
Parallel Algorithm for Protein Folds Prediction

Wang Gang
Dept. of Computer Science

Nankai University
Tianjin, China

wgzwp@163.com

Liu Xiaoguang
Dept. of Computer Science

Nankai University
Tianjin, China

liuxg74@yahoo.com.cn

Liu Jing
Dept. of Computer Science

Nankai University
Tianjin, China

jingliu@nankai.edu.cn

Abstract

Protein folds prediction is one of the most important

problems in computational biology. A new parallel
algorithm for 3D protein structure prediction is
presented in this paper. This algorithm is based on the
quasi-physical algorithm that was presented in [8].
Compared with the sequential algorithm, the parallel
version improves performance greatly and can obtain
much lower energy states for some instances.

1. Introduction

Protein folds prediction is one of the most important
problems of computational biology. It tries to
determine the structures of protein molecules by their
amino acid sequences.

Many simplifications were proposed because of the
difficulty of this problem. A popular simplified model
is the so-called HP model [1,2] where only two types
of monomers: H (hydrophobic) and P (polar) ones. The
polymer is modeled as a self-avoiding chain (amino
acid sequences) on a regular lattice with repulsive or
attractive interactions between neighboring non-
bonded monomers. The energies are defined as εHH=-1,
and εHP=εPP=0, and the objective is to find the lowest-
energy states.

Even if this simplification is too strong, searching
the lowest energy states is also a paradigm of
combinatorial optimization. So many computational
strategies have been tried to find low-energy states
efficiently, such as Monte Carlo schemes [3], chain
growth algorithms [4], genetic algorithms [5], PERM
and improved PERM [6], etc. Unlike these methods,
Huang devised a continuous model and a quasi-
physical algorithm for this problem [7]. But the
algorithm has some defects, we revised it [8], the
revised version can produce good results, but was
slow. In this paper, parallelization of the quasi-physical
algorithm is discussed.

2. Quasi-Physical Algorithm

Huang’s model considers each amino acid monomer
as a rigid ball, then protein folding can be transform
into finding a layout of the chain in 3D Euclidean
space that has maximum tangent balls. Of course,
neighboring balls in chain must be tangent and any ball
can’t embed in others.

Huang presented a “quasi-physical” algorithm for
the continuous model [7], the algorithm get low-energy
state by simulating n-balls system. We can imagine
that all the balls are connected by a spring, and
consider three types of forces: p

ijF - the pull force of

spring between any two neighboring balls, r
ijF - the

repulsion forces between any two embedded balls and
g

ijF - the gravitational forces between any two H balls
(εHH=-1, εHP=εPP=0). Thus, at any time, composite
force iF decides the motion direction and velocity of
ball i:

∑∑∑ ++= g
ji

r
ji

p
jii FFFF ,,, (1)

Apparently, under the exertion of three types of
forces, the H balls tend to congregate to form a center,
and the P balls tend to layout peripherally. When the
system reaches an equilibrium state, we get a good
approximation to 3D protein structure.

We found some defects of Huang’s algorithm and
revised them [8]. The new algorithm is described
below:
Algorithm 1. Quasi-physical algorithm for 3D protein
Begin
For t = 1 to l do
For i = 1 to n – 1 do
For j = i + 1 to n do
Calculate the force ball j

extert to ball i: g
ji

r
ji

p
jiji FFFF ,,,, ++=

jiij FF ,, −=

jiii FFF ,+=

End
Calculate new position of ball

i: i
t

i
t

i Frr ×+=+ λ1
End
Adjust step λ if necessary

End
Calculate energy, output solution

End
If we define the computation of one Fij (and Fji) as

basic operation, and assume that it take unit time, the
run time of algorithm 1 is approximately n(n-1)l/2,
where l is the number of iterations. The experiments
show that the solutions produced by our algorithm
have lower energy than those produced by other
methods. But the algorithm needs very big l (generally
hundreds of millions) to get good result. For long
amino acid sequences, the run time of this algorithm is
not acceptable. So we consider parallelizing the
algorithm.

3. Parallel Algorithm

3.1. Fine-Grained Partition

One intuitive task decomposition strategy is data
decomposition. The n balls are distributed to p
processes, each process is responsible for n/p balls (and
computation related to these balls). This strategy is
quite simple and has good load balance, but suffers
from a significant disadvantage: it can’t easily exploit
symmetry and redundancy of computation, performs
n(n-1) basic operations per iteration which is twice that
of sequential algorithm. It means that the speedup can’t
be greater than p/2. To do the same amount of work as
the sequential algorithm, the parallel algorithm must
transfer every Fij from the owner of ball i to the owner
of ball j, or contrariwise. The communication is
complex and slow.

The cause of poor performance is that the parallel
algorithm considers the computation of one Fi as an
atomic operation. In fact, we can break it into n tasks
(computation of Fi0~Fi n-1). Then the parallel algorithm
does exactly the same amount of work as the
sequential algorithm. The n(n-1)/2 tasks are distributed
evenly to p processes. At the beginning of each
iteration, each process computes n(n-1)/2p Fij, and then
all the processes do an All-Reduce communication
altogether to calculate all the Fis, finally every process
calculates the new positions of it’s own balls and the
next iteration can be started. The algorithm is
described below, where “id” is the rank number of the
process.
Algorithm 2. Fine-grained parallel algorithm

Begin
For t = 1 to l do
For k = n(n-1)/(2p)*id to n(n-

1)/(2p)*(id+1)-1 do
Convert k to upper triangle

matrix coordinate (i, j)
Calculate the force ball j

extert to ball i: g
ji

r
ji

p
jiji FFFF ,,,, ++=

End

Do All-Reduce to calculate all iF
Calculate new positions of all

the balls
Adjust step if necessary

End
Process 0 calculate energy, output

solution
End

The parallel run time Tp, speedup S, efficiency E
and isoefficiency function are given below, where ts is
the startup time of messages passing, tw is the per-word
transfer time.

)log(
)1(
log)(2

1

1
log)(2/)1(

2/)1(

)log)(
2

)1((

22 ppW
nn

ppntt
E

pnttpnn
nnS

lpntt
p

nnT

ws

ws

wsP

Θ=
−

+
+

=

++−
−=

++−=

 (2)

Obviously, the algorithm is cost-optimal if
plogp=O(n). But the results of the experiments are
depressing. For some instances, the parallel algorithm
is even slower than the sequential algorithm. The
reason is that the communication overhead exceeds the
effective computation time.

3.2. Coarse-Grained Parallel Algorithm

Remarkably, our objective is not to calculate
movement of n balls system precisely, but just to get a
low-energy state. If we use coarse gained data
decomposition strategy, and exchange data between
processes per r iterations (r > 1) instead of per one
iteration, the processes will use “outdated” data, and
don’t need to communicate with each other frequently.
If we choose r properly, the algorithm also can get
good results. Although the amount of computation is
still twice that of the sequential algorithm, the
communication overhead is decreased dramatically.
Algorithm 3. Coarse-grained parallel algorithm
Begin
For t = 1 to l do
For i = n/p*id to n/p*(id+1)-1 do
For j = 1 to n do

Calculate iF j if necessary,

calculate jiF , accumulate iF

 End
End
If (t % r == 0) Do All-to-All

Broadcast to exchange new positions
Adjust step if necessary

End
Process 0 calculate energy, output

solution
End

The parallel run time, speedup, efficiency,
isoefficiency function are:

)(
)1(

)1(log2
1

)/11(1

1
/)/)1(log(2)1/2(/

)1(

))1(log(

))(
2

)1/(/(

2pW
rnn

pntppt
n

pn
E

rppntptpnnpn
nnS

r
lp

p
ntpt

l
p
nn

p
npnpnT

ws

ws

ws

P

Θ=
−

−+
+

−
−+

=

−++−−
−=

−++

−+−=

(3)
It’s easy to see that algorithm 3 has higher

scalability than algorithm 2. Although algorithm 3 has
extra computation overhead, but in fact, the amount of
computation is less than twice that of sequential
algorithm.

4. Experimental Results

We tested algorithm 3 on Nankai Star
supercomputer, which is composed of 400 nodes, two
3.0G Hz Intel Xeon CPUs per node, all the nodes are
connected by Myrinet. Other parameters and inputs of
our experiment are the same as those in [8].

4.1. Performance for a given problem size as p
increases and r increases

Figure 1 shows the run times for instance n = 58
and precision = 1e-4. It is easy to see that the run time
decreases as r increases or p increases as we expected.
But the curves are fluctuant, the main reasons are:

Firstly, the instance size is not only decided by n,
but also l. The algorithm 3 has to use “outdated” data
sometimes, and the amount of “outdated” data
increases as p increases or r increases. Thus generally,
for a given instance, the algorithm 3 need to do more
computation to get solutions with the same energies as
p or r increases.

Secondly, for a given instance, the amount of extra
computation goes up as p increases. Thus if n and r are

fixed, the performance maybe decrease as p increases.
Especially, if the first reason was also considered, the
probability of performance degradation will become
higher. For example, figure 1 shows that for n = 58 and
r = 1, the parallel runtime increases as p increases.

Thirdly, we can’t control CPU assignment of
Nankai Star, the scheduler may assign 1 CPU or 2
CPUs from a node to our program. Moreover, the
nodes of Nankai Star are partitioned into three subnets,
and we can’t control node assignment too. So the
communication overhead can’t be predicted accurately,
the performance maybe decreases as p increases,
especially for small r.

Lastly, compared with CPU speed, the Myrinet
communication speed of our supercomputer is slow.
The cost of All-to-All broadcast and All-Reduce are
superlinear functions of p. Thus for small instance and
small r, the communication overhead dominates the
parallel run time, and increases rapidly as p increases.

80

130

180

230

280

1 2 4 8
r

ru
n

ti
me

(s
)

2CPUs

4CPUs

6CPUs

8CPUs

Fig. 1. Parallel run time for instance n=58

0
20
40
60
80

100
120
140
160

58 103 124 136
r

ru
n

ti
me

(1
00

0s
) sequent i al

8CPUs

Fig. 2. Run time for a given p as n increases

4. 2. Performance for a given p and a given r as
the problem size increases

Figure 2 shows the performance for p = 8 and r = 8
(we found that if r > 8, it is hard to get satisfactory
solutions) as n increases, the run time of the sequential
algorithm is also shown in the figure. In the
experiments, the precision is set to 1e-6. It’s easy to
see that the speedup tend to increase as the problem
size increases. Since algorithm 3 is cost-optimal, this
result is expectable. As the precision of solution

increases, the speedup also tend to increase, detailed
results are not listed here for paper length limit. But we
can see that the speedup does not keep increasing, it
varies from 3.01 to 7.26. It looks like that some values
much higher than theoretic value given by equation 3,
and some values much less than theoretic value. The
reason was described in section 4.1, the problem size is
not only decided by n, but also l which influenced by p
and r. Thus it seems hard to predict the speedup.

4.3. Energy of the results

It was stated above that the using of “outdated” data
will make the algorithm to do more iterations, and
much more seriously, it’s possible to lose solution with
lower energy. But interestingly, for some instances,
algorithm 3 can get better solution than the sequential
algorithm. The reason needs further study. The lower
energy structure for the instance n=58 is shown in
figure 3.

Fig. 3. Lower energy solution for instance

n=58

5. Discussion

In this paper we present a new parallel algorithm for
3D protein structure prediction. It’s the parallel version
of the quasi-physical algorithm presented in [8]. The
main idea of the parallel algorithm is that using coarse-
grained data composition strategy to partition tasks,
and exchanging data between processes periodically to
minimum communication overhead. Theoretic analysis
indicates that this algorithm is cost-optimal and
scalable. The experiment results prove the theoretic
analysis, the algorithm can indeed utilize increasing
processes effectively as the problem size increases.
Compared with sequential algorithm, the parallel
algorithm decreases the run time greatly. For some
instances, the parallel algorithm can get better solution
than sequential algorithm.

Our work is based on Huang’s continuous model,
but our method can be used for a much wider range of

application. In the future work, we will do more
experiments to validate our algorithm, and will try to
apply our method to more realistic protein models. We
also plan to add more information about the proteins
into our algorithm, such as molectronics, experiential
data, and examine the improvement on performance of
the enhanced algorithm.

ACKNOWLEDGEMENTS
The authors thank Nankai Institute of Scientific
Computing for the help. This work was supported by
NSF of China (No 90612001), Science and
Technology Progress Plan Foundation of Tianjin (No
043800311), Science and Technology Progress Plan
Foundation of Tianjin (No 043185111-14) and
Innovation Foundation of Nankai Univercity.

REFERENCES
[1] K.F.Lau, K.A.Dill, A lattice statistical mechanics model
of the cobformation and sequence space of proteins,
Macromolecules, 22, 2002
[2] Shortle, D., H.S. Chan, and K.A. Dill, Modeling the
Effects of Mutations on the Denatured States of Proteins,
Protein Science, 1（1992）: 201-215.
[3] J. M. Deutsch, Long range moves for high density
polymer simulations, J. Chem. Phys. 1997, 106, 8849-8856
[4] E.M. O'Toole,A.Z. Panagiotopoulos, Effect of sequence
and intermolecular interactions on the number and nature of
low-energy states for simple model proteins,J. Chem.
Phys.1993,98(4),3185-3190.
[5] R. König and T. Dandekar Solvent entropy driven
searching for protein modeling examined and tested in
simplified models. Protein Eng.,2001, 14, 329-335.
[6] Hsiao-Ping Hsu, Vishal Mehra, Walter Nadler and Peter
Grassberger, Growth Algorithms for Lattice Heteropolymers
at Low Temperatures, J. Chem. Phys.2003(118): 444-448 .
[7] Huang Wen-Qi, Huang Qin-bo, Shi He, An Quasiphysical
Algorithm for 3D Protein Structure Prediction, J. of Wuhan
University,2004,50(5)：586-590.
[8] X. Liu, G. Wang and J. Liu, “A Global Optimization
Algorithm for Protein Folds Prediction in 3D Space”, ICNC-
FSKD 2005, Changsha, China, LNAI 3614, pp. 1031-1036.
[9] Ananth Grama, Anshul Gupta, George Karypis, Vipin
Kumar, “Introduction to Parallel Computing(Second
Edition)”, Pearson Education, 2003.

