
Reliability Analysis for Full-2 Code

Sheng Lin, Chi Zhang, Gang Wang, Xiaoguang Liu and Jing Liu

Nankai-Baidu Joint Lab, College of Information Technology Science, Nankai University

Weijin Road 94, Tianjin, China

Email: {shshsh.0510, arxor.kid}@gmail.com, wgzwp@163.com, liuxg74@yahoo.com.cn, jingliu@nankai.edu.cn

Abstract—Recently, with the fast development of storage sys-
tem, 2-erasure coding schemes were widely used in industrial
society. To meet different requirements, many kinds of 2-erasure
coding schemes were presented, such as Reed-Solomon codes,
binary linear codes, parity array codes, and so on. Full-2 code
is a 2-erasure binary linear code. It is a non-MDS code, but
achieves optimal encoding, decoding, and updating performance.
Moreover, its fault tolerance is beyond 2, i.e. “2-erasure” is the
huge undervaluation of its fault tolerance. It is hard to evaluate
the precise reliability of full-2 code. The reason is that the
reliability model is complex and the proportion of recoverable
k-erasures (k > 2) to total k-erasures is difficult to calculate.
In this paper, we present a combinatorial method to analyze the
precise reliability of full-2 code. The reliability of full-2 based
storage systems is also evaluated.

I. INTRODUCTION

In recent years, as hard disks have grown greatly in size

and storage systems have grown in size and complexity, it is

more frequent that a failure of one disk occurs in tandem with

unrecovered failures of other disks or latent failures of blocks

on other disks. On a system using single-erasure correcting

code such as standard RAID-5, this combination of failures

leads to a permanent data loss [1]. Hence, applications of

multi-erasure correcting codes have become more pervasive.

The multi-erasure codes are applicable to not only traditional

disk arrays, but also data grids, peer-to-peer applications,

digital fountains, and so on [2].

Researchers focused mainly on MDS (Maximum Distance

Separable) codes in earlier studies. This kind of codes achieves

optimal storage efficiency which implies minimum storage

cost. By contrast, non-MDS codes generally have worse

storage efficiency. However, this doesn’t mean that non-MDS

codes are useless. Non-MDS codes generally have better

computational performance than MDS codes. Moreover, they

are far more reliable than one might consider. Full-2 [3] is such

a code. Although it is classified as a 2-erasure code, it can re-

cover many 3-erasures, 4-erasures, and so on. Conventionally,

Markov model is used to analyze MDS codes’ reliability. But

for non-MDS codes, Markov chains are extremely complex,

and transition rates are difficult to calculate. This paper gives a

combinatorial method to calculate transition rates. We analyze

the reliability of full-2 RAID systems using this method.

II. RELATED WORK

An m-erasure code for a storage system is a scheme that

encodes the content on n data disks into m check disks so that

the system is resilient to any m disk failures [2]. Unfortunately,

there is no consensus on the best coding technique for general

n,m > 1.

The known multi-erasure codes typically fall into one of

the following three categories: Reed-Solomon (RS) codes,

binary linear codes and parity array codes. RS codes [4]

are the only known MDS codes for arbitrary n and m. The

computational complexity is a serious problem because RS

codes are based on operations over Galois Field. Binary linear

codes [3] are XOR-based, hence have perfect computational

complexity. However, because they are non-MDS codes, bad

storage efficiency is their inherent drawback. The key idea

of this kind of codes is dividing data symbols (disks) into

overlapped parity groups. Parity array codes can be regarded

as a compact form of binary linear codes - they possess

the XOR-based architecture, while packing data and parity

symbols into fewer disks. Thus, parity array codes have good

computational performance like linear codes, while achieving

better storage efficiency. EVENODD [5], RDP [1], X-Code [6]

and B-Code [7] are typical MDS array codes. Recently, non-

MDS array codes such as Weaver codes [8] have attracted

more attentions. They can be regarded as tradeoff between

MDS array codes and binary linear codes.

Generally, the reliability of MDS codes is analyzed using

Markov model [9]. The Markov chain in Fig. 1 describes the

reliability model of 2-erasure MDS codes. The reliability of

system and component (hard disks, network nodes, etc.) is

assumed to obey exponential distribution. � = 1/MTTF ,

where MTTF denotes the Mean Time To Failure of hard disks.

� = 1/MTTR, where MTTR denotes the Mean Time To

Repair of hard disks. The system is composed of N disks.

State 0 denotes the fault-free state. State 1 and 2 respectively

denote the single-failure and 2-failure states. State S denotes

the data-loss state. The system MTTDL (Mean Time To Data

Loss) can be calculated through this model.

0 1 2 S

N (N-1) (N-2)

Fig. 1. Markov Chain for 2-erasure MDS Codes.

However, it is difficult to apply this method to non-MDS

codes. First, m-erasure non-MDS codes generally can tolerate

a part of k-erasures for some k > m. Thus Markov chains for

m-erasure non-MDS codes contain more states than those for

2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks

978-0-7695-3908-9/09 $26.00 © 2009 IEEE

DOI 10.1109/I-SPAN.2009.95

454

m-erasure MDS codes. Second, the proportion of recoverable

k-erasures (k > m) to total k-erasures is hard to calculate.

LDPC (Low Density Parity Codes) [10] is a special kind of

binary linear codes. It has been widely used in communication

field. Study on precise reliability of LDPC codes has a long

history. Early study focused on asymptotical reliability of a

family of LDPC codes instead of individual code instance. Re-

cent works study concrete codes with optimal reliability [11],

[12]. The methods are brute force search by computer or

Monte Carlo simulation. The former is time consuming and the

latter can not get precise results. Hafner analyzed the reliability

of Weaver codes and LDPC codes in [13]. He also used brute

force search. Elerath proposed an enhanced reliability mode

for RAID systems using Monte Carlo simulation [14].

Our main contributions include: 1) studies the reliability

of full-2 codes which is neglected by researchers before.

Compared with LDPC codes, full-2 code has regular structure

and better update penalty. We will show that it also has rea-

sonable high reliability. 2) Presents a combinatorial method to

analyze fault tolerance of full-2 codes precisely. 3) Evaluates

the reliability of full-2 based RAID systems.

III. FULL-2 CODE AND GRAPH REPRESENTATION

In a binary linear coding system, every bit in a disk partici-

pates in encoding, decoding and updating in the same way and

independently. Therefore, for our purposes, “disk” (network

node), “unit” (disk block) and “symbol” are equivalent. Full-2
is a code in which each data disk participates in exactly two

parity groups, and each pair of parity groups share exactly

one data disk [3]. Thus there are
(

n
2

)

data disks in a full-2

coding system with n parity disks, namely
n(n+1)

2 disks in

total. Fig. 2 shows the 10-disk full-2 code. Dij denotes the

data disk that participates in the itℎ and the jtℎ parity groups.

Pi denotes the parity disk of the itℎ parity group. The four

parity groups are marked by four different hatches.

D
01

D
02

D
03

P
0

D
12

D
13

P
1

D
23

P
2

P
3

Fig. 2. 10-disk Full-2 Code.

We can represent a 2-erasure binary linear code by a simple

graph: each node denotes a parity disk (group), each edge

denotes a data disk, and the two vertices of an edge are just

the two parity disks of the data disk [3], [7], [15]. Therefore

the full-2 code with n parity disks corresponds to Kn - the

complete graph with n vertices. We have proven a theorem

about reliability of binary linear codes [15].

Theorem 1: A binary linear coding system can recover from

a k-erasure if and only if the k-erasure corresponds to a

sub-graph that does not contain the following two types of

structures:

1) A path and its two endpoints. We call this kind of un-

recoverable erasure Closed Parity Symbols Subset, CPSS

for short.

2) A cycle. We call it CDSS - Closed Data Symbols Subset.

Note that concepts used here do not conform to conventional

concepts used by graph theorists. In graph theory, an edge and

its two endpoints are a one-piece unit. A sub-graph containing

an edge means, of course, that it also contains the two vertices

of the edge. However, if we represent a binary linear code by a

simple graph, an edge being included in a sub-graph, does not

mean that its two vertices are also included. The reason is that

an edge denotes a data disk, and its two vertices denote the

two parity disks the data disk belongs to. They are different

entities. A data disk being involved in a k-erasure certainly

does not mean that its two parity disks are also involved. So we

modify the simple graph representation slightly. We introduce

a new vertex, which is called the parity sink vertex, the sink

vertex in short. We draw an edge between this vertex and

every vertex else in the graph and let these new edges denote

parity disks. So, vertices do not denote parity disks any longer,

they only denote parity groups. Data and parity disks are both

denoted by edges. Therefore, a k-erasure corresponds to a sub-

graph composed of k edges. The two kinds of unrecoverable

structures mentioned in Theorem 1 are unified to be a cycle.

We call this representation the sink vertex representation. Note

that the full-2 code with n parity disks is denoted by Kn+1

instead of Kn using this representation. Fig. 3.a illustrates how

to represent the 10-disk full-2 code by K5.

P
3

P
1

P
0

P
2

0

1 2

3 S

D 01
D
02

D
1
3

D
0
3

D
12

D 23

P
1

P 2

0

1 2

S

D 01
D
02

0

1 2

3

D 01
D
02

D
1
3 D 23

a. graph representation

c. a CPSS d. a CDSS

P
0

0

1 2

3 S

D 01

D
1
3 D 23

b. a recoverable 4-erasure

Fig. 3. Graph Representation.

Theorem 1 is intuitive. If a k-erasure is recoverable, there

must be some data disk Dij that is the unique lost disk in

one of its two parity groups, say, the i-th parity group. We

can start decoding process from Dij by XORing all the other

disks in group i. This makes group j “single-loss”. We then

455

0 1 2 3

N (N-1) (N-2)

4

q(3)(N-3)

n-2 n-1

q(n-2)(N-n+2)

S

(N-n+1)

(1-q(3))(N-3)

(1-q((4))(N-4)

(1-q(n-2))(N-n+2)

Fig. 4. Markov Chain for Full-2 Coding Systems.

reconstruct the unique lost disk, Djk, in this group. Then the

third failed disk is reconstructed in group k, and so on. This

decoding chain corresponds to an open path in the sub-graph.

Fig. 3.b gives an example. The sub-graph corresponds to a

recoverable 4-erasure in the 10-disk full-2 code. Observe that

D23 should be reconstructed first because the second parity

group only loses this data disk. So the third parity group has

only one unknown member - D13 - which is the second disk

to be reconstructed. The next disk to be reconstructed is D01.

Finally P0 is reconstructed. The decoding process goes along

the open path (2, 3)-(3, 1)-(1, 0)-(0, S) in the sub-graph.

On the contrary, if a k-erasure is unrecoverable, there must

be some disks can not be reconstructed. The only situation

possible is that every involved parity group loses more than

one disk. This implies that every edge in the corresponding

sub-graph has more than one adjacent edge. Thus a cycle, i.e.

a CPSS or a CDSS exists. Fig. 3.c and Fig. 3.d respectively

show a CPSS and a CDSS in the 10-disk full-2 code. We

can see that a CPSS corresponds to a cycle including the sink

vertex, and a CDSS corresponds to a cycle excluding the sink

vertex.

IV. THE RELIABILITY MODEL

As mentioned in Section II, the reliability model of a 2-

erasure MDS coding system appears as depicted in Fig. 1. Let

pi(t) denote the probability system stays in state i at time t,
we have

dp0
dt

= −N�p0(t) + �p1(t) + �p2(t)

dp1
dt

= N�p0(t)− �p1(t)− (N − 1)�p1(t)

= N�p0(t)− (�+ (N − 1)�)p1(t)

dp2
dt

= (N − 1)�p1(t)− �p2(t)− (N − 2)�p2(t)

= (N − 1)�p1(t)− (�+ (N − 2)�)p2(t)

(1)

The transition rate matrix is:

M =

⎛

⎝

−N� N� 0
� −�− (N − 1)� N − 1)�
� 0 −�− (N − 2)�

⎞

⎠ (2)

According to Theorem 2 in [9], MTTDL of the system can

be calculated by the following equation:

MTTDL =

∫ ∞

0

p(t)dt = −e⃗ ⋅M−1p(0) (3)

where p(t) is the probability density function of system

reliability, e⃗ = (1, 1, ⋅ ⋅ ⋅ , 1), and p(0) = (1, 0, ⋅ ⋅ ⋅ , 0) is the

initial state vector.

However, for non-MDS codes, things are more complicated.

Since the fault tolerance of many m-erasure non-MDS codes

is beyond m, the Markov chain contains more states than that

of MDS codes. Moreover, for k > m, not 100% but a portion

of k-erasures are recoverable. Thus state k incidents to not

only state k + 1 and state 0, but also state S. The transition

probabilities from state k to state k+1 and from state k to state

S share the probability of (N − k) disks fail. Fig. 4 shows

the Markov model for full-2 coding systems. n denotes the

number of parity disks. N denotes the total number of disks.

Thus N =
(

n+1
2

)

. We will show that the full-2 code with

n parity disks tolerate up to n − 1 failures, thus the Markov

chain contains n + 1 states. q(k) denotes the proportion of

recoverable k-erasures to total k-erasures. This Markov chain

is much harder to solve than that for 2-erasure MDS codes.

Let pi(t) still denote the probability system stays in state i at

time t, we have:

dp0
dt

= −N�p0(t) + �p1(t) + ⋅ ⋅ ⋅+ �pn−1(t)

dp1
dt

= N�p0(t)− �p1(t)− (N − 1)�p1(t)

= N�p0(t)− (�+ (N − 1)�)p1(t)

dp2
dt

= (N − 1)�p1(t)− �p2(t)− (N − 2)�p2(t)

= (N − 1)�p1(t)− (�+ (N − 2)�)p2(t)

dp3
dt

= (N − 2)�p2(t)− �p3(t)− (N − 3)�p3(t)

= (N − 2)�p2(t)− (�+ (N − 3)�)p3(t)

(4)

For k > 3, we have:

456

dpk
dt

= q(k − 1)(N − k + 1)�pk−1(t)− �pk(t)

− (N − k)�pk(t)

= q(k − 1)(N − k + 1)�pk−1(t)

− (�+ (N − k)�)pk(t)

(5)

The transition rate matrix is as Equation 6 shows. The

analysis is base on the assumption that the fail disks can be

recovered in parallel and recovery of multiple failures takes

the same repairing time as that of single failure. We can see

that what we need to do is to determine q(k).

V. PRECISE FAULT TOLERANCE OF FULL-2 CODE

Given a k, there are
(

N
k

)

k-erasures in total in the N -

disk full-2 code. What k-erasures are recoverable? According

to Theorem 1, a k-erasure is recoverable if and only if its

corresponding sub-graph contains no cycle. So we have the

following lemma.

Lemma 2: A k-erasure is unrecoverable for all k > n− 1.

Proof: Any sub-graph of Kn with more than n−1 edges

contains cycle.

Now, we count the acyclic sub-graphs with k edges, i.e.

recoverable k-erasures, using a combinatorial method, for all

k > n.

Lemma 3: In an indexed complete simple graph Kn, the

number of k-edge acyclic sub-graphs equals to the number of

spanning forest with exactly n− k trees.

Proof: Given a k-edges acyclic sub-graph X of Kn, we

construct a spanning forest Y by adding Kn’s vertex set of to

it. Suppose that Y contains l trees. We connect the roots of

the trees in Y one-by-one. So a spanning tree is produced by

adding l−1 edges to Y . Since a spanning tree of Kn contains

n− 1 edges, we have k + (l − 1) = (n− 1), thus l = n− k.

Moreover, the mapping from X to Y is one-to-one.

We denote by g(n, k) the number of spanning forest of

Kn containing exactly k trees. Now we calculate g(n, k). We

introduce some notations first.

We let t(n) denote the number of spanning trees of Kn,

r(n) denote the number of rooted spanning trees, fk(n) denote

the number of spanning forest containing k trees, and rfk(n)
denote the number of rooted spanning forest containing k
trees. The exponential generating functions of r(n) and t(n)

are R(x) =
∑

n≥1

r(n)

n!
xn and T (x) =

∑

n≥1

t(n)

n!
xn respectively.

According to [16], we have the following three lemmas:

Lemma 4: t(n) = nn−2, r(n) = nn−1, rfk(n) =
(

n−1
k−1

)

nn−k.

Lemma 5: R(x) ⋅ eR(x) = x.

Lemma 6: The exponential generating functions of fk(n)

and rfk(n) are Efk(x) =
[T (x)]k

k!
and Erfk(x) =

[R(x)]k

k!
respectively.

Based on these lemmas, we get the counting theorem.

Theorem 7: The number of spanning forest containing k

trees is fk(n) = nn−k
k

∑

i=0

(
−1

2n
)i
(

n− 1

k + i− 1

)(

k

i

)

(k + i)!

k!
.

Proof: Let

y = R(x) =
∑

n≥1

r(n)

n!
xn =

∑

n≥1

nn−1

n!
xn

By Lemma 5 we have y ⋅ ey = x. Rewrite it as Lagrange

expansion then we have

y − y2

2
=

∞
∑

n=1

nn−2

n!
xn = T (x)

By Lemma 6, we have

Efk(x) =
[T (x)]k

k!
= (y − y2

2
)k/k!

which can be rewritten as

Efk(x) =
1

k!

k
∑

i=0

(−1

2
)i
(

k

i

)

yk+i

According to Lemma 4 and 6, we have

yr =

∞
∑

n=1

r!
(

n−1
r−1

)

nn−r

n!
xn

So

[xn]Efk(x) =
1

k!

k
∑

i=0

(−1

2
)i
(

k

i

)

([xn]yk+i)

=
1

k!

k
∑

i=0

(−1

2
)i
(

k

i

)

(
(k + i)!

(

n−1
k+i−1

)

nn−k−i

n!
)

= fk(n)/n!

which can be rewritten as

fk(n) = nn−k
k

∑

i=0

(− 1

2n
)i
(

n

k + i− 1

)(

k

i

)

(k + i)!

k!

Based on the above conclusions, we have some corollaries.

Corollary 8: For a full-2 system with n parity disks, the

proportion of recoverable k-erasures to total k-erasures is

Pr(k) =
1

(

n(n+1)/2
k

) (n+ 1)k
n−k+1
∑

i=0

(
−1

2(n+ 1)
)i

(

n

n− k + i

)(

n− k + 1

i

)

(n− k + i+ 1)!

(n− k + 1)!

Proof: By Lemma 3, Pr(k) = fn−k+1(n+1)/
(

N
k

)

, where

N =
(

n+1
2

)

. Simply applying Theorem 7 we get the result.

457

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−N� N�
� −�−(N−1)� (N−1)�
� −�−(N−2)� (N−2)�
� −�−(N−3)� q(3)(N−3)�
� −�−(N−4)�
⋅⋅⋅ ⋅⋅⋅

� −�−(N−n+3)� q(n−3)(N−n+3)�
� −�−(N−n+2)� q(n−2)(N−n+2)�
� −�−(N−n+1)�

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(6)

We can also calculate the transition probability q(k) from

state k to state k + 1, i.e., when k disks fail, the probability

of one more disk failure doesn’t leads to data loss).

Corollary 9: For k ≤ 3,

q(k + 1) =
(k + 1)fn−k(n+ 1)

(
(

n+1
2

)

− k)fn−k+1(n+ 1)

Proof: Let Ak denote the event that the system can be

recovered from a k-erasure. So

q(1) = q(2) = 1, q(3) = Pr(3), q(k + 1) = P(Ak+1∣Ak)

For a k-edge spanning forest of Kn+1, there are
(

n+1
2

)

−
k ways to add a new edge into the forest. Since there are

fn−k+1(n+ 1) k-edge spanning forests in Kn+1, we need to

consider (
(

n+1
2

)

−k)fn−k+1(n+1) cases in total. fn−k(n+1)
of them remain spanning forests (with k+1 edges and n− k
trees). Moreover, each (k+1)-edge spanning forest is counted

k + 1 times. In conclusion,

q(k + 1) =
(k + 1)fn−k(n+ 1)

(
(

n+1
2

)

− k)fn−k+1(n+ 1)

VI. RELIABILITY ANALYSIS FOR FULL-2 SYSTEMS

We analyzed the reliability of full-2 based storage systems

using the method described in Section V. � is set to 10−1,

namely the repair time is about one day. Maple 11 is used to

calculate Markov chains.

Fig. 5 shows MTTDL of full-2 based storage systems. We

can see that if � is fixed, the reliability of full-2 systems

decreases as system size climbs. But for tens of thousands

of to millions of hours device MTTF (conform to the relia-

bility of current enterprise hard disks), MTTDL of a full-2
system is longer than one million of hours even if the system

contains more than 1000 devices. This reliability satisfies most

applications.

Fig. 6 compares MTTDL of full-2 codes and MDS codes.

All of the codes contain the same total number of disks.

“MDS-2” denotes 2-erasure MDS codes. “MDS-n” denotes

MDS codes containing the same number of parity disks as

full-2 codes. “MDS=” denotes the MDS codes that have the

similar MTTDL as full-2 codes. The right Y-axis is for this

curve. It shows that, for a given total number of disks, how

many parity disks a MDS code needs to achieve the almost

5(15) 10(55) 15(105) 20(210) 50(1275)
1

10000

1E8

1E12

1E16

M
T

T
D

L
(h

o
u

rs
)

The number of parity disks (and data disks)

 : 10
-6
 10

-5
 10

-4
 10

-3

Fig. 5. MTTDL of full-2 based RAID.

same MTTDL as the full-2 code. We can see that although

full-2 codes with n parity disks are far inferior to n-erasure

MDS codes in reliability, but they are far superior to 2-erasure

MDS codes. Even for systems containing tens of thousands of

devices, they provide reasonable reliability. Moreover, full-2
code is “MDS-increasing”. Namely, as system size climbs, the

curve “MDS=” ascends.

5(15) 10(55) 15(105) 20(210) 50(1275) 100(5050) 150(11325) 200(20100)

1

10000

1E8

1E12

1E16

1E20

M
T

T
D

L
(h

o
u

rs
)

The number of parity disks (and data disks)

 full-2 MDS-2 MDS-n MDS=

0

5

10

15

20

25

30

35

T
h

e
 n

u
m

b
e

r
o

f
p

a
ri

ty
 d

is
k
s

Fig. 6. full-2 vs. MDS codes.

Our evaluation shows that, for a big storage system, such

as a distributed storage system with hundreds of nodes and

thousands of hard disks, full-2 code is a good choice for

reliability solution. Certainly, its MTTDL is lower than those

of MDS codes and LDPC codes with the same number of

parity disks. But in fact its reliability is good enough. MDS

codes and LDPC codes oversupply reliability. On the other

hand, full-2 code is superior to MDS codes and LDPC codes

458

in performance. It’s a 2-erasure code, thus its update penalty

(the number of parity disks need to be update when a data disk

is updated) is always 2 regardless of the number of parity disks

n. While the update penalty of MDS codes is n. That of LDPC

codes is very close to n. Moreover, the group size of full-2
codes with N disks is Θ(

√
N), while that of MDS codes and

LDPC codes is Θ(N). Smaller group size means that fewer

disks are involved during the recovery of a failed disk. That is

to say, full-2 code is superior to MDS codes and LDPC codes

in degrade- and reconstruct- mode performance. In addition,

compared with “MDS=” codes, full-2 codes still have these

advantages.

VII. CONCLUSION AND FUTURE WORK

Analyzing accurate reliability of non-MDS erasure codes

is difficult. In this paper, we revised graph representation for

full-2 codes. The new sink vertex representation translates k-

erasure recoverability problem into sub-graph cyclic decision

problem. Based on sink vertex representation, we presented a

combinatorial method to calculate the proportion of recover-

able k-erasures to total k-erasures precisely for all k > 2. We

gave a precise analysis for full-2 based storage systems using

this method. The analysis shows that full-2 code is a good

reliability solution for large storage systems.

In the future, applying this methodology to other non-MDS

erasure codes, such as 2d-parity code, 3d-parity code, full-3
code, Weaver code, and so on, is a valuable work. Analyzing

reliability of other systems (such as peer-to-peer systems)

based on non-MDS codes is also planned.

ACKNOWLEDGEMENTS

This paper is supported partly by the National High

Technology Research and Development Program of China

(2008AA01Z401), NSFC of China (60903028), RFDP of

China (20070055054), and Science and Technology Develop-

ment Plan of Tianjin (08JCYBJC13000).

We would like to thank anonymous reviewers for their

helpful comments.

REFERENCES

[1] P. F. Corbett, R. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar, “Row-Diagonal Parity for Double Disk Failure Correction,”
in Proceedings of the FAST ’04 Conference on File and Storage

Technologies, San Francisco, California, USA, dec 2004, pp. 1–14.
[2] J. S. Plank, “Erasure Codes for Storage Applications,” Tutorial Slides,

presented at the 4th Usenix Conference on File and Storage Technolo-

gies, FAST 2005, San Francisco, CA, USA, December 2005.
[3] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and D. A.

Patterson, “Coding Techniques for Handling Failures in Large Disk
Arrays,” Algorithmica, vol. 12, no. 2/3, pp. 182–208, 1994.

[4] J. S. Plank, “A Tutorial on Reed-Solomon Coding for Fault-Tolerance in
RAID-Like Systems,” Softw., Pract. Exper., vol. 27, no. 9, pp. 995–1012,
1997.

[5] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An Efficient
Scheme for Tolerating Double Disk Failures in RAID Architectures,”
IEEE Trans. Computers, vol. 44, no. 2, pp. 192–202, 1995.

[6] L. Xu and J. Bruck, “X-Code: MDS Array Codes with Optimal
Encoding,” IEEE Transactions on Information Theory, vol. 45, no. 1,
pp. 272–276, 1999.

[7] L. Xu, V. Bohossian, J. Bruck, and D. G. Wagner, “Low-density
MDS Codes and Factors of Complete Graphs,” IEEE Transactions on

Information Theory, vol. 45, no. 6, pp. 1817–1836, 1999.

[8] J. L. Hafner, “WEAVER Codes: Highly Fault Tolerant Erasure Codes for
Storage Systems,” in Proceedings of the FAST ’05 Conference on File

and Storage Technologies, San Francisco, California, December 2005,
pp. 73–80.

[9] T. J. E. Schwarz, “Reliability and performance of disk arrays,” Ph.D.
dissertation, University of California at San Diego, La Jolla, CA, USA,
1994. [Online]. Available: http://portal.acm.org/citation.cfm?id=221861

[10] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and
V. Stemann, “Practical Loss-Resilient Codes,” in STOC ’97: Proceedings

of the twenty-ninth annual ACM symposium on Theory of computing,
May.

[11] J. S. Plank, A. L. Buchsbaum, R. L. Collins, and M. G. Thomason,
“Small Parity-Check Erasure Codes - Exploration and Observations,” in
2005 International Conference on Dependable Systems and Networks

(DSN 2005), June.
[12] J. S. Plank and M. G. Thomason, “A Practical Analysis of Low-Density

Parity-Check Erasure Codes for Wide-Area Storage Applications,” in
2004 International Conference on Dependable Systems and Networks

(DSN 2004), June.
[13] J. L. Hafner and K. Rao, “Notes on Reliability Models for Non-MDS

Erasure Codes,” IBM Research Division, Almaden Research Center, San
Jose, CA, USA, Tech. Rep. RJ10391(A0610-35), Oct. 2006.

[14] J. G. Elerath and M. Pecht, “Enhanced Reliability Modeling of RAID
Storage Systems,” in The 37th Annual IEEE/IFIP International Confer-

ence on Dependable Systems and Networks, DSN 2007, June.
[15] J. Zhou, G. Wang, X. Liu, and J. Liu, “The Study of Graph Decom-

positions and Placement of Parity and Data to Tolerate Two Failures in
Disk Arrays: Conditions and Existance,” Chinese Journal of Computer,
vol. 26, no. 10, pp. 1379–1386, 2003.

[16] R. P. Stanley, Enumerative Combinatorics Volume 2. Cambridge, MA:
Cambridge University Press, 1999.

459

