
Adaptive Pipeline for Deduplication
Jingwei Ma1, Bin Zhao1, Gang Wang∗1, Xiaoguang Liu∗2

1 College of I.T., Nankai University, Tianjin, China
2 College of C.S., Nankai University, Tianjin, China

mjwtom@gmail.com, yunshuishanmu@163.com, {wgzwp, liuxg74}@yahoo.com.cn

Abstract—Deduplication has become one of the hottest topics
in the field of data storage. Quite a few methods towards reducing
disk I/O caused by deduplication have been proposed. Some
methods also have been studied to accelerate computational sub-
tasks in deduplication. However, the order of computational sub-
tasks can affect overall deduplication throughput significantly,
because computational sub-tasks exhibit quite different workload
and concurrency in different orders and with different data
sets. This paper proposes an adaptive pipelining model for the
computational sub-tasks in deduplication. It takes both data type
and hardware platform into account. Taking the compression
ratio and the duplicate ratio of the data stream, and the
compression speed and the fingerprinting speed on different
processing units as parameters, it determines the optimal order
of the pipeline stages (computational sub-tasks) and assigns each
stage to the processing unit which processes it fastest. That is,
“adaptive” refers to both data adaptive and hardware adaptive.
Experimental results show that the adaptive pipeline improves
the deduplication throughput up to 50% compared with the plain
fixed pipeline, which implies that it is suitable for simultaneous
deduplication of various data types on modern heterogeneous
multi-core systems.

I. INTRODUCTION

The digital universe cracked the zettabyte barrier in
2010 [6]. In 2011, the amount of information created and
replicated will surpass 1.8 zettabytes (1.8 trillion gigabytes)
- growing by a factor of 9 in just five years.

To mitigate storage cost of such huge volumes of data, data
deduplication is exploited, which identifies duplicated data and
eliminates it to save storage space. The storage space can be
reduced by a factor of 10 to 20 [1] with deduplication.

To avoiding the performance degradation caused by extra
deduplication step. Many methods have been proposed to
eliminate I/O bottleneck and to accelerate the computational
sub-tasks. For example, Bloom Filter [2], Sparse Indexing [9],
Extreme Binning [3] and Cook Hash [12] [5] are proposed
to reduce disk I/O. Data Domain File System (DDFS) [15]
combined Bloom Filter, Stream-Informed Segment Layout
(SISL) and Locality Preserved Cache (LPC) together and
reduced the disk I/O to 1%. In addition, GPU [8] and PadLock
engine [10] are used to accelerate hash calculation and encryp-
tion in deduplication systems. To build a high performance
deduplication system, pipeline can exploit currency among
computational sub-tasks, and therefore make the most of
computing resources [7].

However, few notice another important factor on deduplica-
tion throughput - the order of the computational sub-tasks.
Since the output of the predecessor sub-task is the input

of the successor sub-task, different orders may yield very
different performance. For example, putting compression after
duplication identification is better for highly duplicate data sets
and the reverse order may be better for other kinds of data.
However, neither order can defeat the other in all situations.
Also, a general-purpose CPU may compress a data block
much faster than calculate its SHA-1 digest, while PadLock
engine [14] in a VIA CPU is just the opposite. An adaptive
method is promising for this problem.

This paper proposes an adaptive pipelining model for d-
eduplication. The order of stages is arranged according to the
data type and the execution time of each stage on different
processing units. We tested the model in our deduplication
prototype. The results show that the adaptive pipeline improves
throughput up to 50% compared with the plain fixed pipeline.

II. RELATED WORK

Data deduplication was proposed mainly to solve the storage
and network overhead, so early researches usually focused on
compression ratio rather than throughput [13]. However, the
throughput is low due to disk bottleneck.

Data Domain File System (DDFS) [15] is one of the earliest
studies that try to solve the disk bottleneck problem. It used
Bloom Filter, Stream-Informed Segment Layout and Locality
Preserved Cache to reduce disk I/O. With the above methods,
99% of disk I/O was reduced. Sparse Indexing [9] was also
used to eliminate the disk bottleneck. The data was divided
into segments and fingerprints are sampled. According to the
similarity of the sample fingerprints, several champion seg-
ments are selected to compare with a new incoming segment.
This method reduces the RAM to disk ratio and also the disk
accesses.

To make full use of the resources, Guo et al. [7] presented
a modular, event-driven, client pipeline design for source
deduplication [11]. It can achieve high backup throughput (1
GB/sec for unique data and 6 GB/sec for duplicate data) and
restore throughput (1 GB/sec for single stream and 430 M-
B/sec for multiple streams) and good deduplication efficiency
(97%), at high capacities (123 billion objects, 500 TB of data
per 25 GB of system memory).

The computational sub-tasks in deduplication also seriously
affect the performance of the system. Ma et al. [10] used
Padlock engine in VIA CPU to accelerate SHA-1 and AES
calculation in deduplication systems and got an ideal through-
put on low power consumption platform. The throughput per
watt was improved up to 15 times. Li et al. [8] used GPU to



accelerate hash calculation in deduplication and with the help
of GPU, the hash throughput is improved remarkably.

These researches mainly focused on optimizing single com-
putational sub-tasks in deduplication and ignored the relation-
ship among these sub-tasks. For example, DDFS and Venti put
compression after duplications having been detected. This is
suitable for data sets with high duplicate ratio, but not suitable
for all situations. For data sets with high compression ratio and
relative lower duplicate ratio, the reverse order may be better.

Increasingly, heterogeneous multi-core platforms are de-
ployed. Nowadays, deduplication systems typically run on
multi-core platforms. Considering this kind of platform is
composed of different processing units, which run dedupli-
cation sub-tasks at different speeds, the problem becomes
further complicated. Our adaptive pipelining model takes the
characteristics of both data type and hardware platform into
account. The model considers two cases, in which all of the
pipeline stages are the same size or not, and chooses different
strategies to assemble the optimal pipeline in both cases.

III. ADAPTIVE PIPELINING MODEL

During one deduplication procedure, typically the compu-
tational sub-tasks shown below are performed [15] [13]. First,
a hash value is calculated as the unique fingerprint of a chunk
or a file. Then the fingerprint is compared with previous ones
to determine if the chunk is unique. These two sub-tasks are
the basic parts of deduplication. Usually some other parts are
added to meet different needs. Compression is often performed
to get a further storage space saving. If a remote disk is used
to store the data, the data will be encrypted for safety.

Duplication identification must be performed after finger-
printing since the input of the latter is the output of the
former. Encryption must be performed after deduplication
identification to avoid encrypting duplicate data. The reverse
order inevitably causes performance degradation. Similarly,
encryption and compression also have the partial order re-
lation. However, the optimal order of some sub-tasks depends
on the type of data to be deduplicated and the hardware
platform. Compression can be put either before or after
duplication identification. For the “compression ahead” order,
the amount of work of hash calculation is reduced. For the
“compression behind” order, duplicate data compression is
avoid. Neither order can defeat the other in all situations.
So we come up with two orders of computational sub-tasks
in deduplication. One is Compression→ Hash calculation→
Duplication Identification→ Encryption (CHIE for short).
The other is Hash calculation→ Duplication Identification→
Compression→ Encryption (HICE for short). To make full use
of multi-core platforms, computational sub-tasks are organized
into a pipeline [7]. Then we have two types of pipeline, CHIE
and HICE.

We build a quantitative model to depict the deduplication
pipeline and determine the optimal pipeline order according
to some parameters of data set and hardware platform. In the
rest of this section, we will introduce the adaptive pipelining
model in detail. Although our discussion and experiments are

both based on pipelined deduplication systems, the adaptive
model is also fit for serial systems.

A. Pipeline Balance
The degree of inequality of stage size affects the pipeline

throughput seriously. The speed of a pipeline is limited by the
slowest stage. So we consider two situations: the balanced
pipeline, in which all of the stages are almost the same size;
and the unbalanced pipeline, in which some stages are much
bigger than others. For a balanced pipeline, we can obtain the
optimal throughput by simply distributing stages to processing
units evenly. The processing units are rarely idle during the
running of the pipeline. However, for a unbalanced pipeline,
this task distribution will cause some processing units to spend
a large part of time in idling. To obtain throughput close to the
optimal, we must eliminates idling by some techniques, such
as pipeline reordering, sub-tasks combination, and multithread.

Fig. 1 shows a balanced pipeline composed of three stages.
Although it is run on a machine with only two cores rather
than three, load balance is still easy to reach since the three
stages are all the same size. Suppose that the execution time
of the first stage on a data chunk is T0 (it is just the size of the
first stage), and those of the second and the third stages are
T1 and T2 respectively. The total amount of work the pipeline
done, or equivalently, the total time spent by the two cores, is
T0 +T1 +T2. Since the stages are distributed between the two
cores evenly, the average processing time of a data chunk is
T0+T1+T2

2 . More generally, for a pipeline composed of M stages
running on a machine with N cores, and the execution time
of the i-th stage is Ti, for 0 ≤ i < M, the average processing

time of a data chunk is

M−1
∑

i=0
Ti

N .

chunk0Stage0 chunk1 chunk2

chunk0 chunk1

chunk0 chunk1

Stage1

Stage2

Core0

Core1

wait

wait

wait

wait

Stage0 Stage0 Stage2Stage2

wait Stage1 Stage0Stage1

timeline

Fig. 1. Balanced Pipeline

An unbalanced pipeline is shown in Fig. 2. The light grids
denote effective computation time, and the dark grids denote
idle time caused by waiting between stages. The first stage
spend much longer time than the other two. It limits the speed
of the whole pipeline.

B. Notations
Before give our adaptive pipelining model, we assign the

variables:



chunk0Stage0 chunk1 chunk2

chunk0

chunk0

chunk1

chunk1

Stage1

Stage2

Core0

Core1

wait wait wait

wait wait wait

Stage0 Stage0 Stage0

Stage1 Stage1Stage2 Stage2wait wait wait

timeline

Fig. 2. Unbalanced Pipeline

• S is the input data size.
• SC is the size of data to be compressed.
• SH is the size of data to be fingerprinted.
• RD is the duplicate ratio of data.
• RC is the compression ratio of data.
• C is the throughput of compression.
• H is the throughput of hash calculation (fingerprinting).
• TC is the compression time.
• TH is the hash time.
• TI is the identification time.
• TE is the encryption time.
• T S

CHIE is the serial execution time of the CHIE pipeline.
• T S

HICE is the serial execution time of the HICE pipeline.
• N is the number of processing units.
• T P

CHIE is the parallel execution time of the CHIE pipeline.
• T P

HICE is the parallel execution time of the HICE pipeline.

C. Model for Balanced Pipeline

For a balanced pipeline, the serial execution time is the
simple sum of the execution times of all stages. Since the
serial execution time can be regarded as the total time spent
by all processing units in a parallel execution, the parallel
execution time is just the serial execution time divided by N.

Common compression, hash calculation and encryption
algorithms used in deduplication are linear time algorithms.
For example, LZJB, the compression algorithm used in our
deduplication prototype is a linear time algorithm. Therefore,
the time spent in compression in a CHIE pipeline is

TC =
S
C

(1)

The amount of data to be compressed is S since compression
is the first step. Similarly, we have the hash calculation time

TH =
SH

H
=

SRC

H
(2)

The serial time of a CHIE pipeline is

T S
CHIE = TC +TH +TI +TE

=
S
C
+

SRC

H
+TI +TE

(3)

The parallel execution time is T P
CHIE ≈

T S
CHIE
N . Since there

are start time and stop time, the parallel time of a pipeline is
not exactly equal to the serial time divided by N. However,
the start and stop time are negligible if the data set is large
enough. So we can replace the approximately equal sign by a
equal sign. In addition, if multithreading technique is used, the
parallel time can be exactly equal to the serial time divided
by N.

We can analyze the execution time for a HICE pipeline
similarly. The hash calculation time is

T ′H =
S
H

(4)

Since some duplicate data chunks are discarded, the size of
data to be compressed is SC = S(1−RD), and the compression
time is

T ′C =
SC

C
=

S(1−RD)

C
(5)

The size of fingerprints is independent of the order of the
pipeline. So the size of fingerprints is the same as that in
CHIE pipeline. So does the duplication identification time.
Encryption is still performed on compressed unique data
chunks, so the encryption time is the same as type pipeline
type of CHIE. Therefore, the serial execution time of a HICE
pipeline is

T S
HICE = T ′H +T ′C +TI +TE

=
S
H

+
S(1−RD)

C
+TI +TE

(6)

The parallel execution time is T P
HICE ≈

T S
HICE
N .

To determine the optimal pipeline order, we can simply
compare formula (3) and formula (6). If T S

CHIE < T S
HICE ,

the CHIE pipeline is the optimal order. This inequality is
simplified as

S
C
+

SRC

H
<

S
H

+
S(1−RD)

C
H +CRC <C+H(1−RD)

RDH
(1−RC)C

< 1

(7)

The HICE pipeline is selected if the following inequality is
satisfied.

RDH
(1−RC)C

> 1 (8)

For a serial deduplication system, the execution time is the
sum of the time spent by all the stages whether the stages are
balanced or not. This is similar to the balanced situation except
that it doesn’t need to be divided by N. So this model can be
applied to both serial and balanced pipelining deduplication
systems. It selects the optimal order of the pipeline according
to the compression ratio and the duplicate ratio of the data



set, and the compression speed and the hash calculation speed
on the given hardware platform. These parameters can be
estimated by sampling the data set. If the distribution of these
parameters is uniform, the estimation can guides the selection
of pipeline order effectively.

D. Model for Unbalanced Pipeline

For a pipeline composed of unequal stages, it is a little hard
to analyze precise workload and parallel execution time on a
multi-core platform. However, if we suppose that the hardware
platform equipped with enough processing units so that each
stage is run by an unique processing unit, we can approximate
the parallel execution time of an unbalanced pipeline by the
time of the slowest stage.

In deduplication systems, hash calculation and compression
generally spend much more time than other sub-tasks. One of
them often is the slowest sub-task. Because of the relationship
of these two sub-tasks, we can improve the throughput by
reorganizing the pipeline.

1) Hash Bottleneck: If hash calculation is the slowest stage
in deduplication pipeline, it will block the pipeline. Suppose
that the hash bottleneck is caused by the hash throughput H
is remarkably lower than the throughput of any other stage
(for example compression throughput C) rather than other
reasons. (such as fast compression caused by relatively high
duplicate ratio.) In this case, different orders still exhibit
different performance. If hash calculation is the first stage,
the worst throughput is gained since the amount of work of
hash calculation SH is maximized to S, that is the bottleneck
of the pipeline is maximized. The parallel execution time is

T P
HICE = TH =

S
H

(9)

Compression reduce the amount of data. So we put the
compression stage ahead to reduce the amount of work of
hash calculation. Since the hash calculation time is short-
ened, another stage may become the slowest one. This new
bottleneck usually will be compression, so we take it as an
example. Therefore, the execution time of the pipeline is just
the compression time

T P
CHIE = TC =

S
C

(10)

Since we suppose that H < C, we have TH > TC. Therefore,
the execution time is reduced.

If the hash calculation is still the slowest stage, the overall
throughput is also improved since we improve the hash cal-
culation performance by reducing the amount of data to be
processed. The execution time of the pipeline is equal to the
execution time of the postpositive hash calculation stage

T P
CHIE = T ′H =

SH

H
=

SRC

H
(11)

2) Compression Bottleneck: If compression is the slowest
stage in the deduplication pipeline and the HICE order is used,
we can not improve compression performance by reorder the
pipeline. So we only consider the CHIE order. The execution
time of the pipeline is equal to the compression time

T P
CHIE = TC =

S
C

(12)

We also suppose that the compression bottleneck is caused
by the compression throughput C is remarkably lower than the
throughput of any other stage (for example hash throughput
H). Since putting duplication identification before compression
can avoid compressing duplicate data chunks, we try to im-
prove throughput by putting hash calculation and duplication
identification ahead, that is, use the HICE order instead of the
CHIE order. The rest of the analysis is similar to the case of
hash bottleneck. After putting hash calculation ahead, if an-
other stage becomes the slowest one, the speed of the pipeline
is equal to the speed of the new bottleneck. However, the new
bottleneck is faster than the original compression stage, the
pipeline throughput is improved. This new bottleneck usually
will be hash calculation, so we take it as an example. The
execution time of the pipeline is

T P
HICE = TH =

S
H

(13)

If compression is still the slowest stage, the pipeline is
also speeded up since the duplicated chunks are discarded and
avoid being compressed. The execution time of the pipeline is

T P
HICE = T ′C =

S(1−RD)

C
(14)

3) Other Bottleneck: Suppose that neither compression nor
hash calculation is the bottleneck of the pipeline. Although
this case is not common, we still take it into account. Since
the reconfiguration of the pipeline only affects the amount
of work of hash calculation and compression, it may not
improve the throughput of the pipeline. Moreover, we should
avoid introducing a more serious new bottleneck when try to
optimize an old bottleneck. So we put the relative faster one
of hash calculation and compression ahead.

Based on the above analysis, we can give a unified criterion
of the selection of the pipeline order for all three cases -
just putting the relative faster one of hash calculation and
compression ahead. We choose pipeline type CHIE when
C > H and otherwise HICE.

IV. IMPLEMENTATION & EXPERIMENTAL RESULTS

We implement our system in Linux operating system and we
choose target deduplication architecture [11] in our system.
We created five threads to complete the system. They are
responsible for receiving data, hash calculation, compression,
duplication identification and encryption. For special hardware
platform, we take use of available co-processors to accelerate
the computational sub-tasks. The communication among the



threads is data transfer. Since shared memory model is used,
data transfer is very fast.

A. Computational Sub-task Acceleration

To our observation, compression is often the most time con-
suming stage in the system. So we put the compression sub-
task on GPU if possible. The GPU algorithm first accumulates
a number of data chunks into a batch. Then uploads the batch
to the GPU [4]. GPU can compress those chunks in parallel
because there is no dependence among them. We obtain a
high compression throughput using GPU although CPU-GPU
transmission overhead is introduced.

On platform with VIA CPU, the PadLock engine is exploit-
ed to accelerate SHA-1 and AES calculations.

B. Hardware Platforms and Data Types

Two hardware platforms and three data types are selected
for the test. They are detailed as follows.

One platform is called ‘VIA’. It is equipped with a VIA
Nano processor L2200@1600MHz, 2GB RAM, two 32GB
SATA II SSDs, a NVIDIA GTX 480 GPU, CUDA version
3.0. The operating system is 64-bit Redhat Linux AS 5 with
kernel 2.6.18.

The other is called ‘AMD’. It is equipped with a quad-
core AMD Phenom(tm) II X4 945 Processor, 4GB RAM, one
500GB 7200 rpm SATA disk, a NVIDIA GTX 480 GPU,
CUDA version 4.0. The operating system is the same as ‘VIA’.

We name the platform in the test results with the hardware
it used. ‘GPU’ indicates compression is done on the GPU.
‘PadLock’ indicates SHA-1 & AES calculations are performed
by the PadLock engine.

Three data types are tested on each platform. One data type
called ‘MIRROR’ consists of 4 one-GB SnapShots of a linux
operating system. Another data type called ‘SVN’ is made up
with 4 versions of data got from a subversion server, which is
an open source version control system. It is of 4.5 GB. The
last called ‘KERNEL’ is linux kernel source code from version
2.6.27.59 to version 3.1-rc4 downloaded from www.kernel.org.
It is extracted and repacked into a tar file without compression.

C. Throughput of Sub-tasks, Compression Ratio and Duplicate
Ratio

For different platforms and different data types, the through-
put of compression is different. TABLE I shows the compres-
sion throughput of different platforms and different data types.

TABLE II shows the SHA-1 throughput of different plat-
forms. SHA-1 calculation is only hardware platform related.

TABLE III shows the duplicate ratio and compression
ratio of each data type. Because we take fixed-size chunk
method, the duplicate ratio is not so high as variable-size
chunk method.

D. Throughput Results Analysis

TABLE IV organizes all the parameters and the throughput
of each order of pipeline on different hardware platforms and
data types together.

TABLE I
COMPRESSION THROUGHPUT

Platform Data Set Throughput(MB/s)
VIA MIRROR 84.22
AMD MIRROR 237.75
VIA-GPU MIRROR 172.22
AMD-GPU MIRROR 297.09
VIA SVN 62.53
AMD SVN 154.70
VIA-GPU SVN 121.29
AMD-GPU SVN 166.59
VIA KERNEL 64.70
AMD KERNEL 180.81
VIA-GPU KERNEL 161.74
AMD-GPU KERNEL 264.61

TABLE II
SHA-1 THROUGHPUT

Platform Throughput(MB/s)
VIA 62.88
AMD 201.88
PadLock 299.72

TABLE III
DATA DUPLICATE RATIO & COMPRESSION RATIO

Data Set Duplicate Ratio Compression Ratio
MIRROR 0.55 0.40
SVN 0.41 0.94
KERNEL 0.10 0.54

1) Balanced Pipeline: Since VIA CPU is a single-core
CPU. On ‘VIA’ platform, these stages run sequentially and
it’s suitable for the balanced situation. So we compare the
value of RDH

(1−RC)C
to 1. From the table we can see that if the

value of RDH
(1−RC)C

is below 1 the pipeline type of CHIE is faster,
and otherwise, pipeline type of HICE is faster. The result is
consistent with our model.

2) Unbalanced Pipeline: AMD CPU is a multi-core CPU
and the CPU resource is enough to let the threads run in par-
allel. So it’s suitable for the unbalanced situation. So we just
compare the throughput of hash calculation and compression.
From the table, the throughput of pipeline type of CHIE is
faster than the pipeline type of HICE if compression is faster
than hash calculation, and the throughput of pipeline type of
HICE is faster than the pipeline type of CHIE if compression
is slower than hash calculation. It agrees with our model very
well.

V. CONCLUSION

In this paper, we studied the relationship of the computation-
al sub-tasks in deduplcation. An adaptive pipelining model for
deduplication was developed. For different hardware platforms
and data types, the model can determine the optimal order
of the sub-tasks in the pipeline. It can make full use of
the hardware platform and characteristics of the data type.
We tested our model on two hardware platforms and three
data types. The experimental results show that our model is
effective to choose an optimal order of the computational sub-
tasks.



TABLE IV
MODEL VALIDATION

Platform Data Type Compression Throughput (MB/s) Hash Throughput (MB/s) RC RD
RDH

(1−RC)C
CHIE Throughput (MB/s) HICE Throughput (MB/s)

VIA MIRROR 84.22 62.88 0.40 0.55 0.68 53.26 45.62
VIA SVN 62.53 62.88 0.94 0.41 6.87 32.69 36.18
VIA KERNEL 64.70 62.88 0.54 0.10 0.21 40.67 33.53
PadLock MIRROR 84.22 299.72 0.40 0.55 3.26 71.49 96.28
PadLock SVN 62.53 299.72 0.94 0.41 32.75 50.95 61.21
PadLock KERNEL 64.70 299.72 0.54 0.10 1.01 54.94 54.69
VIA-GPU MIRROR 172.22 62.88 0.40 0.55 0.33 71.15 50.77
VIA-GPU SVN 121.29 62.88 0.94 0.41 3.54 39.95 42.87
VIA-GPU KERNEL 161.74 62.88 0.54 0.10 0.08 58.85 44.20
PadLock-GPU MIRROR 172.22 299.72 0.40 0.55 1.60 109.67 123.01
PadLock-GPU SVN 121.29 299.72 0.94 0.41 16.89 73.48 83.99
PadLock-GPU KERNEL 161.74 299.72 0.54 0.10 0.40 97.78 89.86
AMD MIRROR 237.75 201.88 - - - 232.29 192.75
AMD SVN 154.70 201.88 - - - 144.49 148.31
AMD KERNEL 180.81 201.88 - - - 178.09 189.79
AMD-GPU MIRROR 297.09 201.88 - - - 287.57 190.59
AMD-GPU SVN 166.59 201.88 - - - 147.24 152.09
AMD-GPU KERNEL 264.61 201.88 - - - 219.35 173.67

Note that the parameters used in our tests are given by
pre-tests. Moreover, we only consider single data stream in
a test. However, mixture of multiple data streams is common
in a real system. So effective dynamic parameter sampler and
data stream separator are important future research topics. In
addition, how to avoid cache migration caused by sub-tasks
exchange between processing units (such as between CPU and
GPU) is also an interesting problem.

ACKNOWLEDGMENT

This paper is partially supported by NSFC of China
(60903028, 61070014), Key Projects in the Tianjin Science
& Technology Pillar Program (11ZCKFGX01100).

REFERENCES

[1] T. ASARO and H. BIGGAR, “Experiencing Data De-Duplication:
Improving Efficiency and Reducing Capacity Requirements,” The En-
terprise Strategy Group, 2007.

[2] B. B.H., “Space/time Trade-offs in Hash Coding with Allowable Errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[3] D. Bhagwat, K. Eshghi, D. Long, and M. Lillibridge, “Extreme Binning:
Scalable, Parallel Deduplication for Chunk-based File Backup,” in IEEE
2009 International Symposium on Modeling, Analysis & Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE, 2009,
pp. 1–9.

[4] L. Costa, S. Al-Kiswany, and M. Ripeanu, “GPU Support for Batch Ori-
ented Workloads,” in IEEE 28th International Performance Computing
and Communications Conference (IPCCC). IEEE, 2009, pp. 231–238.

[5] B. Debnath, S. Sengupta, and J. Li, “Chunkstash: Speeding up in-
line storage deduplication using flash memory,” in Proceedings of the
2010 USENIX Conference on USENIX Annual Technical Conference.
USENIX Association, 2010, pp. 16–16.

[6] J. Gantz and D. Reinsel, “Extracting Value from Chaos,” IDC research
report IDC research report, Framingham, MA, June. Retrieved Septem-
ber, vol. 19, 2011.

[7] F. Guo and P. Efstathopoulos, “Building a High-performance Dedupli-
cation System,” in Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference. USENIX Association, 2011,
pp. 25–25.

[8] X. Li and D. Lilja, “A Highly Parallel GPU-based Hash Accelerator for
a Data Deduplication System,” in Parallel and Distributed Computing
and Systems. ACTA Press, 2009.

[9] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise, and
P. Camble, “Sparse Indexing: Large Scale, Inline Deduplication Using
Sampling and Locality,” in Proccedings of the 7th Conference on File
and Storage Technologies (FAST). USENIX Association, 2009, pp.
111–123.

[10] L. Ma, C. Zhen, B. Zhao, J. Ma, G. Wang, and X. Liu, “Towards Fast De-
duplication Using Low Energy Coprocessor,” in 2010 Fifth International
Conference on Networking, Architecture and Storage (NAS). IEEE,
2010, pp. 395–402.

[11] S. Maddodi, G. Attigeri, and A. Karunakar, “Data deduplication tech-
niques and analysis,” in The 3rd International Conference on Emerging
Trends in Engineering and Technology (ICETET). IEEE, 2010, pp.
664–668.

[12] R. Pagh and F. Rodler, “Cuckoo Hashing,” Journal of Algorithms,
vol. 51, no. 2, pp. 122–144, 2004.

[13] S. Quinlan and S. Dorward, “Venti: A New Approach to Archival Data
Storage,” in Proceedings of the USENIX 2002 Conference on File and
Storage Technologies (FAST), vol. 4, 2002, pp. 89–102.

[14] VIA Technologies, Inc., “VIA Nano Processor,” http://www.viatech.com.
cn/cn/downloads/whitepapers/processors/WP080529VIA Nano.pdf ,
2008.

[15] B. Zhu, K. Li, and H. Patterson, “Avoiding the Disk Bottleneck in
the Data Domain Deduplication File System,” in Proceedings of the
6th USENIX Conference on File and Storage Technologies (FAST).
USENIX Association, 2008, pp. 269–282.


