds.com/pdf/shadowimageR6.pdf,
2001-06

[4] StorageTek(tm)Snapshot Software. http://www.storagetek.com
[5] HP Storageworks Business Copy EVA, http://h18006.www1.hp.com/
[6] Hasentein M.LVM Whitepaper.SuSE Inc.http://www.sistina.com,2001
[7] AJ Lewis.LVM HOWTO. Sistina Software, Inc,2002-2003, Red Hat,

Inc,2004-2005
[8] Xu Guangping, Wang Gang and Liu Jing,” “Design of repetitious points

incremental snapshots based on same snapshot volume”, Computer
engineering and applications, vol,no3, pp 413,113-115, January 2005.

[9] Li Zhong, Wang Gang and Liu Jing, “A Technology of Implementing
Sequential Points Snapshot in the Storage Subsystem,” Computer
engineering and applications, vol. 40, no. 9, pp. 18-20, 32, March 2004.

[10]Bhavana Shah, ”Disk Performance of Copy-On-Write Snapshot Logical
Volumes” master degree THESIS, The University Of British Columbia,
2006.

[11]Liu Zhenjun, Xu Lu ,Feng Shuo and Yin Yang, “The Design and
Implementation of an Iterative Snapshot System,” Jisuanji Gongcheng Yu
Yingyong, vol. 42, no.14, pp. 11-15, May, 2006.

788

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on January 4, 2009 at 20:05 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

