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Abstract1 

 
Storage applications are in urgent need of multi-

erasure codes. But there is no consensus on the best 
coding technique. Hafner has presented a class of 
multi-erasure codes named HoVer codes [1]. This kind 
of codes has a unique data/parity layout which 
provides a range of implementation options that cover 
a large portion of the performance/efficiency trade-off 
space. Thus it can be applied to many scenarios by 
simple tuning. In this paper, we give a combinatorial 
representation of a family of double-erasure HoVer 
codes - create a mapping between this family of codes 
and Latin squares. We also present two families of 
double-erasure HoVer codes respectively based on the 
column-Hamiltonian Latin squares (of odd order) and 
a family of Latin squares of even order. Compared 
with the double-erasure HoVer codes presented in [1], 
the new codes enable greater flexibility in performance 
and efficiency trade-off. 
 
1. Introduction 
 

In recent years, as hard disks have grown greatly in 
size and storage systems have grown in size and 
complexity, it is more frequent that a failure of one 
disk occurs in tandem with unrecovered failures of 
other disks or latent failures of blocks on other disks. 
On a system using single-erasure correcting code such 
as standard RAID-5, this combination of failures leads 
to a permanent data loss [2]. Hence, applications of 
multi-erasure correcting codes have become more 
pervasive. But all of known multi-erasure coding 
techniques have limitations. HoVer codes provide a 
wide range of choices in performance/efficiency trade-
off space with a unique data/parity layout [1]. In this 
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paper, we present a combinatorial representation of a 
family of 2-erasure HoVer codes presented in [1]. We 
also develop two families of 2-erasure HoVer codes 
that enable greater flexibility in efficiency/performance 
trade-off than the old codes. 

The outline of this paper is as follows. In Section 2 
we discuss related works. Section 3 is devoted to 
representing the combinatorial representation of 
HoVer codes. The new codes are given in Section 4. 
Theoretical analysis is given in Section 5. In Section 6, 
we summarize the paper and discuss some possible 
future research directions. 
 
2. Current multi-erasure correcting codes 
 

The known multi-erasure codes typically fall into 
one of three categories: Reed-Solomon codes, binary 
linear codes and array codes. 

RS codes [3] are the only known MDS codes for 
arbitrary size and fault tolerance. This means that the 
optimal storage efficiency and the optimal update 
penalty are achieved. But as computation over Galois 
Field is used, the computational complexity is a serious 
problem though optimization has been presented [4]. 

Binary linear codes [5] are XOR-based, hence have 
perfect computational complexity, but bad storage 
efficiency is their inherent drawback. Fig 1.a shows a 
2d-parity code [5], where Dij denotes a data symbol 
that participates in parity symbols Pi and Qj. This 
example illustrates the key idea of linear codes - divide 
data symbols into several overlapping parity groups. 

An array code arranges the data/parity symbols into 
an array, hence the name. EVENODD [6] is an earlier 
MDS array code. It is a parity independent 2-erasure 
horizontal code. “Dependent” and “independent” are 
two opposite concepts that tell whether parity symbols 
play roles as data members of other parity groups. 
“Horizontal” and “vertical” classify codes by whether 
data and parity symbols are stored separately or 
together. Fig 1.b shows the 7-disk EVENODD code. 
Di* denotes a data symbol that participates in Pi and all 
Qs. This code can be constructed by deleting P4, Q4 



and D40~D44 from the 2d-parity code on the left and 
then packing the remaining symbols into 7 disks. Di* is 
Di4 actually. In fact, almost all of array codes can be 
regarded as layouts of binary linear codes. EVENODD 
and its generalization [7] may be the most important 
array codes because many array codes, such as X-code 
[8], RDP [2], STAR-code [9], etc, organize the parity 
groups in a similar way to them. 

 
Fig 1. Current multi-erasure codes. 

These codes have bad parameter flexibility - they 
all require a prime related size. Although horizontal 
shortening (deleting some data disks - assuming they 
contain nothing but zeros) can alleviate this problem, 
this method is harmful to performance [10, 11].  
B-Code [12], BG-HEDP [13], PIHLatin code [10] and 
PDHLatin [11] have no prime size limitation because 
they are based on perfect one-factorizations of graphs 
(P1F) or column-hamiltonian latin squares (CHLS). 

The traditional array codes pursue the MDS or near-
MDS property. This leads to perfect storage efficiency 
but bad degraded-/reconstruction- mode performance 
especially for distributed storage systems because 
recovering lost data induces more interaction between 
the surviving hard disks (more network traffic between 
the surviving storage nodes). WEAVER code [14] is a 
counter traditional code. Its best storage efficiency is 
only 50%! But its parity groups are very short, hence 
good degraded-/reconstruction- mode performance is 
achieved. WEAVER code also has good parameter 
flexibility. 

Vertical shortening (deleting some rows) is another 
common code transformation. The result codes 
perform comparably to WEAVER codes. This method 
isn’t quite fit for horizontal codes. A HoVerv,h

t[r,n] 
code is a t-erasure parity independent mixed code 
consisting of h dedicated parity disks in which each 
stores r parity symbols (h-parity), and n mixed disks in 
which each stores r data symbols and v parity symbols 
(v-parity). Fig 2.b shows an array code that conforms 
to the structure of HoVer1,1

2[3,3]. If h=1 and the parity 
disk stores horizontal parity symbols, vertically 
shortening a HoVerv,1

t[r,n] code produces a regular 
HoVerv,1

t[r’,n] where r’ < r. That is to say, HoVer 
codes cover whole efficiency/performance trade-off 

space with a unique and neat data/parity layout. 
 

3. Combinatorial representation 
 
3.1. Some related combinatorics knowledge 
 

Some literature refers to simple graph 
representation of parity independent 2-erasure linear 
codes which satisfy that each data symbol participates 
in exactly two parity groups [5][12][15]: each vertex 
denote a parity symbol (group) and each edge denote a 
data symbol - the two endpoints of an edge is just the 
two parity symbols of the data symbol. Then an array 
code can be described by a graph partition if its 
underlying linear code can be described by a simple 
graph. We have proven the following theorem [15]: 
Theorem 1. If an array code can be described by a 
partition of a simple graph, it is a 2-erasure code iff the 
union of any pair of subgraphs of the partition doesn’t 
contain the following two types of structures: 
1. A path and its two endpoints. We call this kind of 

unrecoverable erasure Closed Parity Symbols 
Subset, CPSS for short. 

2. A cycle. We call it CDSS - Closed Data Symbols 
Subset. 

 
Fig 2. Graph representation. 

Fig 2.a shows the graph of a 15-disk 2d-parity code. 
The code shown in Fig 2.b is based on this 2d-parity 
code. Fig 2.c shows a CPSS and Fig 2.d shows a 
CDSS. They correspond to unrecoverable 2-erasures 
(disk0, disk3) and (disk1, disk2) of the array code on 
the left respectively. Namely this code is not a real 2-
erasure HoVer code. Theorem 1 can interpret most 2-
erasure array codes including HoVer1,1

2[r,n]. 
Theorem 1 doesn’t suggest construction method of 

2-erasure array codes. Perfect one-factorization of 



graph [16] is a good tool to do this. A one-factor of a 
graph G is a set of edges in which every vertex appears 
exactly once. A one-factorization (1F) of G is a 
partition of the edge-set of G into one-factors. A 
perfect one-factorization (P1F) is a one-factorization in 
which every pair of distinct one-factors forms a 
Hamiltonian cycle. There is a widely believed 
conjecture in graph theory: every complete graph with 
an even number of vertices has a P1F [16]. 

For k ≤ n, a k*n Latin rectangle is a k*n matrix of 
entries chosen from some set of symbols of cardinality 
n, so that no symbol is duplicated within any row or 
any column. We use Ζn={0, 1, …, n-1} as the symbol 
set. It also can be used as the row/column number set. 
When k=n, the Latin rectangles are called Latin 
squares of order n. The symbol in row r, column c of a 
Latin rectangle R is denoted by Rrc. A Latin square of 
order n can be described by a set of n2 triples of the 
form (row, column, symbol). 

Each row r of a Latin rectangle R is the image of 
some permutation σr of Ζn, namely Rri=σr(i). Each pair 
of rows (r; s) defines a permutation by σr,s=σrσs

-1. If σr,s 
consists of a single cycle for each pair of rows (r, s) in 
a Latin square L, we say L is row-hamiltonian. Similar 
concepts can be defined in terms of the column and 
symbol. In this paper, we are concerned with column-
hamiltonian Latin squares, CHLS for short. 

There is a CHLS L of order n iff Kn.n=(V,W,E) has a 
P1F F={F0, …, Fn-1} [16]. To show this, we create 
three one-to-one correspondence: between the row set 
and V, between the symbol set and W, and between the 
column set and F. Namely, ( , , ) ( )i j k L∈ corresponds 
to the edge (vi, wk) in Fj. Obviously, the cycle pattern 
in σr,s in L corresponds to that in Fr∪Fs. There is 
another conclusion [16]: if Kn+1 has a P1F, then so does 
Kn,n. Thus we have a conjecture: Kn,n has a P1F (CHLS 
of order n exists) for n=2 and all odd positive integers 
n. Graph theorists have proven that all even(odd) 
numbers less than 54(53) are “Kn P1F numbers” 
(CHLS/Kn,n P1F numbers) and have found many larger 
Kn P1F numbers (CHLS/Kn,n P1F numbers). 
 
3.2. Combinatorial representation of s-shift 
HoVer1,1

2[r,n] codes 
 

An 2-erasure array code can be described by a 
partition, a P1F is just a partition, and there is a 
bijection between CHLS and P1F of Kn,n. Thus a 
natural idea is constructing 2-erasure array codes by 
CHLS. In [10] and [11], we have tried this idea. Two 
algorithms are developed, one constructs EVENODD-
like codes by CHLS, and the other constructs RDP-like 
codes by CHLS. We name the first kind of codes 

PIHLatin codes (Parity Independent Horizontal Latin 
codes), and the second kind PDHLatin codes (Parity 
Dependent Horizontal Latin codes). The key ideas of 
the two algorithms are similar: construct the jth disk by 
the jth column - construct the ith data/parity symbol in 
the jth disk by the symbol (i, j, k); one row is deleted to 
break the Hamiltonian cycles in the disk pairs - CDSS 
are avoided; finally, parity symbols are arranged 
properly to avoid CPSS. Therefore, 2-erasure 
correcting is guaranteed. 

PIHLatin and PDHLatin are superior to EVENODD 
and RDP in parameter flexibility because the 
distribution of P1F numbers is far denser than that of 
prime numbers. The PIHLatin and PDHLatin codes 
constructed by Cayley tables of cyclic groups of order 
p are just the (p+2)-disk EVENODD code and the 
(p+1)-disk RDP code respectively when p is a prime (a 
Cayley tables of cyclic groups of order n Cn is a LS, 
and is a CHLS when n is a prime). This means that 
PIHLatin and PDHLatin codes are the supersets of 
EVENODD and RDP codes respectively. We have 
shown that the relationship is proper superset [10][11]. 
Besides parameter flexility, PIHLatin and PDHLatin 
codes have advantage in structure flexibility: maybe 
have more than one heterogeneous instance for a given 
size. 

The above discussion provides a complete method 
for 2-erasure array codes: describing codes by graph 
partitions and constructing codes by clipped CHLS. 
This is also the technique used by B-Code, although B-
Code is based on P1F of Kn instead of CHLS or P1F of 
Kn,n. The HoVer codes can be subsumed in the class of 
“Latin codes” too. Hafner presented a family of 
HoVer1,1

2[r,n] codes named s-shift HoVer1,1
2[r,n] 

codes in [1]. We can interpret this kind of codes by 
Cayley tables of cyclic groups. Before discussing the 
combinatorial representation, we give some important 
properties of Cayley tables of cyclic groups that we 
presented in [11]. 

A Cayley table of the cyclic group of order n - Cn 
can be described by Formula 1, where <x>m denotes 
x mod m. It is not hard to verify that Cayley tables of 
the cyclic groups are Latin squares. Cn corresponds to 
a 1F of Kp,p F={F0, F1,…, Fn-1}, Fj={(vi, w<i+j>n), 
0≤i≤n-1}, 0≤j≤n-1. 

( , , ) ,   0 , 1n ni j i j C i j n< + > ∈ ≤ ≤ −  (1) 
Property 1. σj,k of Cn (0≤j<k≤n-1) consists of gcd(n, d) 
cycles of length 2l (l=n/gcd(n,d)). The ith cycle is  
(i, j, <i+j>n) -- (i, k, <i+k>n) -- (<i+k-j>n, j, <i+k>n) --  
(<i+k-j>n, k, <i+2k-j>n) -- (<i+2k-2j>n, j, <i+2k-j>n) 
-- .. .--  (<i+(l-1)k-(l-1)j>n, k, <i+lk-(l-1)j>n) --  
(<i+lk-lj>n, j, <i+lk-(l-1)j>n). 

Where d=k-j, and gcd(n, d) denotes the greater 



common divisor of n and d. According to formula 1, 
the ith chain in σr,s is as property 1 describes. Since 
l=n/gcd(n, k-j), we know l(k-j) is the lowest common 
multiple of n and k-j. Thus the only duplicated symbols 
in the chain are two endpoints (i, j, <i+j>n) and  
(<i+lk-lj>n, j, <i+lk-(l-1)j>n). Moreover, different 
chains contain no common symbols. Therefore σj,k 
consists of gcd(n, d) cycles of length 2l. Fig 3.a shows 
σ0,4 of C6. It has 2 3-long cycles because gcd(4, 6)=2. 
Let pr(n) be the smallest prime divisor of n. We can 
see that σj,k induces a Hamiltonian cycle when n and d 
are relatively prime. The maximum number of cycles is 
n/pr(n) (of length pr(n) each) when d=n/pr(n) and the 
maximum cycle length is also n/pr(n) (pr(n) cycles) 
when d=pr(n). This conclusion deduces directly the 
well known fact: Cn is a CHLS when n is a prime 
number. 
Property 2. Given Cn, for any 0≤i≤n-1, and any 
0≤r<s≤n-1, rows i, <i+1>n, ..., <i+n/pr(n)-1>n intersect 
all cycle of σr,s. And there exist 0≤r<s≤n-1 and 
0≤k≤gcd(n,s-r)-1, rows i, <i+1>n, ..., <i+n/pr(n)-2>n 
don’t intersect the kth cycle in σr,s. 

Examining cycle patterns of any σr,s we can 
conclude this property. This property can deduce the 
following property. 
Property 3. Deleting any k (n/pr(n)≤k≤n-1) 
consecutive rows (with wrap-around) from Cn, we get 
a Latin rectangle in which σr,s contains no cycles for 
any 0≤r<s≤n-1. 

These properties can be converted into P1F version 
according to CHLS-P1F transformation described in 
Section 3.1. 

The s-shift HoVer1,1
2[r,n] codes can be described by: 

1

0
( ) ( 1 , )

r

s n
k

U j X r k j k s
−

=
= − − < + + >⊕  (2) 

where s is the shift distance, Us(j) and X(i, j) are the 
v-parity and the ith data symbol on the jth mixed disk 
respectively. Hafner presented an existence theorem 
for this kind of codes: 
Theorem 2. The s-shift HoVer1,1

2[r,n] codes defined 
by formula 2 has fault tolerance 2 iff 

             if / pr( )
/ pr( )     otherwise

n s s n n
r

n n n s
− >⎧

≤ ⎨ − −⎩
  (3) 

Fig 3.b shows C9, Fig 3.c shows the 4-shift 
HoVer1,1

2[4,9] code. Every data symbol is described by 
the number of its v-parity. As the figure shows, Cn is 
divided vertically into four areas of height 1, (n-r-s), r 
and (s-1). The first row (in natural order) designates 
the distribution of the v-parity symbols. The next  
(n-r-s) rows are discarded. The next r rows are used to 
construct the r data rows of the code. The symbol  
(i, j, k) (n-r-s+1≤i≤n-s, 0≤j≤n-1) points out that  
X(i-(n-r-s+1), j) participates in H(i-(n-r-s+1)) and 
Us(k). The last s-1 rows are deleted, too. 

According to property 3, deleting n/pr(n) 
consecutive rows in Cn breaks all Hamiltonian cycles 
in the disk pairs. If we construct data symbols by the 
remaining symbols in the way discussed in the last 
paragraph, we will avoid CDSS. If we delete one more 
row and arrange the v-parity symbols by it, CPSS will 
be avoided too (this operation breaks the path induced 
by any pair of disks into two segments, and attaches 
one vertex to each). Then we produce a 2-erasure 
HoVer code. Deleting further rows increases 
performance and decreases storage efficiency. 

But why does Hafner’s construction method delete 
two inconsecutive parts? The reason is that this method 
pursues s-shift structure: the v-parity symbols are put 
into natural order, the lowest data row is constructed 
by shifting the v-parity row s places right circularly, 
and each of the other rows is just the 1-shift of its 
lower neighbor. Therefore Cn is split into four areas as 
mentioned above. The second and fourth areas are 
deleted. According to property 3, in order to avoid 
CDSS, at least one of the two areas is not shorter than 
n/pr(n) rows. Namely, (s-1)≥n/pr(n) or (n-r-s)≥n/pr(n) 
must be met. They are just the two cases of theorem 2. 
Hafner believes that a wide range of choices in shift 
distance benefits reconstruction performance. But there 
is no any further discussion in [1]. So we think it is not 
necessary to construct HoVer1,1

2[r,n] codes following 
formula 2. It’s better to construct a simple structure by 
deleting n/pr(n) consecutive rows from Cn and 

Fig 3. HoVer code and Latin Squares.



designating another row as the v-parity row. 
By the way, there is negligence in the proof of 

theorem 2 in [1]. When unrecoverable 2-erasures 
consisted of two mixed disks are examined, only 
“recovery dependency chains that the two lost v-parity 
symbols” are concerned. That is to say, only CPSS are 
taken into consideration, never CDSS. Moreover, the 
proof about CPSS doesn’t take wrapping into account 
when examines the reconstruction dependency chains 
(chains in σr,s). Now we give s-shift HoVer1,1

2[r,n] 
codes a neat description using the Cayley tables of the 
cyclic groups. We call the codes Cayley HoVer codes. 
Algorithm 1. Cayley HoVer1,1

2[r,n] codes 
Construction Algorithm 
Input: The Cayley table of the cyclic group of order n 
- Cn. Fn={F0, F1,…, Fn-1} is the 1F of Kn,n = (V, W, E) 
corresponding to Cn. An integer r≤n-n/pr(n)-1. 
Output: A Cayley HoVer1,1

2[r,n] code. 
Method: 
1. Delete any n/pr(n) consecutive rows from Cn with 

wrap-round. By rotational symmetry, the last 
n/pr(n) rows are deleted (all edges incident to  
vn- n/pr(n), ..., vn-1 are deleted from Fj for all j), then 
we get a (n-n/pr(n))*n Latin rectangle R (a 
partition F’={F0’, F1’,…, Fn-1’} of Kn-n/pr(n),n). 

2. Delete arbitrary n-n/pr(n)-r rows from R, suppose 
rows a0, a1, ..., an-n/pr(n)-r-1 are deleted (delete all 
edges incident to 

0 / ( ) 1
, ,

n n pr n ra av v
− − −

…  from Fj’ for all 

j), then we get a r*n Latin rectangle R’ (a 
partition F”={F0”, F1”,…, Fn-1”} of Kr,n). Select 
one row from these rows arbitrarily, suppose row 
a0 is selected without loss of generality. Let the 
kth v-parity symbol be stored in the jth disk for all 

0( , , ) 'a j k R∈  (add wk into Fj” for all 

0
( , ) "a k jv w F∈ ). 

3. Let the ith data symbol on the jth data disk 
participate in the ith h-parity group and the kth v-
parity group for all ( , , ) ",0 1,i j k R i r∈ ≤ ≤ −  
0 1j n≤ ≤ −  ( ( , ) "i k jv w F∈ ). 

Theorem 3. The Cayley HoVer1,1
2[r,n] codes are 2-

erasure correcting codes. 
Proof: According to property 3, after step 1, Fi’∪Fj’ 
consists of only acyclic paths for all 0≤i<j≤n-1 (so 
does Fi”∪Fj” because it is a subgraph of Fi’∪Fj’). 

Step 2 deletes the edge incident to 
0av  from Fj’ and 

add its other endpoint into for all 0≤j≤n-1. So the two 
edges incident to 

0av  are deleted from a path in  

Fi’∪Fj’, and the other two endpoints of them are 
added into. Therefore every Fi”∪Fj” contains several 
acyclic paths, and two of them have an endpoint 

attached. In other words, they contain neither CPSS 
nor CDSS. 

Thus codes produced by algorithm 1 are 2-erasure 
correcting codes. Deleting further rows in step 2 
apparently doesn’t change fault tolerance.  □ 

The more rows deleted in step 2, the worse storage 
efficiency and the better performance. So we can 
choose satisfactory efficiency/performance trade-off 
by adjusting how many rows are deleted. How to 
choose rows to be deleted in step 2? According to 
property 2, deleting consecutive rows with wrap-round 
touches more paths, thus breaks more paths into small 
paths which will improve the degree of concurrency of 
reconstruction. So deleting consecutive rows is a good 
strategy. Moreover, which row should be selected as 
“v-parity row”? We think it is really arbitrary, namely 
has no impact on performance. 
 
4. New families of 2-erasure HoVer codes 
 
4.1. A family of 2-erasure HoVer codes based 
on CHLS 
 

When n is not a prime number, s-shift HoVer1,1
2[r,n] 

codes provide a relatively narrow range of choices in 
performance/efficiency trade-off space. We can 
improve this deficiency using CHLS (P1F). We call 
the new codes CHLS HoVer1,1

2[r,n] codes. 
Algorithm 2. CHLS HoVer1,1

2[r,n] codes Construction 
Algorithm 
Input: L - A CHLS of order n. L is reduced (the first 
row is put into natural order). Fn={F0, F1,…, Fn-1} is 
the 1F of Kn,n=(V, W, E) corresponding to L. 
Output: A CHLS HoVer1,1

2[r,n] code. 
Method: 
1. Delete the last row of L (delete (vn-1, wk) from Fj 

for all j), then we get a (n-1)*n Latin rectangle R 
(a partition F’={F0’, F1’,…, Fn-1’} of Kn-1,n). 

2. Delete arbitrary n-1-r rows from R, suppose rows 
a0, a1, ..., an-r-2 are deleted (all edges incident to 

0 2
, ,

n ra av v
− −

… are deleted from Fj'’ for all j), then 
we get a r*n Latin rectangle R’ (a partition 
F”={F0”, F1”,…, Fn-1”} of Kr,n). Select one row 
from deleted rows arbitrarily, suppose row a0 is 
selected without loss of generality. Let the kth  
v-parity symbol be stored in the jth disk for all 

0( , , ) 'a j k R∈  (add wk into Fj” for all 

0
( , ) "a k jv w F∈ ). 

3. Let the ith data symbol on the jth data disk 
participates in the ith h-parity group and the kth  



v-parity group for all ( , , ) ",0 1,i j k R i r∈ ≤ ≤ −  
0 1j n≤ ≤ −  ( ( , ) "i k jv w F∈ ). 

Theorem 4. The CHLS HoVer1,1
2[r,n] codes are 2-

erasure correcting codes. 
Proof: Because Fi∪Fj induces a Hamiltonian cycle for 
all 0≤i<j≤n-1, after step 1, every Fi’∪Fj’ consists of a 
path. The rest is similar to the proof of theorem 3. □ 

Fig 4.a shows a CHLS of order 9. Fig 4.b shows a 
CHLS HoVer1,1

2[7,9] code based on this CHLS. The 
first row and the 9th row of the CHLS are deleted, and 
the first row is used to construct the v-parity row. This 
code contains 7data rows, while a Cayley HoVer1,1

2[r,9] 
code contains at most 5 data rows. The advantage of 
CHLS HoVer1,1

2[r,n] codes in wider performance 
space over Cayley HoVer1,1

2[r,n] codes is obvious. 
How to select rows to be deleted in step 2? The 

answer is dependent on the specific CHLS used. 
Different selections maybe lead to different 
performance. Concrete method needs further study. 
 
4.2. A family of 2-erasure HoVer codes based 
on a family of LS of even order 
 

CHLS HoVer1,1
2[r,n] code widen the range of 

choices in performance/efficiency trade-off space 
when n is not a prime number but an odd number. 
Wanless has presented a family of LS [17] that can 
achieve the widest range of performance/efficiency 
trade-off space for some even sizes. A LS L of this 
kind is of order p=2q where q is an odd prime. L is 
consisted of four blocks. Let h={0, 2, ..., q-1} and 
H={q, q+1, ..., 2q-1}. The entry Lij satisfies 

( 2 )     if , ,
( )    if  and ,
( )    if  and ,
( )     if , .

h

H
ij

H

h

i j i j h
i j i h j H

L
i j i H j h

i j i j H

− − − ∈⎧
⎪ + ∈ ∈⎪= ⎨ − ∈ ∈⎪
⎪ − + ∈⎩

  (4) 

(x)m denotes that symbol in a set S which is 
congruent to x%m. For example, when p=10, (5-1)H=9. 

We can see that each of the four blocks of L is 
isotopic to the cyclic group of order q, thus any pair of 
columns chosen both from h or both from H will 

decompose into two cycles of length q. 
Now, let’s examine the column cycles between 

columns c h∈  and d H∈ . Suppose we start in row 
a h∈  of column c at (-2-a-c)h (upper left block) and 
trace out the cycle from there. In column d of row a we 
find (a+d)H (upper right block). Next we should find in 
which row x of column c the symbol (a+d)H lies (lower 
left block). We have (x-c)H=(a+d)H, thus x=(a+d+c)H. 
In this row of column d the symbol is (-a-c)h (lower 
right block). Now we return to row y of column c. We 
have (-2-y-c)h=(-a-c)h, thus y=(a-2)h, two places to the 
up of where we started. Iterating this process and 
noting that p is odd, we see that in following the 
column cycle we will visit every other row before 
returning to row a. Thus column c and d induce a 
Hamiltonian cycle. Fig 5.a shows a LS of this kind of 
order 10 and its σ1,7. Based on this kind of LS, we can 
construct HoVer1,1

2[r,n] codes that cover wider range 
of performance/efficiency trade-off space than Cayley 
HoVer1,1

2[r,n] codes. We call this kind of codes 
EVENLS HoVer1,1

2[r,n] codes. 
Algorithm 3. EVENLS HoVer1,1

2[r,2p] codes 
Construction Algorithm 
Input: L - A LS of order 2p constructed by formula 4. 
F2p={F0, F1,…, F2p-1} is the 1F of K2p, 2p=(V, W, E) 
corresponding to L. 
Output: A EVENLS HoVer1,1

2[r,2p] code. 
Method: 
1. Delete the first row and the pth row of L (delete 

(v0, wk) and (vp, wk) from Fj for all j), then we get 
a (2p-2)*2p Latin rectangle R (a partition F’={F0’, 
F1’,…, F2p-1’} of K2p-1,2p). 

2. Delete arbitrary 2p-1-r rows from R, suppose 
rows a0, a1, ..., a2p-r-3 are deleted (all edges 
incident to 

0 2 3
, ,

p ra av v
− −

…  are deleted from Fj'’ for 
all j), then we get a r*2p Latin rectangle R’ (a 
partition F”={F0”, F1”,…, F2p-1”} of Kr,2p). 
Select one row from deleted rows arbitrarily, 
suppose row a0 is selected without loss of 
generality. Let the kth v-parity symbol be stored in 
the jth disk for all 0( , , ) 'a j k R∈  (add wk into Fj” 
for all 

0
( , ) "a k jv w F∈ ). 

Fig 4. CHLS HoVer code.



3. Let the ith data symbol on the jth data disk 
participates in the ith h-parity group and the kth v-
parity group for all ( , , ) ",0 2,i j k R i r∈ ≤ ≤ −  
0 2 1j p≤ ≤ −  ( ( , ) "i k jv w F∈ ). 

Theorem 5. The EVENLS HoVer1,1
2[r,n] codes are 2-

erasure correcting codes. 
Proof: Fi∪Fj induces a Hamiltonian cycle for all i h∈  
and j H∈ , and two cycles for all ,i j h∈  or ,i j H∈ . 
Thus after step 1, every Fi’∪Fj’ consists of one or two 
paths. The rest is similar to the proofs of theorem 3 and 
theorem 4.     □ 

Fig 5.b shows an EVENLS HoVer1,1
2[7,10] code 

based on the LS shown in Fig 5.a. The first row, the 
second row and the 6th row are deleted, and the second 
row is used to construct the v-parity row. This code 
has 7 data rows, while the Cayley HoVer1,1

2[r,10] code 
has at most 4 data rows. EVENLS HoVer1,1

2[r,n] codes 
fill the blank that CHLS HoVer1,1

2[r,n] codes can’t 
deal with. These two kinds of codes cooperatively 
cover most areas of performance/efficiency trade-off 
space. 
 
5. Performance analysis 
 

CHLS/EVENLS HoVer1,1
2[r,n] codes have all 

advantages of other families of HoVer codes, such as 
optimal small write IO costs, near-optimal encoding/ 
decoding/updating performance, good reconstruction 
performance, extended fault tolerance, and so on. 
Moreover, compared with s-shift HoVer1,1

2[r,n] codes, 
the new codes cover wider performance space and 
have better structure variety. 

When n is an odd number, CHLS HoVer1,1
2[r,n] 

codes cover the widest range of r - from 1 to n-2. 
While s-shift HoVer1,1

2[r,n] codes only cover the range 
from 1 to n-n/pr(n)-1. When p is a prime number, 
EVENLS HoVer1,1

2[r,2p] codes cover the widest range 
of r - from 1 to 2p-3. While s-shift HoVer1,1

2[r,2p] 
codes only cover the range from 1 to p-1. Obviously, 
CHLS/EVENLS HoVer codes provide more options in 
performance/efficiency trade-off. 

We use EFFL for the best packed efficiency [1] of 

CHLS/EVENLS HoVer1,1
2[r,n] codes and EFFS  for 

that of s-shift HoVer1,1
2[r,n] codes. We have the 

following formulas. 
( / pr( ) 1)

( / pr( )) ( 1) 1
( 2) ,        is odd

( 1) ( 1) 1
( 3) ,       is prime

( 2) ( 1) 1 2

S

L

n n n nEFF
n n n n

n n n
n n

EFF
n n n

n n

− − ×=
− × + −

− ×⎧
⎪ − × + −⎪= ⎨ − ×⎪
⎪ − × + −⎩

(5) 

Fig 6 shows the ratio of the best efficiency of 
CHLS/EVENLS HoVer1,1

2[r,n] codes and s-shift 
HoVer1,1

2[r,n] codes to the optimal efficiency, where 
EFF_L, EFF_S and EFF_O are efficiencies of 
CHLS/EVENLS HoVer1,1

2[r,n] codes, s-shift 
HoVer1,1

2[r,n] codes and MDS codes respectively. It is 
easy to see, Latin HoVer1,1

2[r,n] codes outperform s-
shift HoVer1,1

2[r,n] codes and are very close to MDS 
codes. 
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Fig 6. Storage efficiency. 

 
6. Conclusion 
 

HoVer codes have a unique data/parity layout 
which provides a range of implementation options that 
cover a large portion of the performance/efficiency 
trade-off space. In this paper, we give a combinatorial 
representation of s-shift HoVer1,1

2[r,n] codes based on 
Latin squares. We gave a clean and correct description 
of this kind of codes. Then we presented a family of 
HoVer1,1

2[r,n] codes based on column-hamiltonian 
Latin squares. We call them CHLS HoVer1,1

2[r,n] 
codes. Another family of HoVer1,1

2[r,n] codes based on 
a family of Latin Squares of even order is also 

Fig 5. EVENLS HoVer code.



presented.  We named them EVENLS HoVer1,1
2[r,n] 

codes. The first new kind of codes cover the widest 
range of choices in performance/ efficiency trade-off 
space when n is an odd number, and the second new 
kind of codes cover the widest range when n/2 is a 
prime number. The two new kinds of codes cover most 
of the performance space. The new codes also are 
superior in structure variety. 

CHLS/EVENLS HoVer codes solve odd numbers 
and the numbers that are twice of prime numbers. Next 
we plan to design HoVer codes for other even numbers. 
Hafner presented some families of 3-erasure and 4-
erasure HoVer codes [1]. One future work is to study 
constructing HoVer codes of fault tolerance > 2 using 
Latin squares. High efficiency HoVer codes (small r) 
provide an extended fault tolerance. Studying the fault 
tolerance of HoVer codes in detail by both theoretical 
analysis and simulation is another significant research 
direction. Moreover, will deleting different rows in 
algorithm 3/4/5 lead to different performance? Will 
different structures of LS/CHLS induce different 
performance? These are also interesting problems. 
Implementing these codes in a real system and 
studying the real performance are also planned. 
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