
An Improved Parallel Implementation of 3-D DRIE Simulation on Multi-core
Processors*

Zhang Fan, Wang Gang, Liu Xiaoguang, Sun Guangyi, Zhao Xin, Liu Jing, Lu Guizhang
College of Information Technical Science, Nankai University, 300071, Tianjin, China

zhangfan555@gmail.com

Abstract*

Deep reactive ion etching (DRIE) technique is a
new and powerful tool in Micro-Electro-Mechanical
Systems (MEMS) fabrication. A 3-D DRIE simulation
can help researcher understand the time-evolution of
Bosch process used in DRIE. Due to the high
complexity of the algorithm used in the simulation, it is
necessary to develop an algorithm that can speedup
the simulation. This paper presents a parallel
implementation of the 3-D DRIE simulation based on
multi-core processor. The algorithm is based on data
partition. We examine four different data partition
strategies and find two-dimensional block-cyclic
distribution can obtain perfect load balance. The
experimental results show that the parallel algorithm
obtains a substantial speedup over the serial algorithm
on an Intel quad-core computer.

1. Introduction

In Micro-Electro-Mechanical Systems (MEMS)
fabrication, Deep Reactive Ion Etching (DRIE) is a
new and powerful tool for the etching of very deep
trenches (up to 500 μm) with nearly vertical sidewalls.
The most popular silicon DRIE technique is Bosch
process patented by Robert Bosch GmbH [1], of
Stuttgart, Germany, in which etch and polymerization
cycles alternate in an ICP-RIE system.

Since the procedure of Bosch process is more
complex than other etchings’, an accurate and fast
simulation is necessary to help researchers understand
the time-evolution of the topography.

Sun Guangyi et al. [2] has proposed a new approach

* This paper is supported partly by the National High Technology
Research and Development Program of China (2008AA01Z401),
NSFC of China (90612001), RFDP of China (20070055054),
Program for new century excellent talent in university(NCET-07-
0464),and Science and Technology Development Plan of Tianjin
(08JCYBJC13000) (60674068) (2006AA04Z304)

for 3-D simulation of Bosch process with arbitrary 2-D
mask shape. Its surface evolution is based on the
morphological operations and the visualization is
based on volume rendering. The etching and
polymerization rate distribution is obtained from
macroscopic point advancement models. Based on this
method, it is possible to simulate the alternation of
etching and polymerization.

Due to the high complexity of the algorithm
(6()O n) proposed by Sun Guangyi, it is necessary to
develop a parallel algorithm which can speedup the
simulation using the novel multi core technology. We
use four different mapping techniques to balance the
load among processors.

In the next section, we describe the principle of the
DRIE and introduce the serial algorithm used in 3-D
DRIE simulation. In section 3 we give the design and
analysis of the parallel algorithm. Finally, in section 4,
the experiment result is presented.

2. Algorithm of 3-D DRIE simulation

2.1. Principle of the DRIE

2.1.1. Bosch Process The principle of the Bosch
process is schematically shown in Fig. 1. The typical
etch cycle lasts 5 to 15s, uses SF6 to etch silicon. In
the next cycle, a fluorocarbon polymer, about 10nm
thick, is plasma deposited using C4F8 as a source gas.
In the following etch cycle the energetic ions (SFx+)
remove the protective polymer at the bottom of trench,
but the film remains relatively intact along the
sidewalls. The repetitive alternation of etch and
passivation steps results in high directional etch at
rates between 1.5 and 4um/min, high aspect ratio up to
30:1, high selectivity to mask (75:1 to photoresist).

The computer simulation of DRIE uses a 3-D
physical model which is simplified on some reasonable
assumption, while maintains the main characteristics of
the Bosch process. The following section gives the

The 10th IEEE International Conference on High Performance Computing and Communications

978-0-7695-3352-0/08 $25.00 © 2008 IEEE

DOI 10.1109/HPCC.2008.23

891

The 10th IEEE International Conference on High Performance Computing and Communications

978-0-7695-3352-0/08 $25.00 © 2008 IEEE

DOI 10.1109/HPCC.2008.23

891

The 10th IEEE International Conference on High Performance Computing and Communications

978-0-7695-3352-0/08 $25.00 © 2008 IEEE

DOI 10.1109/HPCC.2008.23

891

Authorized licensed use limited to: MICROSOFT. Downloaded on April 22,2010 at 14:48:13 UTC from IEEE Xplore. Restrictions apply.

etching model and polymerization model in the 3-D
DRIE simulation.

Figure 1. Principle of Bosch process.

Figure 2. Schematic illustration of shadow test

and calculation of visible solid angle.

Figure 3. The voxel data layout.

2.1.2. Etching Model According to the analysis in
[3], the etching in Bosch process can be seen as the
combination of isotropic etching and ion-assistant
etching. The isotropic etching leads to a uniform
etching and the etch rate is described as a constant:

uni uniER C= (1)
Where ERuni is the uniform etching component and
Cuni is a constant.

The ion-assistant etching is completed by the
cooperation of ions and reactive radicals. The etching
rate is assumed to be proportional to the number of
incident ions and affected by the unshadowed solid
angle and the surface normal. Fig. 2 gives a schematic
illustration of shadow test and the calculation of solid
angle. The shadow test is performed along a given
direction following a discrete line of voxels from the
exposed voxel to the source point. If any voxel on this
line is a material voxel, the exposed voxel is shadowed.
Then the calculation of visible solid angle is reduced to

a series of shadow test.
The etch rate along the surface normal is expressed

as:
() () cos ()i i iER C n i F n i d C F dα α

Ω Ω

= Ω = Ω∫ ∫i i (2)

1() cos
2

nnF α α
π
+= (3)

Ci is a constant, n is the normal unit vector, i is the
unit vector of the incident direction, α is the angle of
incidence with respect to the surface normal. F(α) is
the distribution function of ion flux which is described
by a cosine power series. Ω is the visible solid angle.
The linear combination of two etch rate components
described above leads to

cos ()uni i uni iER ER ER C C F dα α
Ω

= + = + Ω∫ (4)

ER is the total etching rate. This etch rate
expression can be used for both silicon and polymer,
but the parameters for silicon etching and polymer
etching are different.

2.2. Serial Algorithm of the 3-D DRIE
Simulation

In the 3-D DRIE simulation, the silicon is regarded
as a set of points in a cuboid. Because the etching part
is more complex than the polymerization process, the
optimization mentioned blow is all about the part of
etching process.

At each step of etching, first find all the points
exposed to the air, and then the program will run a ray
cast algorithm to calculate the amount of rays each
point will receive. Then the etch rate of each point can
be calculated from a series of physical formulas
according to (1)(2)(3)(4). After the etch rate has been
calculated, etch the silicon with a sphere whose center
is the surface points and the radius is the etch rate.
Fig.3 illustrates the data layout of the DRIE simulation.
Algorithm-1 illustrates the serial algorithm of a single
step of etching in 3-D DRIE simulation.
Algorithm 1. A single step of etching in 3-D DRIE
simulation
Begin
For i = 1 to z do
 For j = 1 to x do
 For k = 1 to y do
 Begin
 If the point(i,j,k) of the silicon
is exposed to the air calculate the etch
rate using ray cast.
 etch the silicon with point(i,j,k)
as the sphere center and etch rate as
radius.
 End
End

892892892

Authorized licensed use limited to: MICROSOFT. Downloaded on April 22,2010 at 14:48:13 UTC from IEEE Xplore. Restrictions apply.

The complexity of the algorithm is 6()O n . So it is
necessary to parallelize it.

3. Parallel algorithm

3.1. Basic Idea

Algorithm 1 provides a wide range of possibilities
to implement the parallel algorithm. During the Bosch
process, the entire silicon is divided into different
regions which are etched independently with one or
more masks. The etching processes of regions are same.
So the religions can be distributed over nodes of multi-
nodes system. Each node independently performs all
the computations associated with its own region. Then
we get a perfect coarse-grained parallel algorithm. It is
easy to implement it on the message-passing platforms
[4]. So we focus on fine-grained parallel algorithms on
multi-core platform in this paper.

Dividing a computational task into smaller subtasks
and assigning them to different processes for parallel
execution are the two key steps in designing parallel
algorithms. Once a computation has been decomposed
into several tasks, these tasks are mapped onto
processes with the objective that all the tasks complete
in the shortest amount of elapsed time. In order to
achieve a small execution time, the overheads of
executing the tasks in parallel must be minimized. For
a given decomposition, there are two key sources of
overhead. The time spent in the inter-process
interaction is one source of overhead. Another
important source of overhead is the time that some
processes may spend being idle. Both interaction and
idling are often a function of mapping. Therefore, a
good mapping of tasks onto processes must strive to
achieve the twin objectives [5]: Reducing the amount
of time processes spend in interacting with each other.
Reducing the total amount of time some processes are
idle while the others are engaged in performing some
tasks.

As we implement the algorithm on a multi-core
platform which is typically a shared-memory model,
we do not need to consider the overhead of data
transmission through the network. The parallel
algorithm mainly focuses on how to decrease the
synchronization time and achieve a good load balance.

Because successive etching steps are indeed data
dependent, they can not be processed in parallel. But
during an etching step, each surface point is processed
independently. So we parallelize each etching step
internally using multiple cores, and synchronize the
cores between two successive etching steps. So the key
objective of the parallel algorithm is balancing the load

of each core, i.e., evenly distributing the computation
tasks in each etching step to the cores.

The surface points associated with computations is
in a 3D space. But they compose a curved surface.
Namely, the computations are distributed over the
curved surface instead of the whole 3D space.
Moreover, as the number of etching steps is not very
large, and passivation steps are applied, the shape of
the “computation curved surface” is close to the shape
of the mask on the top surface. So we don’t consider
three-dimensional data partition strategy, only
distribute the tasks through the plane perpendicular to
the z-axis which is defined as xy-plane in this paper.
For the purpose of load balance, we examined several
data partition strategies. In the following section, we
will discuss these strategies.

3.2. Mapping Techniques for Load Balancing

3.2.1 Block Distributions Block distributions are
some of the simplest ways to distribute an array and
assign uniform contiguous portions of the array to
different processes.
One-Dimensional Block Distribution

In one-dimensional block distribution, consider an
n*n two-dimensional array A with n rows and n
columns. We can now select one of these dimensions,
e.g., the first dimension, and partition the array into p
parts such that the kith part contains rows kn/p ...
(k+1)n/p-1, where 0≤k<p. That is, each partition
contains a block of n/p consecutive rows of A.
Similarly, if we partition A along the second dimension,
then each partition contains a block of n/p consecutive
columns.

So we can parallelize the algorithm like this: divide
the xy-plane through x or y direction into p equal-size
areas and assign each process one area. An example is
illustrated in Fig.4.a. Process 0 takes charge of an area
which is gray, so do the other processes.
Two-Dimensional Block Distribution

If the shape of mask is not distributed uniformly
along one dimension, one-dimensional block
distribution results non-optimal load distribution.
Unfortunately, practical masks often are not one-
dimensional uniformly distributed. Instead of selecting
a single dimension, we can select multiple dimensions
to partition. For instance, in the case of array A we can
select both dimensions and partition the plane into
blocks such that each block corresponds to a
(n/p1)*(n/p2) section of the matrix, with p = p1*p2
being the number of processes.

Fig.4.b illustrates an example of two-dimensional
block distribution, the plane is simply divided through
x and y direction to 4 equal-size blocks. The advantage

893893893

Authorized licensed use limited to: MICROSOFT. Downloaded on April 22,2010 at 14:48:13 UTC from IEEE Xplore. Restrictions apply.

of this method is that as long as the mask is center-
symmetric, each part will have the same load.

a. one-dimensional b. two-dimensional

Figure 4. Block distributions.

3.2.2 Block-Cyclic Distributions If the load differs
for different regions of the surface points of the silicon,
a block distribution can potentially lead to load
imbalance. The block-cyclic distribution is a variation
of the block distribution scheme that can be used to
alleviate the load-imbalance and idling problems. The
central idea behind a block-cyclic distribution is to
partition an array into many more blocks than the
number of available processes. Then we assign the
partitions to processes in a round-robin manner so that
each process gets several non-adjacent blocks.
One-Dimensional Block Distribution

In a one-dimensional block-cyclic distribution of a
matrix among p processors, the rows (columns) of an
n*n matrix are divided into αp groups of n/(αp)
consecutive rows (columns), where 1≤α≤n/p. Here we
introduce a term “granularity” which equals to α. Now,
these blocks are distributed among the p processes in a
wraparound fashion such that block bi is assigned to
process Pi%p. This distribution assigns α blocks of the
matrix to each process, but each subsequent block that
gets assigned to the same process is p blocks away.

Fig.5.a illustrates an example of one-dimensional
block cyclic distribution, each number represent a
process. Process 0 takes charge of the area uniformly
distributed on the plane, and the granularity is 6. So the
plane is divided into 6*4 blocks with each process own
6 smaller blocks.
Two-Dimensional Block Distribution

Two-Dimensional Cyclic Block Distribution
combines the two-dimensional block distribution and
one-dimensional block cyclic distribution. We can
obtain a two-dimensional block-cyclic distribution of
an n*n array by partitioning it into square blocks of
size p pα α× and distributing them on a

hypothetical p p× array of processes in a
wraparound fashion.

As Fig.5.b shows, each process takes charge of a set
of smaller blocks uniformly distributing on the plane
and the granularity is 4. Thus, there are 16 blocks on

the plane overall. And each block is divided into 4 sub-
blocks to be distributed to each processor. Algorithm 2
gives the pseudo code of a single step of etching in 3-
D DRIE simulation using two-dimensional cyclic
block distribution as mapping techniques.

a. one-dimensional b. two-dimensional

Figure 5. Block-Cyclic distributions.

The reason why a block-cyclic distribution is able
to significantly reduce the amount of idling is that all
processes have a sampling of tasks from all parts of the
surface points of the silicon. As a result, even if
different parts of the surface points of the silicon
require different amount of work, the overall work on
each process balances out. It has high possibilities that
each process get equal amount of work. Also, since the
tasks assigned to a process belong to different parts of
the matrix, there is a good chance that at least some of
them are ready for execution at any given time.

4. Experiment results

We used a computer with an Intel Core 2 Quad
Q6600 CPU [6] with four 2.40GHz cores inside and 2
GB of DRAM running Windows XP as the experiment
platform. The complier is MS Visual C++ 8.0 with
options “/MD /arch: SSE2 /fp:fast”. The program is
based on multi-threads programming.

4.1. Performance of different mapping
techniques

We first tested a single step of etching with the
mask shown in Fig.6.a. The mapping techniques used
with this mask is one-dimensional block distribution.
The plane is divided into 4 blocks through the x-axis.
We can learn from Tab.1 test.1 that, the 4 processors’
execution time have little differences.

If the shape of the mask is not distributed uniformly
along one dimension, the one-dimensional block
distribution leads to load imbalance. Two dimensional
block distribution can help solve this problem if the
mask is center-symmetric. The mask showed in Fig.6.b
is a mask of this kind. Tab.1 test.2 and test.3 show the
etching time of mask #2 using the two strategies
respectively. One-dimensional block distribution leads

 0 1

2 3

0 1 2 3

894894894

Authorized licensed use limited to: MICROSOFT. Downloaded on April 22,2010 at 14:48:13 UTC from IEEE Xplore. Restrictions apply.

to serious load imbalance, while two-dimensional
block distribution obtains a better load balance.

a. mask #1 b. mask #2 c. mask #3

c. mask #4 d.mask#5

Figure 6. Mask used in the simulation.

When the mask is irregular, e.g., mask #3, the block
distribution doesn’t work too. We will use block-cyclic
distribution instead. Tab.1 test.4~test.7 gives the
execution time of the four kinds of mapping techniques
applied to mask #3. Two block-cyclic distribution
strategies obtain load balance, and the run time is
much less than two block distribution methods. It
agrees well with the analysis in section 3.2.2.

Table 1. Single step etching time using
different mapping techniques.

Processo
r

1

2

3

4

1 575 625 625 575
2 141 703 719 156
3 422 422 422 437
4 172 281 547 531
5 422 0 625 422
6 375 375 344 375
7 375 375 375 375

4.2. Impact of granularity

Next, we tested the cyclic distribution methods with
different granularities. We used mask #3. From the
figure illustrated in Fig.7; we can learn that
granularity is an important factor which can impact
load distribution. In fact, block-cyclic distribution
will degenerate into block distribution when
granularity=1. As granularity increases, the
computation tasks are distributed more evenly. For
mask #3, one-dimensional block-cyclic distribution
achieves perfect load balance when granularity is
greater than 16 and the critical point of two-

dimensional block-cyclic distribution is 8.

a. one-dimensional block-cyclic distribution

b. two-dimensional block-cyclic distribution

Figure 7. Impact of granularity.

4.3. Speedup to the serial algorithm

We then compared the parallel algorithm and the serial
algorithm. We use mask #3, and the parallel algorithm
used two-dimensional block-cyclic distribution, the
granularity is set to be 16. Fig.8 clearly shows that
parallel algorithm can significantly reduce the run time.
We can learn that the serial algorithm’s execution time
is about 3.95 times as long as the two-dimensional
block-cyclic distribution algorithm from Fig-16.
Because the there are 4 cores in our system, the
speedup is very good.

Figure 8. Speedup.

Besides, we tested the speedup of the parallel
program with compiler option “/arch: SSE 2” to the
one without it. With this option, the compiler will turn
on Streaming SIMD Extensions (SSE) [7] which is a
SIMD (Single Instruction, Multiple Data) instruction

Test

895895895

Authorized licensed use limited to: MICROSOFT. Downloaded on April 22,2010 at 14:48:13 UTC from IEEE Xplore. Restrictions apply.

set extension to the x86 architecture. The complier will
automatically optimize the code to fit the x86
architecture. As there are lots of floating-point
calculations in the ray cast step and the etching step,
the optimization we made is to align the data at 128bit
which will let the SSE processor run at full spped [8].
Tab.2 shows the comparison between the two kinds
(with and without the compiler option), the mask used
is mask #4 shown in Fig. 6.d. The original mask
(256*256) and the zoomed in mask (512*512) are
tested. It shows that there is a substantial speedup to
the trivial one.

Table 2. Impact of SSE.
Mask With /arch:

SSE2 option
(ms)

Without /arch:
SSE2 option

(ms)

Speedup

256*256 219 156 1.40
512*512 641 984 1.53

4.4. Multi-step etching

At last, we test multi-step etching. We alternately
etch and passivate the silicon several times to get a
deep trench. The objective of this experiment is to test
whether or not two-dimensional block-cyclic
distribution still works in multi-step etching. If not, we
have to use three-dimensional distribution. The mask
used in this experiment is mask #5 shown in Fig. 6.e.
Fig.9 shows the experiment result. The figure shows
the load of each processor of 10 continuous steps of
the etching.

From the experiment result, we can learn that when
etching several steps, each processor get about 25% of
the total work. So the algorithm still works in multi-
step etching. Though the etching is in 3D space, the
computation is distributed on the surface of the silicon
which is close to a 2D plane.

6. Conclusion

In this paper, we examined several parallel
approaches to accelerate the 3-D DRIE simulation. The
experiment result shows that two-dimensional block-
cyclic distribution approach can lead to perfect load
balance in most cases and can utilize fully the
computational power of new multi-core CPUs. Besides
the x86 architecture’s SSE feature can substantially
speedup the computing process.

The mapping techniques we mentioned in this paper
are all static task mapping. In the future work, we will
try some methods such as randomized block
distributions and dynamic task mapping which include
centralized schemes and distributed schemes. Besides,

the hybrid model which uses MPI, OpenMP and
multithreading programming to distribute the
computing task to the processors and GPU
programming are also good choices.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10
step of the etching

Processor 4
Processor 3
Processor 2
Processor 1

Figure 9. Load balance when multi-step etching.

References

[1] L¨armer F and Schilp A Method of anisotropically
etching silicon, US Patent Specification 5501893, German
Patent Specification DE4241045.

[2] Guangyi Sun, Xin Zhao, Haixia Zhang, Lei Wang, and
Guizhang Lu. 3-D Simulation of Bosch Process with Voxel-
Based Method, Proceedings of the 2nd IEEE International
Conference on Nano/Micro Engineered and Molecular
Systems, Bangkok, Thailand,2007：pp. 45-49, Jan 2007.

[3] Rongchun Zhou, Haixia Zhang, Yilong Hao, and
Yangyuan Wang, “Simulation of the bosch process with a
string-cell hybrid method,” IOP J. Micromech. Microeng, vol.
14, pp. 851-858, 2004.

[4] Michael J.Quinn, Parallel Programming in C with MPI
and OPENMP, McGraw-Hill Companies,Inc.2004

[5] Ananth Grama, Anshul Gupta, George Karypis, Vipin
Kumar, Introduction to Parallel Computing (Second Edition),
Pearson Education, 2003.

[6] R.M. Ramanathan, Intel Multi-Core Processors Making
the Move to Quad-Core and Beyond, White Paper Intel(R)
Multi-Core Processors, 2007

[7] http://en.wikipedia.org/wiki/Streaming_SIMD_Extension

[8] Aart Bik, Milind Girkar, Paul Grey, and Xinmin Tian,
Programming Guidelines for Vectorizing C/C++ Compilers,
http://www.ddj.com/cpp/184401611?pgno=1, 2003

896896896

Authorized licensed use limited to: MICROSOFT. Downloaded on April 22,2010 at 14:48:13 UTC from IEEE Xplore. Restrictions apply.

