
An Improved Parallel Implementation of 3-D DRIE Simulation on Multi-core 
Processors* 

 
 

Zhang Fan, Wang Gang, Liu Xiaoguang, Sun Guangyi, Zhao Xin, Liu Jing, Lu Guizhang 
College of Information Technical Science, Nankai University, 300071, Tianjin, China 

zhangfan555@gmail.com 
 
 

Abstract* 
 

Deep reactive ion etching (DRIE) technique is a 
new and powerful tool in Micro-Electro-Mechanical 
Systems (MEMS) fabrication. A 3-D DRIE simulation 
can help researcher understand the time-evolution of 
Bosch process used in DRIE. Due to the high 
complexity of the algorithm used in the simulation, it is 
necessary to develop an algorithm that can speedup 
the simulation. This paper presents a parallel 
implementation of the 3-D DRIE simulation based on 
multi-core processor. The algorithm is based on data 
partition. We examine four different data partition 
strategies and find two-dimensional block-cyclic 
distribution can obtain perfect load balance. The 
experimental results show that the parallel algorithm 
obtains a substantial speedup over the serial algorithm 
on an Intel quad-core computer. 
 
1. Introduction 
 

In Micro-Electro-Mechanical Systems (MEMS) 
fabrication, Deep Reactive Ion Etching (DRIE) is a 
new and powerful tool for the etching of very deep 
trenches (up to 500 μm) with nearly vertical sidewalls. 
The most popular silicon DRIE technique is Bosch 
process patented by Robert Bosch GmbH [1], of 
Stuttgart, Germany, in which etch and polymerization 
cycles alternate in an ICP-RIE system. 

Since the procedure of Bosch process is more 
complex than other etchings’, an accurate and fast 
simulation is necessary to help researchers understand 
the time-evolution of the topography. 

Sun Guangyi et al. [2] has proposed a new approach 
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for 3-D simulation of Bosch process with arbitrary 2-D 
mask shape. Its surface evolution is based on the 
morphological operations and the visualization is 
based on volume rendering. The etching and 
polymerization rate distribution is obtained from 
macroscopic point advancement models. Based on this 
method, it is possible to simulate the alternation of 
etching and polymerization. 

Due to the high complexity of the algorithm 
( 6( )O n ) proposed by Sun Guangyi, it is necessary to 
develop a parallel algorithm which can speedup the 
simulation using the novel multi core technology. We 
use four different mapping techniques to balance the 
load among processors. 

In the next section, we describe the principle of the 
DRIE and introduce the serial algorithm used in 3-D 
DRIE simulation. In section 3 we give the design and 
analysis of the parallel algorithm. Finally, in section 4, 
the experiment result is presented. 

 
2. Algorithm of 3-D DRIE simulation 
 
2.1. Principle of the DRIE 
 
2.1.1. Bosch Process The principle of the Bosch 
process is schematically shown in Fig. 1. The typical 
etch cycle lasts 5 to 15s, uses SF6 to etch silicon. In 
the next cycle, a fluorocarbon polymer, about 10nm 
thick, is plasma deposited using C4F8 as a source gas. 
In the following etch cycle the energetic ions (SFx+) 
remove the protective polymer at the bottom of trench, 
but the film remains relatively intact along the 
sidewalls. The repetitive alternation of etch and 
passivation steps results in high directional etch at 
rates between 1.5 and 4um/min, high aspect ratio up to 
30:1, high selectivity to mask (75:1 to photoresist). 

The computer simulation of DRIE uses a 3-D 
physical model which is simplified on some reasonable 
assumption, while maintains the main characteristics of 
the Bosch process. The following section gives the 
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etching model and polymerization model in the 3-D 
DRIE simulation. 

 

 
Figure 1. Principle of Bosch process. 

 
Figure 2. Schematic illustration of shadow test 

and calculation of visible solid angle. 

 
Figure 3. The voxel data layout. 

 

2.1.2.  Etching Model   According to the analysis in 
[3], the etching in Bosch process can be seen as the 
combination of isotropic etching and ion-assistant 
etching. The isotropic etching leads to a uniform 
etching and the etch rate is described as a constant: 

uni uniER C=    (1) 
Where ERuni is the uniform etching component and 
Cuni is a constant. 

The ion-assistant etching is completed by the 
cooperation of ions and reactive radicals. The etching 
rate is assumed to be proportional to the number of 
incident ions and affected by the unshadowed solid 
angle and the surface normal. Fig. 2 gives a schematic 
illustration of shadow test and the calculation of solid 
angle. The shadow test is performed along a given 
direction following a discrete line of voxels from the 
exposed voxel to the source point. If any voxel on this 
line is a material voxel, the exposed voxel is shadowed. 
Then the calculation of visible solid angle is reduced to 

a series of shadow test. 
The etch rate along the surface normal is expressed 

as: 
( ) ( ) cos ( )i i iER C n i F n i d C F dα α

Ω Ω

= Ω = Ω∫ ∫i i  (2) 

1( ) cos
2

nnF α α
π
+=    (3) 

Ci is a constant, n is the normal unit vector, i is the 
unit vector of the incident direction, α is the angle of 
incidence with respect to the surface normal. F(α) is 
the distribution function of ion flux which is described 
by a cosine power series. Ω is the visible solid angle.  
The linear combination of two etch rate components 
described above leads to 

cos ( )uni i uni iER ER ER C C F dα α
Ω

= + = + Ω∫  (4) 

ER is the total etching rate. This etch rate 
expression can be used for both silicon and polymer, 
but the parameters for silicon etching and polymer 
etching are different. 
 
2.2. Serial Algorithm of the 3-D DRIE 
Simulation 
 

In the 3-D DRIE simulation, the silicon is regarded 
as a set of points in a cuboid. Because the etching part 
is more complex than the polymerization process, the 
optimization mentioned blow is all about the part of 
etching process. 

At each step of etching, first find all the points 
exposed to the air, and then the program will run a ray 
cast algorithm to calculate the amount of rays each 
point will receive. Then the etch rate of each point can 
be calculated from a series of physical formulas 
according to (1)(2)(3)(4). After the etch rate has been 
calculated, etch the silicon with a sphere whose center 
is the surface points and the radius is the etch rate. 
Fig.3 illustrates the data layout of the DRIE simulation. 
Algorithm-1 illustrates the serial algorithm of a single 
step of etching in 3-D DRIE simulation. 
Algorithm 1. A single step of etching in 3-D DRIE 
simulation 
Begin 
For i = 1 to z do 
  For j = 1 to x do 
    For k = 1 to y do 
      Begin 
       If the point(i,j,k) of the silicon 
is exposed to the air calculate the etch 
rate using ray cast. 
       etch the silicon with point(i,j,k) 
as the sphere center and etch rate as 
radius. 
      End 
End 
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The complexity of the algorithm is 6( )O n . So it is 
necessary to parallelize it. 

 
3. Parallel algorithm 
 
3.1. Basic Idea 
 

Algorithm 1 provides a wide range of possibilities 
to implement the parallel algorithm. During the Bosch 
process, the entire silicon is divided into different 
regions which are etched independently with one or 
more masks. The etching processes of regions are same. 
So the religions can be distributed over nodes of multi-
nodes system. Each node independently performs all 
the computations associated with its own region. Then 
we get a perfect coarse-grained parallel algorithm. It is 
easy to implement it on the message-passing platforms 
[4]. So we focus on fine-grained parallel algorithms on 
multi-core platform in this paper. 

Dividing a computational task into smaller subtasks 
and assigning them to different processes for parallel 
execution are the two key steps in designing parallel 
algorithms. Once a computation has been decomposed 
into several tasks, these tasks are mapped onto 
processes with the objective that all the tasks complete 
in the shortest amount of elapsed time. In order to 
achieve a small execution time, the overheads of 
executing the tasks in parallel must be minimized. For 
a given decomposition, there are two key sources of 
overhead. The time spent in the inter-process 
interaction is one source of overhead. Another 
important source of overhead is the time that some 
processes may spend being idle. Both interaction and 
idling are often a function of mapping. Therefore, a 
good mapping of tasks onto processes must strive to 
achieve the twin objectives [5]: Reducing the amount 
of time processes spend in interacting with each other. 
Reducing the total amount of time some processes are 
idle while the others are engaged in performing some 
tasks. 

As we implement the algorithm on a multi-core 
platform which is typically a shared-memory model, 
we do not need to consider the overhead of data 
transmission through the network. The parallel 
algorithm mainly focuses on how to decrease the 
synchronization time and achieve a good load balance. 

Because successive etching steps are indeed data 
dependent, they can not be processed in parallel. But 
during an etching step, each surface point is processed 
independently. So we parallelize each etching step 
internally using multiple cores, and synchronize the 
cores between two successive etching steps. So the key 
objective of the parallel algorithm is balancing the load 

of each core, i.e., evenly distributing the computation 
tasks in each etching step to the cores. 

The surface points associated with computations is 
in a 3D space. But they compose a curved surface. 
Namely, the computations are distributed over the 
curved surface instead of the whole 3D space. 
Moreover, as the number of etching steps is not very 
large, and passivation steps are applied, the shape of 
the “computation curved surface” is close to the shape 
of the mask on the top surface. So we don’t consider 
three-dimensional data partition strategy, only 
distribute the tasks through the plane perpendicular to 
the z-axis which is defined as xy-plane in this paper. 
For the purpose of load balance, we examined several 
data partition strategies. In the following section, we 
will discuss these strategies. 
 
3.2. Mapping Techniques for Load Balancing 
 
3.2.1 Block Distributions Block distributions are 
some of the simplest ways to distribute an array and 
assign uniform contiguous portions of the array to 
different processes. 
One-Dimensional Block Distribution 

In one-dimensional block distribution, consider an 
n*n two-dimensional array A with n rows and n 
columns. We can now select one of these dimensions, 
e.g., the first dimension, and partition the array into p 
parts such that the kith part contains rows kn/p ... 
(k+1)n/p-1, where 0≤k<p. That is, each partition 
contains a block of n/p consecutive rows of A. 
Similarly, if we partition A along the second dimension, 
then each partition contains a block of n/p consecutive 
columns. 

So we can parallelize the algorithm like this: divide 
the xy-plane through x or y direction into p equal-size 
areas and assign each process one area. An example is 
illustrated in Fig.4.a. Process 0 takes charge of an area 
which is gray, so do the other processes. 
Two-Dimensional Block Distribution 

If the shape of mask is not distributed uniformly 
along one dimension, one-dimensional block 
distribution results non-optimal load distribution. 
Unfortunately, practical masks often are not one-
dimensional uniformly distributed. Instead of selecting 
a single dimension, we can select multiple dimensions 
to partition. For instance, in the case of array A we can 
select both dimensions and partition the plane into 
blocks such that each block corresponds to a 
(n/p1)*(n/p2) section of the matrix, with p = p1*p2 
being the number of processes. 

Fig.4.b illustrates an example of two-dimensional 
block distribution, the plane is simply divided through 
x and y direction to 4 equal-size blocks. The advantage 
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of this method is that as long as the mask is center-
symmetric, each part will have the same load. 

 
a. one-dimensional          b. two-dimensional 

Figure 4. Block distributions. 

3.2.2 Block-Cyclic Distributions If the load differs 
for different regions of the surface points of the silicon, 
a block distribution can potentially lead to load 
imbalance. The block-cyclic distribution is a variation 
of the block distribution scheme that can be used to 
alleviate the load-imbalance and idling problems. The 
central idea behind a block-cyclic distribution is to 
partition an array into many more blocks than the 
number of available processes. Then we assign the 
partitions to processes in a round-robin manner so that 
each process gets several non-adjacent blocks. 
One-Dimensional Block Distribution 

In a one-dimensional block-cyclic distribution of a 
matrix among p processors, the rows (columns) of an 
n*n matrix are divided into αp groups of n/(αp) 
consecutive rows (columns), where 1≤α≤n/p. Here we 
introduce a term “granularity” which equals to α. Now, 
these blocks are distributed among the p processes in a 
wraparound fashion such that block bi is assigned to 
process Pi%p. This distribution assigns α blocks of the 
matrix to each process, but each subsequent block that 
gets assigned to the same process is p blocks away. 

Fig.5.a illustrates an example of one-dimensional 
block cyclic distribution, each number represent a 
process. Process 0 takes charge of the area uniformly 
distributed on the plane, and the granularity is 6. So the 
plane is divided into 6*4 blocks with each process own 
6 smaller blocks. 
Two-Dimensional Block Distribution 

Two-Dimensional Cyclic Block Distribution 
combines the two-dimensional block distribution and 
one-dimensional block cyclic distribution. We can 
obtain a two-dimensional block-cyclic distribution of 
an n*n array by partitioning it into square blocks of 
size p pα α×  and distributing them on a 

hypothetical p p×  array of processes in a 
wraparound fashion. 

As Fig.5.b shows, each process takes charge of a set 
of smaller blocks uniformly distributing on the plane 
and the granularity is 4. Thus, there are 16 blocks on 

the plane overall. And each block is divided into 4 sub-
blocks to be distributed to each processor. Algorithm 2 
gives the pseudo code of a single step of etching in 3-
D DRIE simulation using two-dimensional cyclic 
block distribution as mapping techniques. 

 
a. one-dimensional          b. two-dimensional 

Figure 5. Block-Cyclic distributions. 

The reason why a block-cyclic distribution is able 
to significantly reduce the amount of idling is that all 
processes have a sampling of tasks from all parts of the 
surface points of the silicon. As a result, even if 
different parts of the surface points of the silicon 
require different amount of work, the overall work on 
each process balances out. It has high possibilities that 
each process get equal amount of work. Also, since the 
tasks assigned to a process belong to different parts of 
the matrix, there is a good chance that at least some of 
them are ready for execution at any given time. 
 
4. Experiment results 
 

We used a computer with an Intel Core 2 Quad 
Q6600 CPU [6] with four 2.40GHz cores inside and 2 
GB of DRAM running Windows XP as the experiment 
platform. The complier is MS Visual C++ 8.0 with 
options “/MD /arch: SSE2 /fp:fast”. The program is 
based on multi-threads programming. 
 
4.1. Performance of different mapping 
techniques 

We first tested a single step of etching with the 
mask shown in Fig.6.a. The mapping techniques used 
with this mask is one-dimensional block distribution. 
The plane is divided into 4 blocks through the x-axis. 
We can learn from Tab.1 test.1 that, the 4 processors’ 
execution time have little differences. 

If the shape of the mask is not distributed uniformly 
along one dimension, the one-dimensional block 
distribution leads to load imbalance. Two dimensional 
block distribution can help solve this problem if the 
mask is center-symmetric. The mask showed in Fig.6.b 
is a mask of this kind. Tab.1 test.2 and test.3 show the 
etching time of mask #2 using the two strategies 
respectively. One-dimensional block distribution leads 

 0 1

2 3 

0 1 2 3 
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to serious load imbalance, while two-dimensional 
block distribution obtains a better load balance. 

 
a. mask #1 b. mask #2 c. mask #3 

   
c. mask #4  d.mask#5 

Figure 6. Mask used in the simulation. 

When the mask is irregular, e.g., mask #3, the block 
distribution doesn’t work too. We will use block-cyclic 
distribution instead. Tab.1 test.4~test.7 gives the 
execution time of the four kinds of mapping techniques 
applied to mask #3. Two block-cyclic distribution 
strategies obtain load balance, and the run time is 
much less than two block distribution methods. It 
agrees well with the analysis in section 3.2.2. 

Table 1. Single step etching time using 
different mapping techniques. 

Processo
r  

 
1 

 
2 

 
3 

 
4 

1 575 625 625 575 
2 141 703 719 156 
3 422 422 422 437 
4 172 281 547 531 
5 422 0 625 422 
6 375 375 344 375 
7 375 375 375 375 

 
4.2. Impact of granularity 
 

Next, we tested the cyclic distribution methods with 
different granularities. We used mask #3. From the 
figure illustrated in Fig.7; we can learn that 
granularity is an important factor which can impact 
load distribution. In fact, block-cyclic distribution 
will degenerate into block distribution when 
granularity=1. As granularity increases, the 
computation tasks are distributed more evenly. For 
mask #3, one-dimensional block-cyclic distribution 
achieves perfect load balance when granularity is 
greater than 16 and the critical point of two-

dimensional block-cyclic distribution is 8. 

 
a. one-dimensional block-cyclic distribution 

 
b. two-dimensional block-cyclic distribution 

Figure 7. Impact of granularity. 

 
4.3. Speedup to the serial algorithm 
 
We then compared the parallel algorithm and the serial 
algorithm. We use mask #3, and the parallel algorithm 
used two-dimensional block-cyclic distribution, the 
granularity is set to be 16. Fig.8 clearly shows that 
parallel algorithm can significantly reduce the run time. 
We can learn that the serial algorithm’s execution time 
is about 3.95 times as long as the two-dimensional 
block-cyclic distribution algorithm from Fig-16. 
Because the there are 4 cores in our system, the 
speedup is very good. 

 
Figure 8. Speedup. 

Besides, we tested the speedup of the parallel 
program with compiler option “/arch: SSE 2” to the 
one without it. With this option, the compiler will turn 
on Streaming SIMD Extensions (SSE) [7] which is a 
SIMD (Single Instruction, Multiple Data) instruction 

Test 
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set extension to the x86 architecture. The complier will 
automatically optimize the code to fit the x86 
architecture. As there are lots of floating-point 
calculations in the ray cast step and the etching step, 
the optimization we made is to align the data at 128bit 
which will let the SSE processor run at full spped [8]. 
Tab.2 shows the comparison between the two kinds 
(with and without the compiler option), the mask used 
is mask #4 shown in Fig. 6.d. The original mask 
(256*256) and the zoomed in mask (512*512) are 
tested. It shows that there is a substantial speedup to 
the trivial one. 

Table 2. Impact of SSE. 
Mask With /arch: 

SSE2 option 
(ms) 

Without /arch: 
SSE2 option 

(ms) 

Speedup

256*256 219 156 1.40 
512*512 641 984 1.53 

 
4.4. Multi-step etching 
 

At last, we test multi-step etching. We alternately 
etch and passivate the silicon several times to get a 
deep trench. The objective of this experiment is to test 
whether or not two-dimensional block-cyclic 
distribution still works in multi-step etching. If not, we 
have to use three-dimensional distribution. The mask 
used in this experiment is mask #5 shown in Fig. 6.e. 
Fig.9 shows the experiment result. The figure shows 
the load of each processor of 10 continuous steps of 
the etching. 

From the experiment result, we can learn that when 
etching several steps, each processor get about 25% of 
the total work. So the algorithm still works in multi-
step etching. Though the etching is in 3D space, the 
computation is distributed on the surface of the silicon 
which is close to a 2D plane. 
 
6. Conclusion 
 

In this paper, we examined several parallel 
approaches to accelerate the 3-D DRIE simulation. The 
experiment result shows that two-dimensional block-
cyclic distribution approach can lead to perfect load 
balance in most cases and can utilize fully the 
computational power of new multi-core CPUs. Besides 
the x86 architecture’s SSE feature can substantially 
speedup the computing process. 

The mapping techniques we mentioned in this paper 
are all static task mapping. In the future work, we will 
try some methods such as randomized block 
distributions and dynamic task mapping which include 
centralized schemes and distributed schemes. Besides, 

the hybrid model which uses MPI, OpenMP and 
multithreading programming to distribute the 
computing task to the processors and GPU 
programming are also good choices. 

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10
step of the etching

Processor 4
Processor 3
Processor 2
Processor 1

Figure 9. Load balance when multi-step etching. 
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