
A Double-Objective Genetic Algorithm for Parity
Declustering Optimization in Networked RAID

Xiaoguang Liu, Gang Wang, Jing Liu

 Department of Computer Science, Nankai University, Tianjin, 300071, China
{liuxg74, wgzwp}@hotmail.com,jingliu@nankai.edu.cn

Abstract. RAID, as a popular technology to improve the performance and reli-
ability of storage system, has been used widely in computer industry. Recently,
the technique of designing data layout in order to fit the requirements of net-
worked storage is becoming a new challenge in this field. In this paper, we pre-
sent a double-objective Genetic Algorithm for parity declustering optimization
in networked RAID with a modified NSGA, we also take Distributed recovery
workload and Distributed parity as two objects to find optimal data layout for
parity declustering in networked RAID.

1 Introduction

Since RAID (Redundant Array of Independent Disks) [1] was invited in 1980s, it is
becoming the most important technology in storage systems. Especially, RAID 5 has
been treated as the most reliable storage standard. However, a shortcoming of RAID
5 is that its performance falls obviously in degrade and reconstruction mode. To solve
this problem, parity declustering was introduced by Muntz and Lui[2]. Through parity
stripe distribution and Reconstruction Load Balance, parity declustering can improve
the performance and reduce the time cost of reconstruction. Holland and Gibson also
defined six standards to estimate ideal data layout[3]. It includes Single failure cor-
recting, Distributed recovery workload, Distributed parity, Efficient mapping, Large
write optimization and Maximal parallelism. Following the six standards, Alvarez
proved that building an ideal data layout was difficult in most cases[4]. So the prob-
lem has been converted to how to find a data layout which is as close to ideal data
layout as possible. Many data layouts have been studied, such as BIBD,
PRIME,PDDL and RELPR[2-5]. All of them emphasized only parts of the six stan-
dards for different applications. However, since ideal data layouts are required by the
six standards, the multiobjective optimization algorithm is obviously a nature selec-
tion to find ideal data layouts.

One way to solve multiobjective problems is transforming the original problem
into a single objective problem by weighting the objectives with a weight vector. But
the solution obtained in this way depends on the weight vector used in the process.
Genetic algorithm works with a population, so we expect that it can find the Pareto
optimal front to our problem.

Many Pareto-based multiobjective GAs are developed in recent years.
VEGA(vector evaluated genetic algorithm) performs the selection operation for each
objective respectively. The pareto-based ranking GA was proposed by Fonseca and
Fleming[6]. An individual’s rank equals the number of other individuals in the popu-
lation by which it is dominated. NPGA (niched pareto genetic algorithm) uses the
concept of pareto dominance and tournament selection in solving multiobjective
optimization problems[7].NSGA (Non-dominated Sorting Genetic Algorithm) was
first implemented by Srinivas and Deb[8]. While it follows the standard genetic algo-
rithm for parent selection and offspring generation, it determines the fitness of the
individual using the concept of parato dominance also. To improve the performance,
NSGA-2 was proposed in 2000[9], and its source codes also can be download.

In this paper, we use NSGA to find a better data layout for networked RAID sys-
tems. Because Distributed recovery workload and Distributed parity take more
weights on the networked RAID systems, we set them as the two objects of our algo-
rithm. To compare the performances of the solution, an experiment based simulated
annealing was done simultaneously. The results show that the double-objective Ge-
netic Algorithm can produce better data layout for networked storage. To our knowl-
edge, this work is firstly applied the multiobjective genetic algorithm to solve parity
declustering optimization problem.

2 The Double-objective Genetic Algorithm

2.1 The Design of Algorithm

Among the six standards of ideal data layout, the second, Distributed recovery work-
load, and the third, Distributed parity, take the largest influence on the performance
of networked storage. So we set these two standards as the objects of NSGA. Accord-
ing to the choice of double-objective optimization function，the partial relation on
the target space can be converted to pareto dominance on the decision space. After
enough iterations, the partial relation can be converted to pareto dominance on the
decision space under the control of the double-objective function. At last, we can get
a set of pareto dominated solutions. The optimum data layout can be selected from
this set.

2.2 The Detail of Algorithm

2.2.1 Objective Functions
In this section, the detail of objective functions is presented.
(1) Weight

During initial period, we set the weight under the following rules,
Rule 1: To all local connected disk, the value of weight, eij, is 1;

Rule 2: If there is one controller node in the networked storage system, and all
storage management job run only on the controller (supposing the number of control-
ler is 0), then we have,

⎩
⎨
⎧

≠
=

=
0)mod(,
0)mod(,1

mje
mj

eij
(1)

Rule 3: To the distributed storage system, such as petal, the storage management
job can run on more than one node. If disk i and disk j belong to the same node, then
eij is 1,else eij is e. Here, m is the number of disks.

⎩
⎨
⎧

≠
=

=
)mod()mod(,
)mod()mod(,1

mimje
mimj

eij
(2)

(2) The function of Reconstruction Load

∑ •= 2
ij)(X)(ijWEIGHTED eLH (3)

Here, Xij means the number of stripes read from disk j while disk i broke down, eij
means the cost of the system which reads a stripe unit from disk j while disk i failed.
In order to improve the performance, we should minimize the value of function H.
(3) The function of Parity overhead

∑= 2
iP)(LPWEIGHTED (4)

Here, Pi is the number of parity units on disk i. Obviously, we should also mini-
mize function P.

2.2.2 Parameters of Algorithm
The data layout is used as the chromosome in the algorithm. Every data layout is
presented as a vr × matrix. Here, r is the number of lines in the data layout, v is the
number of the disks, k is the length of the stripe. Simply, we only consider the situa-
tion that v can be divided exactly by k in this paper. The absolute value of the ele-
ments in the matrix is the sequence number of the stripes, and the elements which
value less than zero are parity unites in stripes. An example(r=5, v=6，k=3) is shown
in figure 1.

The Pareto dominate relation on decision space can be described as follows,

)))()((||))()(&((&
)))()(&(&))()(((Dominat BA

BPAPBHAH
BPAPBHAH

<<
≤≤⇔

(5)

In order to avoid illegal data layout produced during iterations, we make some re-
strictions on the intercross and mutation regulars. For example, all lines must be in-
terchanged between two data layouts in intercross, and mutation only interchanges
two elements in the same line.

Fig. 1. An example of data layout

2.2.3 The Algorithm
The algorithm can be described as follows,

a. Initially, N data layouts are given randomly.
b. The functions of Reconstruction Load (H) and Parity overhead (P) are computed.
c. According to their pareto relations, all the data layouts are divided into m sets.
d. According to the regulars in niche, we set all sets with the shared fitness values

in turn.
e. N better data layouts are selected from all sets.
f. The parents are selected by roulette, and N new data layouts are produced after

intercross and mutation.
g. The functions of Reconstruction Load (H) and Parity overhead (P) are calculated

again. If the difference between the actual value and ideal value is less than the
threshold which is defined initially, then the program ends, else turns to step b.

Here, the population size in the first iteration is N, and it is 2N in the others. How-
ever, the population, which used for selection, intercross and mutation, is still N in
each generation. Specially, these N individuals are the better ones in the 2N data
layouts.

2.2.4 Simulated Annealing Algorithm
In order to compare the performance of the double-objective Genetic Algorithm, we
also implement a simulated annealing algorithm for the same problem. The simulated
annealing algorithm can be described as follows,

a. Initialization. The default values of parameter are set. Such as length, the maxi-
mal length of Markov chain, T0, the temperature in initial state, ngel, the maximal
number of data layouts which have same value, gen, the maximal number of iteration.

b. If the number of iteration exceeds gen, end the program, else turns to step c.
c. If the number of same data layouts exceeds ngel, turns to step g.
d. If the length of Markov chain exceeds length, turns to step g.
e. Generate new data layout, and calculate its value of reconstruction function.
f. The length of Markov chain adds 1. If the probability estimation can be accepted,

then the new data layout is legal and turns to step d. Else, the number of same data
layouts adds 1 and turns to step c.

g. According to Distributed parity, if the new data layout is the best solution until
now, then records it. The number of iteration adds 1 and turns to step b.

In our experiments, T0 is 0.5, length is 1000, ngel is 10 and gen is 10.

3 Experimental Results

There are two groups of test in the experiment. One is the optimum data layout in
local disk array. The other is the result in distributed storage system. Simultaneously,
the best results in this experiment are compared with the best results in theory.

Table 1. The optimum data layout in local disk array (v = 12,k = 6,N = 50)

Lines ideal Xij Actual Xij Difference Ideal Pi Actual

Pi

Differ-

ence

117 53.18 55 3.309% 19.5 20 2.25%

308 140 142 1.428% 51.333 52 1.346%

1121 509.54 512 0.482% 186.833 187 0.358%

4873 2215 2219 0.18% 812.167 813 0.103%
According to the conclusion in reference 10, any Xij has the same value in local

disk arrays[10], and the value should be equal to)1()1(−−× vkr . Besides, any
Pi also has the same value, it equals to r/k. As shown in table 1, Xij and Pi in actual
test have nearly reached the best results in theory.

Table 2. The optimum data layout in distributed storage system(r = 117, k = 10, v = 40)

Nodes Ha Hb Ideal Pi Actual Pi

 2 5805760 2105600 12 12

4 8140350 3766204 12 12

5 8605310 4335244 12 13

8 9306610 5828024 12 13
a The value of function H using simulated anneaing.
b The value of function H using double-Objective Genetic Algorithm.

Using double-objective Genetic Algorithm, the parity units are distributed more
even in storage system. As shown in table 2, the value of function H using double-
Objective Genetic Algorithm is much smaller than that using simulated annealing. In
a word, the double-objective Genetic Algorithm has selected the most two important
standards from six standards of ideal data layout. It can produce better data layouts
for networked storage.

4 Conclusions

In this paper, we use the double-objective Genetic Algorithm to design the optimum
data layout for networked storage system. To the objective functions in the algorithm,
we chose Distributed recovery workload and Distributed parity, which are more
important standards to the performance of storage system. The experimental results
show that the double-objective Genetic Algorithm can produce better data layout for
networked storage. We can conclude that multi-objective Genetic Algorithm is a
feasible and effective optimization algorithm for designing ideal data layout. As far as
we know, our paper is the first to use multi-objective Genetic Algorithm in the design
of ideal data layout, and this application may become popular to multi-objective Ge-
netic Algorithm in the future.

 Acknowledgements

This paper is sponsored by NSF of China (90612001), Science and Technology De-
velopment Plan of Tianjin, (043185111-14) and Nankai university science and tech-
nology innovation fund and ISC.

References

1. Patterson, D., Gibson, G., Katz, R.: A case for redundant arrays of inexpensive
disks(RAID). Proceedings of ACM SIGMOD, Seattle, Washington, USA(1998)109-116

2. Muntz, R., Lui, J.: Performance Analysis of Disk Arrays Under Failure. Proceedings of
the conference on Very Large Data Bases, Brisbane, Queensland, Australia(1990)162-173

3. Holland, M., Gibson, G., Sieworuk D.: Architectures and Algorithms for On-Line Failure
Recovery in Redundant Disk Arrays. Journal of Parallel and Distributed Databases
2(1994)295-335

4. Alvarez, G., Burkhard, W., Stockmeyer, L., Cristian, F.: Declustered Disk Array Architec-
tures with Optimal and Near-Optimal Parallelism．Proceedings of the 25th Annual
ACM/IEEE International Symposium on Computer Architecture, Barcelona, Spain
(1998)109-120

5. Schwarz, T., Steinberg, J., Burkhard, W.: Permutation Development Data Layout (PDDL)
Disk Array Declustering． Proceedings of the Fifth International Symposium on High-
Performance Computer Architecture, Orlando, FL, USA (1999)214-217

6. Fonseca, C., Fleming, P.: Genetic algorithm for multiobjective optimization. Proceedings
of 5th International conference on Genetic Algorithms, San Mateo, CA, USA(1993)416-
423

7. Horn, J., Nafpliotis, N., Goldberg, D.: A niched Pareto genetic algorithm for multiobjec-
tive optimization. Proceedings of 1st IEEE conference on Evolutionary Computation,
Piscataway, NJ, USA(1994) 82-87

8. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic
algorithms．Evolutionary Computation 2(1994)221-248

9. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A Fast Elitist Non Dominated Sorting
Genetic Algorithm for Multi Objective Optimization: NSGA-2. Proceedings of Parallel
Problem Solving from Nature (PPSN) 6th International conference, Paris, France(2000)
858-862

10. Schwabe, E., Sutherland, I., Holmer,B.: Evaluating Approximately Balanced Parity-
Declustered Data Layouts for Disk Arrays．Parallel Computing 23(1997) 501-523

