
Constructing Double-Erasure HoVer codes Using Latin Squares*

Wang Gang, Liu Xiaoguang, Lin Sheng, Xie Guangjun, Liu Jing
Department of Computer, College of Information Technology Science, Nankai University

wgzwp@163.com

Abstract1

Storage applications are in urgent need of multi-

erasure codes. But there is no consensus on the best
coding technique. Hafner has presented a class of
multi-erasure codes named HoVer codes [1]. This kind
of codes has a unique data/parity layout which
provides a range of implementation options that cover
a large portion of the performance/efficiency trade-off
space. Thus it can be applied to many scenarios by
simple tuning. In this paper, we give a combinatorial
representation of a family of double-erasure HoVer
codes - create a mapping between this family of codes
and Latin squares. We also present two families of
double-erasure HoVer codes respectively based on the
column-Hamiltonian Latin squares (of odd order) and
a family of Latin squares of even order. Compared
with the double-erasure HoVer codes presented in [1],
the new codes enable greater flexibility in performance
and efficiency trade-off.

1. Introduction

In recent years, as hard disks have grown greatly in
size and storage systems have grown in size and
complexity, it is more frequent that a failure of one
disk occurs in tandem with unrecovered failures of
other disks or latent failures of blocks on other disks.
On a system using single-erasure correcting code such
as standard RAID-5, this combination of failures leads
to a permanent data loss [2]. Hence, applications of
multi-erasure correcting codes have become more
pervasive. But all of known multi-erasure coding
techniques have limitations. HoVer codes provide a
wide range of choices in performance/efficiency trade-
off space with a unique data/parity layout [1]. In this

* This paper is supported partly by the National High
Technology Research and Development Program of China
(2008AA01Z401), NSFC of China (90612001), RFDP of
China (20070055054), and Science and Technology
Development Plan of Tianjin (08JCYBJC13000)

paper, we present a combinatorial representation of a
family of 2-erasure HoVer codes presented in [1]. We
also develop two families of 2-erasure HoVer codes
that enable greater flexibility in efficiency/performance
trade-off than the old codes.

The outline of this paper is as follows. In Section 2
we discuss related works. Section 3 is devoted to
representing the combinatorial representation of
HoVer codes. The new codes are given in Section 4.
Theoretical analysis is given in Section 5. In Section 6,
we summarize the paper and discuss some possible
future research directions.

2. Current multi-erasure correcting codes

The known multi-erasure codes typically fall into
one of three categories: Reed-Solomon codes, binary
linear codes and array codes.

RS codes [3] are the only known MDS codes for
arbitrary size and fault tolerance. This means that the
optimal storage efficiency and the optimal update
penalty are achieved. But as computation over Galois
Field is used, the computational complexity is a serious
problem though optimization has been presented [4].

Binary linear codes [5] are XOR-based, hence have
perfect computational complexity, but bad storage
efficiency is their inherent drawback. Fig 1.a shows a
2d-parity code [5], where Dij denotes a data symbol
that participates in parity symbols Pi and Qj. This
example illustrates the key idea of linear codes - divide
data symbols into several overlapping parity groups.

An array code arranges the data/parity symbols into
an array, hence the name. EVENODD [6] is an earlier
MDS array code. It is a parity independent 2-erasure
horizontal code. “Dependent” and “independent” are
two opposite concepts that tell whether parity symbols
play roles as data members of other parity groups.
“Horizontal” and “vertical” classify codes by whether
data and parity symbols are stored separately or
together. Fig 1.b shows the 7-disk EVENODD code.
Di* denotes a data symbol that participates in Pi and all
Qs. This code can be constructed by deleting P4, Q4

and D40~D44 from the 2d-parity code on the left and
then packing the remaining symbols into 7 disks. Di* is
Di4 actually. In fact, almost all of array codes can be
regarded as layouts of binary linear codes. EVENODD
and its generalization [7] may be the most important
array codes because many array codes, such as X-code
[8], RDP [2], STAR-code [9], etc, organize the parity
groups in a similar way to them.

Fig 1. Current multi-erasure codes.

These codes have bad parameter flexibility - they
all require a prime related size. Although horizontal
shortening (deleting some data disks - assuming they
contain nothing but zeros) can alleviate this problem,
this method is harmful to performance [10, 11].
B-Code [12], BG-HEDP [13], PIHLatin code [10] and
PDHLatin [11] have no prime size limitation because
they are based on perfect one-factorizations of graphs
(P1F) or column-hamiltonian latin squares (CHLS).

The traditional array codes pursue the MDS or near-
MDS property. This leads to perfect storage efficiency
but bad degraded-/reconstruction- mode performance
especially for distributed storage systems because
recovering lost data induces more interaction between
the surviving hard disks (more network traffic between
the surviving storage nodes). WEAVER code [14] is a
counter traditional code. Its best storage efficiency is
only 50%! But its parity groups are very short, hence
good degraded-/reconstruction- mode performance is
achieved. WEAVER code also has good parameter
flexibility.

Vertical shortening (deleting some rows) is another
common code transformation. The result codes
perform comparably to WEAVER codes. This method
isn’t quite fit for horizontal codes. A HoVerv,h

t[r,n]
code is a t-erasure parity independent mixed code
consisting of h dedicated parity disks in which each
stores r parity symbols (h-parity), and n mixed disks in
which each stores r data symbols and v parity symbols
(v-parity). Fig 2.b shows an array code that conforms
to the structure of HoVer1,1

2[3,3]. If h=1 and the parity
disk stores horizontal parity symbols, vertically
shortening a HoVerv,1

t[r,n] code produces a regular
HoVerv,1

t[r’,n] where r’ < r. That is to say, HoVer
codes cover whole efficiency/performance trade-off

space with a unique and neat data/parity layout.

3. Combinatorial representation

3.1. Some related combinatorics knowledge

Some literature refers to simple graph
representation of parity independent 2-erasure linear
codes which satisfy that each data symbol participates
in exactly two parity groups [5][12][15]: each vertex
denote a parity symbol (group) and each edge denote a
data symbol - the two endpoints of an edge is just the
two parity symbols of the data symbol. Then an array
code can be described by a graph partition if its
underlying linear code can be described by a simple
graph. We have proven the following theorem [15]:
Theorem 1. If an array code can be described by a
partition of a simple graph, it is a 2-erasure code iff the
union of any pair of subgraphs of the partition doesn’t
contain the following two types of structures:
1. A path and its two endpoints. We call this kind of

unrecoverable erasure Closed Parity Symbols
Subset, CPSS for short.

2. A cycle. We call it CDSS - Closed Data Symbols
Subset.

Fig 2. Graph representation.

Fig 2.a shows the graph of a 15-disk 2d-parity code.
The code shown in Fig 2.b is based on this 2d-parity
code. Fig 2.c shows a CPSS and Fig 2.d shows a
CDSS. They correspond to unrecoverable 2-erasures
(disk0, disk3) and (disk1, disk2) of the array code on
the left respectively. Namely this code is not a real 2-
erasure HoVer code. Theorem 1 can interpret most 2-
erasure array codes including HoVer1,1

2[r,n].
Theorem 1 doesn’t suggest construction method of

2-erasure array codes. Perfect one-factorization of

graph [16] is a good tool to do this. A one-factor of a
graph G is a set of edges in which every vertex appears
exactly once. A one-factorization (1F) of G is a
partition of the edge-set of G into one-factors. A
perfect one-factorization (P1F) is a one-factorization in
which every pair of distinct one-factors forms a
Hamiltonian cycle. There is a widely believed
conjecture in graph theory: every complete graph with
an even number of vertices has a P1F [16].

For k ≤ n, a k*n Latin rectangle is a k*n matrix of
entries chosen from some set of symbols of cardinality
n, so that no symbol is duplicated within any row or
any column. We use Ζn={0, 1, …, n-1} as the symbol
set. It also can be used as the row/column number set.
When k=n, the Latin rectangles are called Latin
squares of order n. The symbol in row r, column c of a
Latin rectangle R is denoted by Rrc. A Latin square of
order n can be described by a set of n2 triples of the
form (row, column, symbol).

Each row r of a Latin rectangle R is the image of
some permutation σr of Ζn, namely Rri=σr(i). Each pair
of rows (r; s) defines a permutation by σr,s=σrσs

-1. If σr,s
consists of a single cycle for each pair of rows (r, s) in
a Latin square L, we say L is row-hamiltonian. Similar
concepts can be defined in terms of the column and
symbol. In this paper, we are concerned with column-
hamiltonian Latin squares, CHLS for short.

There is a CHLS L of order n iff Kn.n=(V,W,E) has a
P1F F={F0, …, Fn-1} [16]. To show this, we create
three one-to-one correspondence: between the row set
and V, between the symbol set and W, and between the
column set and F. Namely, (, ,) ()i j k L∈ corresponds
to the edge (vi, wk) in Fj. Obviously, the cycle pattern
in σr,s in L corresponds to that in Fr∪Fs. There is
another conclusion [16]: if Kn+1 has a P1F, then so does
Kn,n. Thus we have a conjecture: Kn,n has a P1F (CHLS
of order n exists) for n=2 and all odd positive integers
n. Graph theorists have proven that all even(odd)
numbers less than 54(53) are “Kn P1F numbers”
(CHLS/Kn,n P1F numbers) and have found many larger
Kn P1F numbers (CHLS/Kn,n P1F numbers).

3.2. Combinatorial representation of s-shift
HoVer1,1

2[r,n] codes

An 2-erasure array code can be described by a
partition, a P1F is just a partition, and there is a
bijection between CHLS and P1F of Kn,n. Thus a
natural idea is constructing 2-erasure array codes by
CHLS. In [10] and [11], we have tried this idea. Two
algorithms are developed, one constructs EVENODD-
like codes by CHLS, and the other constructs RDP-like
codes by CHLS. We name the first kind of codes

PIHLatin codes (Parity Independent Horizontal Latin
codes), and the second kind PDHLatin codes (Parity
Dependent Horizontal Latin codes). The key ideas of
the two algorithms are similar: construct the jth disk by
the jth column - construct the ith data/parity symbol in
the jth disk by the symbol (i, j, k); one row is deleted to
break the Hamiltonian cycles in the disk pairs - CDSS
are avoided; finally, parity symbols are arranged
properly to avoid CPSS. Therefore, 2-erasure
correcting is guaranteed.

PIHLatin and PDHLatin are superior to EVENODD
and RDP in parameter flexibility because the
distribution of P1F numbers is far denser than that of
prime numbers. The PIHLatin and PDHLatin codes
constructed by Cayley tables of cyclic groups of order
p are just the (p+2)-disk EVENODD code and the
(p+1)-disk RDP code respectively when p is a prime (a
Cayley tables of cyclic groups of order n Cn is a LS,
and is a CHLS when n is a prime). This means that
PIHLatin and PDHLatin codes are the supersets of
EVENODD and RDP codes respectively. We have
shown that the relationship is proper superset [10][11].
Besides parameter flexility, PIHLatin and PDHLatin
codes have advantage in structure flexibility: maybe
have more than one heterogeneous instance for a given
size.

The above discussion provides a complete method
for 2-erasure array codes: describing codes by graph
partitions and constructing codes by clipped CHLS.
This is also the technique used by B-Code, although B-
Code is based on P1F of Kn instead of CHLS or P1F of
Kn,n. The HoVer codes can be subsumed in the class of
“Latin codes” too. Hafner presented a family of
HoVer1,1

2[r,n] codes named s-shift HoVer1,1
2[r,n]

codes in [1]. We can interpret this kind of codes by
Cayley tables of cyclic groups. Before discussing the
combinatorial representation, we give some important
properties of Cayley tables of cyclic groups that we
presented in [11].

A Cayley table of the cyclic group of order n - Cn
can be described by Formula 1, where <x>m denotes
x mod m. It is not hard to verify that Cayley tables of
the cyclic groups are Latin squares. Cn corresponds to
a 1F of Kp,p F={F0, F1,…, Fn-1}, Fj={(vi, w<i+j>n),
0≤i≤n-1}, 0≤j≤n-1.

(, ,) , 0 , 1n ni j i j C i j n< + > ∈ ≤ ≤ − (1)
Property 1. σj,k of Cn (0≤j<k≤n-1) consists of gcd(n, d)
cycles of length 2l (l=n/gcd(n,d)). The ith cycle is
(i, j, <i+j>n) -- (i, k, <i+k>n) -- (<i+k-j>n, j, <i+k>n) --
(<i+k-j>n, k, <i+2k-j>n) -- (<i+2k-2j>n, j, <i+2k-j>n)
-- .. .-- (<i+(l-1)k-(l-1)j>n, k, <i+lk-(l-1)j>n) --
(<i+lk-lj>n, j, <i+lk-(l-1)j>n).

Where d=k-j, and gcd(n, d) denotes the greater

common divisor of n and d. According to formula 1,
the ith chain in σr,s is as property 1 describes. Since
l=n/gcd(n, k-j), we know l(k-j) is the lowest common
multiple of n and k-j. Thus the only duplicated symbols
in the chain are two endpoints (i, j, <i+j>n) and
(<i+lk-lj>n, j, <i+lk-(l-1)j>n). Moreover, different
chains contain no common symbols. Therefore σj,k
consists of gcd(n, d) cycles of length 2l. Fig 3.a shows
σ0,4 of C6. It has 2 3-long cycles because gcd(4, 6)=2.
Let pr(n) be the smallest prime divisor of n. We can
see that σj,k induces a Hamiltonian cycle when n and d
are relatively prime. The maximum number of cycles is
n/pr(n) (of length pr(n) each) when d=n/pr(n) and the
maximum cycle length is also n/pr(n) (pr(n) cycles)
when d=pr(n). This conclusion deduces directly the
well known fact: Cn is a CHLS when n is a prime
number.
Property 2. Given Cn, for any 0≤i≤n-1, and any
0≤r<s≤n-1, rows i, <i+1>n, ..., <i+n/pr(n)-1>n intersect
all cycle of σr,s. And there exist 0≤r<s≤n-1 and
0≤k≤gcd(n,s-r)-1, rows i, <i+1>n, ..., <i+n/pr(n)-2>n
don’t intersect the kth cycle in σr,s.

Examining cycle patterns of any σr,s we can
conclude this property. This property can deduce the
following property.
Property 3. Deleting any k (n/pr(n)≤k≤n-1)
consecutive rows (with wrap-around) from Cn, we get
a Latin rectangle in which σr,s contains no cycles for
any 0≤r<s≤n-1.

These properties can be converted into P1F version
according to CHLS-P1F transformation described in
Section 3.1.

The s-shift HoVer1,1
2[r,n] codes can be described by:

1

0
() (1 ,)

r

s n
k

U j X r k j k s
−

=
= − − < + + >⊕ (2)

where s is the shift distance, Us(j) and X(i, j) are the
v-parity and the ith data symbol on the jth mixed disk
respectively. Hafner presented an existence theorem
for this kind of codes:
Theorem 2. The s-shift HoVer1,1

2[r,n] codes defined
by formula 2 has fault tolerance 2 iff

 if / pr()
/ pr() otherwise

n s s n n
r

n n n s
− >⎧

≤ ⎨ − −⎩
 (3)

Fig 3.b shows C9, Fig 3.c shows the 4-shift
HoVer1,1

2[4,9] code. Every data symbol is described by
the number of its v-parity. As the figure shows, Cn is
divided vertically into four areas of height 1, (n-r-s), r
and (s-1). The first row (in natural order) designates
the distribution of the v-parity symbols. The next
(n-r-s) rows are discarded. The next r rows are used to
construct the r data rows of the code. The symbol
(i, j, k) (n-r-s+1≤i≤n-s, 0≤j≤n-1) points out that
X(i-(n-r-s+1), j) participates in H(i-(n-r-s+1)) and
Us(k). The last s-1 rows are deleted, too.

According to property 3, deleting n/pr(n)
consecutive rows in Cn breaks all Hamiltonian cycles
in the disk pairs. If we construct data symbols by the
remaining symbols in the way discussed in the last
paragraph, we will avoid CDSS. If we delete one more
row and arrange the v-parity symbols by it, CPSS will
be avoided too (this operation breaks the path induced
by any pair of disks into two segments, and attaches
one vertex to each). Then we produce a 2-erasure
HoVer code. Deleting further rows increases
performance and decreases storage efficiency.

But why does Hafner’s construction method delete
two inconsecutive parts? The reason is that this method
pursues s-shift structure: the v-parity symbols are put
into natural order, the lowest data row is constructed
by shifting the v-parity row s places right circularly,
and each of the other rows is just the 1-shift of its
lower neighbor. Therefore Cn is split into four areas as
mentioned above. The second and fourth areas are
deleted. According to property 3, in order to avoid
CDSS, at least one of the two areas is not shorter than
n/pr(n) rows. Namely, (s-1)≥n/pr(n) or (n-r-s)≥n/pr(n)
must be met. They are just the two cases of theorem 2.
Hafner believes that a wide range of choices in shift
distance benefits reconstruction performance. But there
is no any further discussion in [1]. So we think it is not
necessary to construct HoVer1,1

2[r,n] codes following
formula 2. It’s better to construct a simple structure by
deleting n/pr(n) consecutive rows from Cn and

Fig 3. HoVer code and Latin Squares.

designating another row as the v-parity row.
By the way, there is negligence in the proof of

theorem 2 in [1]. When unrecoverable 2-erasures
consisted of two mixed disks are examined, only
“recovery dependency chains that the two lost v-parity
symbols” are concerned. That is to say, only CPSS are
taken into consideration, never CDSS. Moreover, the
proof about CPSS doesn’t take wrapping into account
when examines the reconstruction dependency chains
(chains in σr,s). Now we give s-shift HoVer1,1

2[r,n]
codes a neat description using the Cayley tables of the
cyclic groups. We call the codes Cayley HoVer codes.
Algorithm 1. Cayley HoVer1,1

2[r,n] codes
Construction Algorithm
Input: The Cayley table of the cyclic group of order n
- Cn. Fn={F0, F1,…, Fn-1} is the 1F of Kn,n = (V, W, E)
corresponding to Cn. An integer r≤n-n/pr(n)-1.
Output: A Cayley HoVer1,1

2[r,n] code.
Method:
1. Delete any n/pr(n) consecutive rows from Cn with

wrap-round. By rotational symmetry, the last
n/pr(n) rows are deleted (all edges incident to
vn- n/pr(n), ..., vn-1 are deleted from Fj for all j), then
we get a (n-n/pr(n))*n Latin rectangle R (a
partition F’={F0’, F1’,…, Fn-1’} of Kn-n/pr(n),n).

2. Delete arbitrary n-n/pr(n)-r rows from R, suppose
rows a0, a1, ..., an-n/pr(n)-r-1 are deleted (delete all
edges incident to

0 / () 1
, ,

n n pr n ra av v
− − −

… from Fj’ for all

j), then we get a r*n Latin rectangle R’ (a
partition F”={F0”, F1”,…, Fn-1”} of Kr,n). Select
one row from these rows arbitrarily, suppose row
a0 is selected without loss of generality. Let the
kth v-parity symbol be stored in the jth disk for all

0(, ,) 'a j k R∈ (add wk into Fj” for all

0
(,) "a k jv w F∈).

3. Let the ith data symbol on the jth data disk
participate in the ith h-parity group and the kth v-
parity group for all (, ,) ",0 1,i j k R i r∈ ≤ ≤ −
0 1j n≤ ≤ − ((,) "i k jv w F∈).

Theorem 3. The Cayley HoVer1,1
2[r,n] codes are 2-

erasure correcting codes.
Proof: According to property 3, after step 1, Fi’∪Fj’
consists of only acyclic paths for all 0≤i<j≤n-1 (so
does Fi”∪Fj” because it is a subgraph of Fi’∪Fj’).

Step 2 deletes the edge incident to
0av from Fj’ and

add its other endpoint into for all 0≤j≤n-1. So the two
edges incident to

0av are deleted from a path in

Fi’∪Fj’, and the other two endpoints of them are
added into. Therefore every Fi”∪Fj” contains several
acyclic paths, and two of them have an endpoint

attached. In other words, they contain neither CPSS
nor CDSS.

Thus codes produced by algorithm 1 are 2-erasure
correcting codes. Deleting further rows in step 2
apparently doesn’t change fault tolerance. □

The more rows deleted in step 2, the worse storage
efficiency and the better performance. So we can
choose satisfactory efficiency/performance trade-off
by adjusting how many rows are deleted. How to
choose rows to be deleted in step 2? According to
property 2, deleting consecutive rows with wrap-round
touches more paths, thus breaks more paths into small
paths which will improve the degree of concurrency of
reconstruction. So deleting consecutive rows is a good
strategy. Moreover, which row should be selected as
“v-parity row”? We think it is really arbitrary, namely
has no impact on performance.

4. New families of 2-erasure HoVer codes

4.1. A family of 2-erasure HoVer codes based
on CHLS

When n is not a prime number, s-shift HoVer1,1
2[r,n]

codes provide a relatively narrow range of choices in
performance/efficiency trade-off space. We can
improve this deficiency using CHLS (P1F). We call
the new codes CHLS HoVer1,1

2[r,n] codes.
Algorithm 2. CHLS HoVer1,1

2[r,n] codes Construction
Algorithm
Input: L - A CHLS of order n. L is reduced (the first
row is put into natural order). Fn={F0, F1,…, Fn-1} is
the 1F of Kn,n=(V, W, E) corresponding to L.
Output: A CHLS HoVer1,1

2[r,n] code.
Method:
1. Delete the last row of L (delete (vn-1, wk) from Fj

for all j), then we get a (n-1)*n Latin rectangle R
(a partition F’={F0’, F1’,…, Fn-1’} of Kn-1,n).

2. Delete arbitrary n-1-r rows from R, suppose rows
a0, a1, ..., an-r-2 are deleted (all edges incident to

0 2
, ,

n ra av v
− −

… are deleted from Fj'’ for all j), then
we get a r*n Latin rectangle R’ (a partition
F”={F0”, F1”,…, Fn-1”} of Kr,n). Select one row
from deleted rows arbitrarily, suppose row a0 is
selected without loss of generality. Let the kth
v-parity symbol be stored in the jth disk for all

0(, ,) 'a j k R∈ (add wk into Fj” for all

0
(,) "a k jv w F∈).

3. Let the ith data symbol on the jth data disk
participates in the ith h-parity group and the kth

v-parity group for all (, ,) ",0 1,i j k R i r∈ ≤ ≤ −
0 1j n≤ ≤ − ((,) "i k jv w F∈).

Theorem 4. The CHLS HoVer1,1
2[r,n] codes are 2-

erasure correcting codes.
Proof: Because Fi∪Fj induces a Hamiltonian cycle for
all 0≤i<j≤n-1, after step 1, every Fi’∪Fj’ consists of a
path. The rest is similar to the proof of theorem 3. □

Fig 4.a shows a CHLS of order 9. Fig 4.b shows a
CHLS HoVer1,1

2[7,9] code based on this CHLS. The
first row and the 9th row of the CHLS are deleted, and
the first row is used to construct the v-parity row. This
code contains 7data rows, while a Cayley HoVer1,1

2[r,9]
code contains at most 5 data rows. The advantage of
CHLS HoVer1,1

2[r,n] codes in wider performance
space over Cayley HoVer1,1

2[r,n] codes is obvious.
How to select rows to be deleted in step 2? The

answer is dependent on the specific CHLS used.
Different selections maybe lead to different
performance. Concrete method needs further study.

4.2. A family of 2-erasure HoVer codes based
on a family of LS of even order

CHLS HoVer1,1
2[r,n] code widen the range of

choices in performance/efficiency trade-off space
when n is not a prime number but an odd number.
Wanless has presented a family of LS [17] that can
achieve the widest range of performance/efficiency
trade-off space for some even sizes. A LS L of this
kind is of order p=2q where q is an odd prime. L is
consisted of four blocks. Let h={0, 2, ..., q-1} and
H={q, q+1, ..., 2q-1}. The entry Lij satisfies

(2) if , ,
() if and ,
() if and ,
() if , .

h

H
ij

H

h

i j i j h
i j i h j H

L
i j i H j h

i j i j H

− − − ∈⎧
⎪ + ∈ ∈⎪= ⎨ − ∈ ∈⎪
⎪ − + ∈⎩

 (4)

(x)m denotes that symbol in a set S which is
congruent to x%m. For example, when p=10, (5-1)H=9.

We can see that each of the four blocks of L is
isotopic to the cyclic group of order q, thus any pair of
columns chosen both from h or both from H will

decompose into two cycles of length q.
Now, let’s examine the column cycles between

columns c h∈ and d H∈ . Suppose we start in row
a h∈ of column c at (-2-a-c)h (upper left block) and
trace out the cycle from there. In column d of row a we
find (a+d)H (upper right block). Next we should find in
which row x of column c the symbol (a+d)H lies (lower
left block). We have (x-c)H=(a+d)H, thus x=(a+d+c)H.
In this row of column d the symbol is (-a-c)h (lower
right block). Now we return to row y of column c. We
have (-2-y-c)h=(-a-c)h, thus y=(a-2)h, two places to the
up of where we started. Iterating this process and
noting that p is odd, we see that in following the
column cycle we will visit every other row before
returning to row a. Thus column c and d induce a
Hamiltonian cycle. Fig 5.a shows a LS of this kind of
order 10 and its σ1,7. Based on this kind of LS, we can
construct HoVer1,1

2[r,n] codes that cover wider range
of performance/efficiency trade-off space than Cayley
HoVer1,1

2[r,n] codes. We call this kind of codes
EVENLS HoVer1,1

2[r,n] codes.
Algorithm 3. EVENLS HoVer1,1

2[r,2p] codes
Construction Algorithm
Input: L - A LS of order 2p constructed by formula 4.
F2p={F0, F1,…, F2p-1} is the 1F of K2p, 2p=(V, W, E)
corresponding to L.
Output: A EVENLS HoVer1,1

2[r,2p] code.
Method:
1. Delete the first row and the pth row of L (delete

(v0, wk) and (vp, wk) from Fj for all j), then we get
a (2p-2)*2p Latin rectangle R (a partition F’={F0’,
F1’,…, F2p-1’} of K2p-1,2p).

2. Delete arbitrary 2p-1-r rows from R, suppose
rows a0, a1, ..., a2p-r-3 are deleted (all edges
incident to

0 2 3
, ,

p ra av v
− −

… are deleted from Fj'’ for
all j), then we get a r*2p Latin rectangle R’ (a
partition F”={F0”, F1”,…, F2p-1”} of Kr,2p).
Select one row from deleted rows arbitrarily,
suppose row a0 is selected without loss of
generality. Let the kth v-parity symbol be stored in
the jth disk for all 0(, ,) 'a j k R∈ (add wk into Fj”
for all

0
(,) "a k jv w F∈).

Fig 4. CHLS HoVer code.

3. Let the ith data symbol on the jth data disk
participates in the ith h-parity group and the kth v-
parity group for all (, ,) ",0 2,i j k R i r∈ ≤ ≤ −
0 2 1j p≤ ≤ − ((,) "i k jv w F∈).

Theorem 5. The EVENLS HoVer1,1
2[r,n] codes are 2-

erasure correcting codes.
Proof: Fi∪Fj induces a Hamiltonian cycle for all i h∈
and j H∈ , and two cycles for all ,i j h∈ or ,i j H∈ .
Thus after step 1, every Fi’∪Fj’ consists of one or two
paths. The rest is similar to the proofs of theorem 3 and
theorem 4. □

Fig 5.b shows an EVENLS HoVer1,1
2[7,10] code

based on the LS shown in Fig 5.a. The first row, the
second row and the 6th row are deleted, and the second
row is used to construct the v-parity row. This code
has 7 data rows, while the Cayley HoVer1,1

2[r,10] code
has at most 4 data rows. EVENLS HoVer1,1

2[r,n] codes
fill the blank that CHLS HoVer1,1

2[r,n] codes can’t
deal with. These two kinds of codes cooperatively
cover most areas of performance/efficiency trade-off
space.

5. Performance analysis

CHLS/EVENLS HoVer1,1
2[r,n] codes have all

advantages of other families of HoVer codes, such as
optimal small write IO costs, near-optimal encoding/
decoding/updating performance, good reconstruction
performance, extended fault tolerance, and so on.
Moreover, compared with s-shift HoVer1,1

2[r,n] codes,
the new codes cover wider performance space and
have better structure variety.

When n is an odd number, CHLS HoVer1,1
2[r,n]

codes cover the widest range of r - from 1 to n-2.
While s-shift HoVer1,1

2[r,n] codes only cover the range
from 1 to n-n/pr(n)-1. When p is a prime number,
EVENLS HoVer1,1

2[r,2p] codes cover the widest range
of r - from 1 to 2p-3. While s-shift HoVer1,1

2[r,2p]
codes only cover the range from 1 to p-1. Obviously,
CHLS/EVENLS HoVer codes provide more options in
performance/efficiency trade-off.

We use EFFL for the best packed efficiency [1] of

CHLS/EVENLS HoVer1,1
2[r,n] codes and EFFS for

that of s-shift HoVer1,1
2[r,n] codes. We have the

following formulas.
(/ pr() 1)

(/ pr()) (1) 1
(2) , is odd

(1) (1) 1
(3) , is prime

(2) (1) 1 2

S

L

n n n nEFF
n n n n

n n n
n n

EFF
n n n

n n

− − ×=
− × + −

− ×⎧
⎪ − × + −⎪= ⎨ − ×⎪
⎪ − × + −⎩

(5)

Fig 6 shows the ratio of the best efficiency of
CHLS/EVENLS HoVer1,1

2[r,n] codes and s-shift
HoVer1,1

2[r,n] codes to the optimal efficiency, where
EFF_L, EFF_S and EFF_O are efficiencies of
CHLS/EVENLS HoVer1,1

2[r,n] codes, s-shift
HoVer1,1

2[r,n] codes and MDS codes respectively. It is
easy to see, Latin HoVer1,1

2[r,n] codes outperform s-
shift HoVer1,1

2[r,n] codes and are very close to MDS
codes.

0.8

0.84

0.88

0.92

0.96

1

9 10 14 15 21 22 25 26 27 33 34 35

number of disks

r
a
t
i
o

t
o

o
p
t
i
m
a
l

e
f
f
i
c
i
e
n
c
y

EFF_L

EFF_S

EFF_O

Fig 6. Storage efficiency.

6. Conclusion

HoVer codes have a unique data/parity layout
which provides a range of implementation options that
cover a large portion of the performance/efficiency
trade-off space. In this paper, we give a combinatorial
representation of s-shift HoVer1,1

2[r,n] codes based on
Latin squares. We gave a clean and correct description
of this kind of codes. Then we presented a family of
HoVer1,1

2[r,n] codes based on column-hamiltonian
Latin squares. We call them CHLS HoVer1,1

2[r,n]
codes. Another family of HoVer1,1

2[r,n] codes based on
a family of Latin Squares of even order is also

Fig 5. EVENLS HoVer code.

presented. We named them EVENLS HoVer1,1
2[r,n]

codes. The first new kind of codes cover the widest
range of choices in performance/ efficiency trade-off
space when n is an odd number, and the second new
kind of codes cover the widest range when n/2 is a
prime number. The two new kinds of codes cover most
of the performance space. The new codes also are
superior in structure variety.

CHLS/EVENLS HoVer codes solve odd numbers
and the numbers that are twice of prime numbers. Next
we plan to design HoVer codes for other even numbers.
Hafner presented some families of 3-erasure and 4-
erasure HoVer codes [1]. One future work is to study
constructing HoVer codes of fault tolerance > 2 using
Latin squares. High efficiency HoVer codes (small r)
provide an extended fault tolerance. Studying the fault
tolerance of HoVer codes in detail by both theoretical
analysis and simulation is another significant research
direction. Moreover, will deleting different rows in
algorithm 3/4/5 lead to different performance? Will
different structures of LS/CHLS induce different
performance? These are also interesting problems.
Implementing these codes in a real system and
studying the real performance are also planned.

Acknowledgement
Many thanks to Dr. Ian M. Wanless for his kind help
regarding the knowledge of Latin squares!

References

[1] J. L. Hafner, “HoVer Erasure Codes For Disk Arrays,”

International Conference on Dependable Systems and
Networks, Philadelphia, PA, USA, Jun, 2006, pp. 217-
226.

[2] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,
J. Leong and S. Sankar, “Row-Diagonal Parity for Double
Disk Failure Correction,” In Proceedings of the 3th
USENIX Conference on File and Storage Technologies,
San Francisco, CA, USA, Mar, 2004, pp.1-14.

[3] J. S. Plank, “A Tutorial on Reed-Solomon Coding for
Fault-Tolerance in RAID-like Systems,” Software -
Practice & Experience 27(9), pp. 995-1012, Sep, 1997.

[4] J. S. Plank and Lihao Xu, “Optimizing Cauchy Reed-
Solomon Codes for Fault-Tolerant Network Storage
Applications”, In Proceedings of the 5th IEEE
International Symposium on Network Computing and
Applications, Cambridge, MA, Jul, 2006, pp.173-180.

[5] Lisa Hellerstein, Garth A. Gibson, Richard M. Karp,
Randy H. Katz and David A. Patterson, “Coding
techniques for handling failures in large disk arrays,”
Algorithmica 12(2/3), pp.182-208, Aug, 1994.

[6] M. Blaum, J. Brady, J. Bruck, J. Menon, “EVENODD: an
efficient scheme for tolerating double disk failures in

RAID architectures,” IEEE Trans. on Computers 44(2),
pp. 192-202, Feb, 1995.

[7] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes
with independent parity symbols,” IEEE Trans. on
Information Theory 42(2), pp. 529-542, Mar, 1996.

[8] L. Xu and J. Bruck, “X-Code: MDS Array Codes with
Optimal Encoding,” IEEE Trans. on Information Theory
45(1), pp.272-276, Jan, 1999.

[9] C. Huang, L. Xu, “STAR: An Efficient Coding Scheme
for Correcting Triple Storage Node Failures,” In
Proceedings of the 4th USENIX Conference on File and
Storage Technologies, San Francisco, Dec, 2005, pp.197-
210.

[10] Gang Wang, Sheng Lin, Xiaoguang Liu, Guangjun Xie,
Jing Liu, “Combinatorial Constructions of Multi-Erasure-
Correcting Codes with Independent Parity Symbols for
Storage Systems,” In Proceedings of the 13th IEEE
Pacific Rim Dependable Computing conference,
Melbourne, Victoria, Austrilia, Dec, 2007, pp. 61-68.

[11] Wang Gang, Liu Xiaoguang, Lin Sheng, Xie Guangjun,
Liu Jing, “Generalizing RDP Codes Using the
Combinatorial Method,” In NCA-08: 7th IEEE
International Symposium on Network Computing
Applications, Cambridge, MA, USA, July, 2008, pp.93-
100.

[12] L. Xu, V. Bohossian, J. Bruck, and D.G. Wagner, “Low-
Density MDS Codes and Factors of Complete Graphs,”
IEEE Trans. on Information Theory 45(6), pp.1817-1826,
Sep, 1999.

[13] Wang Gang, Dong Sha-sha, Liu Xiao-guang, Lin Sheng,
Liu Jing, “Construct double-erasure-correcting Data
Layout Using P1F,” ACTA ELECTRONICA SINICA,
34(12A), pp.2447-2450, Dec, 2006.

[14] J. L. Hafner, “WEAVER Codes: Highly Fault Tolerant
Erasure Codes for Storage Systems,” In Proceedings of
the 4th USENIX Conference on File and Storage
Technologies, San Francisco, Dec, 2005, pp.211-224.

[15] Zhou Jie,Wang Gang, Liu Xiaoguang, Liu Jing, “The
Study of Graph Decompositions and Placement of Parity
and Data to Tolerate Two Failures in Disk Arrays:
Conditions and Existance,” Chinese Journal of Computer
26(10), pp.1379-1386, Oct, 2003.

[16] I. M. Wanless, “Perfect factorisations of complete
bipartite graphs and Latin squares without proper
subrectangles”, Electron. J. Combin, Vol. 6, 1999, R9.

[17] I. M. Wanless, “Cycle switches in Latin squares,”
Graphs and Combinatorics, 20(4), pp.545-570, Nov, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

