
A Double-Objective Genetic Algorithm for Parity 
Declustering Optimization in Networked RAID  

Xiaoguang Liu, Gang Wang, Jing Liu  

 Department of Computer Science, Nankai  University, Tianjin, 300071, China  
{liuxg74, wgzwp}@hotmail.com,jingliu@nankai.edu.cn 

Abstract. RAID, as a popular technology to improve the performance and reli-
ability of storage system, has been used widely in computer industry. Recently, 
the technique of designing data layout in order to fit the requirements of net-
worked storage is becoming a new challenge in this field. In this paper, we pre-
sent a double-objective Genetic Algorithm for parity declustering optimization 
in networked RAID with a modified NSGA, we also take Distributed recovery 
workload and Distributed parity as two objects to find optimal data layout for 
parity declustering in networked RAID. 

1   Introduction 

Since RAID (Redundant Array of Independent Disks) [1] was invited in 1980s, it is 
becoming the most important technology in storage systems. Especially, RAID 5 has 
been treated as the most reliable storage standard. However, a shortcoming of RAID 
5 is that its performance falls obviously in degrade and reconstruction mode. To solve 
this problem, parity declustering was introduced by Muntz and Lui[2]. Through parity 
stripe distribution and Reconstruction Load Balance, parity declustering can improve 
the performance and reduce the time cost of reconstruction. Holland and Gibson also 
defined six standards to estimate ideal data layout[3]. It includes Single failure cor-
recting, Distributed recovery workload, Distributed parity, Efficient mapping, Large 
write optimization and Maximal parallelism. Following the six standards, Alvarez 
proved that building an ideal data layout was difficult in most cases[4]. So the prob-
lem has been converted to how to find a data layout which is as close to ideal data 
layout as possible. Many data layouts have been studied, such as BIBD, 
PRIME,PDDL and RELPR[2-5]. All of them emphasized only parts of the six stan-
dards for different applications. However, since ideal data layouts are required by the 
six standards, the multiobjective optimization algorithm is obviously a nature selec-
tion to find ideal data layouts. 

One way to solve multiobjective problems is transforming the original problem 
into a single objective problem by weighting the objectives with a weight vector. But 
the solution obtained in this way depends on the weight vector used in the process. 
Genetic algorithm works with a population, so we expect that it can find the Pareto 
optimal front to our problem.  



Many Pareto-based multiobjective GAs are developed in recent years. 
VEGA(vector evaluated genetic algorithm) performs the selection operation for each 
objective respectively. The pareto-based ranking GA was proposed by Fonseca and 
Fleming[6]. An individual’s rank equals the number of other individuals in the popu-
lation by which it is dominated. NPGA (niched pareto genetic algorithm) uses the 
concept of pareto dominance and tournament selection in solving multiobjective 
optimization problems[7].NSGA (Non-dominated Sorting Genetic Algorithm) was 
first implemented by Srinivas and Deb[8]. While it follows the standard genetic algo-
rithm for parent selection and offspring generation, it determines the fitness of the 
individual using the concept of parato dominance also. To improve the performance, 
NSGA-2 was proposed in 2000[9], and its source codes also can be download. 

In this paper, we use NSGA to find a better data layout for networked RAID sys-
tems. Because Distributed recovery workload and Distributed parity take more 
weights on the networked RAID systems, we set them as the two objects of our algo-
rithm. To compare the performances of the solution, an experiment based simulated 
annealing was done simultaneously. The results show that the double-objective Ge-
netic Algorithm can produce better data layout for networked storage. To our knowl-
edge, this work is firstly applied the multiobjective genetic algorithm to solve parity 
declustering optimization problem.  

2 The Double-objective Genetic Algorithm  

2.1   The Design of Algorithm 

Among the six standards of ideal data layout, the second, Distributed recovery work-
load, and the third, Distributed parity, take the largest influence on the performance 
of networked storage. So we set these two standards as the objects of NSGA. Accord-
ing to the choice of double-objective optimization function，the partial relation on 
the target space can be converted to pareto dominance on the decision space. After 
enough iterations, the partial relation can be converted to pareto dominance on the 
decision space under the control of the double-objective function. At last, we can get 
a set of pareto dominated solutions. The optimum data layout can be selected from 
this set. 

2.2 The Detail of  Algorithm 

2.2.1   Objective Functions 
In this section, the detail of objective functions is presented. 
(1)  Weight 

During initial period, we set the weight under the following rules, 
Rule 1: To all local connected disk, the value of weight, eij, is 1; 



Rule 2: If there is one controller node in the networked storage system, and all 
storage management job run only on the controller (supposing the number of control-
ler is 0), then we have, 
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Rule 3: To the distributed storage system, such as petal, the storage management 
job can run on more than one node. If disk i and disk j belong to the same node, then 
eij is 1,else eij is e. Here, m is the number of disks. 
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(2) The function of Reconstruction Load  
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Here, Xij means the number of stripes read from disk j while disk i broke down,  eij 
means the cost of the system which reads a stripe unit from disk j while disk i failed. 
In order to improve the performance, we should minimize the value of function H.   
(3) The function of Parity overhead  

∑= 2
iP)(LPWEIGHTED  (4) 

Here, Pi is the number of parity units on disk i. Obviously, we should also mini-
mize function P.  

2.2.2   Parameters of Algorithm  
The data layout is used as the chromosome in the algorithm. Every data layout is 
presented as a vr ×  matrix. Here, r is the number of lines in the data layout, v is the 
number of the disks, k is the length of the stripe. Simply, we only consider the situa-
tion that v can be divided exactly by k in this paper. The absolute value of the ele-
ments in the matrix is the sequence number of the stripes, and the elements which 
value less than zero are parity unites in stripes. An example(r=5, v=6，k=3) is shown 
in figure 1. 

The Pareto dominate relation on decision space can be described as follows, 
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In order to avoid illegal data layout produced during iterations, we make some re-
strictions on the intercross and mutation regulars. For example, all lines must be in-
terchanged between two data layouts in intercross, and mutation only interchanges 
two elements in the same line. 



 
Fig. 1. An example of data layout 

2.2.3   The Algorithm  
The algorithm can be described as follows, 

a. Initially, N data layouts are given randomly. 
b. The functions of Reconstruction Load (H) and Parity overhead (P) are computed. 
c. According to their pareto relations, all the data layouts are divided into m sets. 
d. According to the regulars in niche, we set all sets with the shared fitness values 

in turn. 
e. N better data layouts are selected from all sets. 
f. The parents are selected by roulette, and N new data layouts are produced after 

intercross and mutation. 
g. The functions of Reconstruction Load (H) and Parity overhead (P) are calculated 

again. If the difference between the actual value and ideal value is less than the 
threshold which is defined initially, then the program ends, else turns to step b. 

Here, the population size in the first iteration is N, and it is 2N in the others. How-
ever, the population, which used for selection, intercross and mutation, is still N in 
each generation. Specially, these N individuals are the better ones in the 2N data 
layouts. 

2.2.4   Simulated Annealing Algorithm  
In order to compare the performance of the double-objective Genetic Algorithm, we 
also implement a simulated annealing algorithm for the same problem. The simulated 
annealing algorithm can be described as follows, 

a. Initialization. The default values of parameter are set. Such as length, the maxi-
mal length of Markov chain, T0, the temperature in initial state, ngel, the maximal 
number of data layouts which have same value, gen, the maximal number of iteration. 

b. If the number of iteration exceeds gen, end the program, else turns to step c. 
c. If the number of same data layouts exceeds ngel, turns to step g. 
d. If the length of Markov chain exceeds length, turns to step g. 
e. Generate new data layout, and calculate its value of reconstruction function. 
f. The length of Markov chain adds 1. If the probability estimation can be accepted, 

then the new data layout is legal and turns to step d. Else, the number of same data 
layouts adds 1 and turns to step c. 

g. According to Distributed parity, if the new data layout is the best solution until 
now, then records it. The number of iteration adds 1 and turns to step b. 

In our experiments, T0 is 0.5, length is 1000, ngel is 10 and gen is 10. 



3   Experimental Results 

There are two groups of test in the experiment. One is the optimum data layout in 
local disk array. The other is the result in distributed storage system. Simultaneously, 
the best results in this experiment are compared with the best results in theory.  

Table 1. The optimum data layout in local disk array (v = 12,k = 6,N = 50) 

Lines ideal Xij  Actual Xij Difference Ideal Pi Actual 

Pi 

Differ-

ence 

117 53.18 55 3.309% 19.5 20 2.25% 

308 140 142 1.428% 51.333 52 1.346% 

1121 509.54 512 0.482% 186.833 187 0.358% 

4873 2215 2219 0.18% 812.167 813 0.103% 
According to the conclusion in reference 10, any Xij has the same value in local 

disk arrays[10], and the value should be equal to )1()1( −−× vkr . Besides, any 
Pi  also has the same value, it equals to r/k. As shown in table 1,  Xij and Pi in actual 
test have nearly reached the best results in theory. 

Table 2. The optimum data layout in distributed storage system(r = 117, k = 10, v = 40) 

Nodes Ha Hb Ideal Pi Actual Pi

 2 5805760 2105600 12 12 

4 8140350 3766204 12 12 

5 8605310 4335244 12 13 

8 9306610 5828024 12 13 
a The value of function H using simulated anneaing. 
b The value of function H using double-Objective Genetic Algorithm.  

Using double-objective Genetic Algorithm, the parity units are distributed more 
even in storage system. As shown in table 2, the value of function H using double-
Objective Genetic Algorithm is much smaller than that using simulated annealing. In 
a word, the double-objective Genetic Algorithm has selected the most two important  
standards from six standards of ideal data layout. It can produce better data layouts 
for networked storage. 



4    Conclusions   

In this paper, we use the double-objective Genetic Algorithm to design the optimum 
data layout for networked storage system. To the objective functions in the algorithm, 
we chose Distributed recovery workload and Distributed parity, which are more 
important standards to the performance of storage system. The experimental results 
show that the double-objective Genetic Algorithm can produce better data layout for 
networked storage. We can conclude that multi-objective Genetic Algorithm is a 
feasible and effective optimization algorithm for designing ideal data layout. As far as 
we know, our paper is the first to use multi-objective Genetic Algorithm in the design 
of ideal data layout, and this application may become popular to multi-objective Ge-
netic Algorithm in the future. 
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