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Abstract 

 
Protein folds prediction is one of the most important 

problems in computational biology. A new parallel 
algorithm for 3D protein structure prediction is 
presented in this paper. This algorithm is based on the 
quasi-physical algorithm that was presented in [8]. 
Compared with the sequential algorithm, the parallel 
version improves performance greatly and can obtain 
much lower energy states for some instances. 
 
1. Introduction 
 

Protein folds prediction is one of the most important 
problems of computational biology. It tries to 
determine the structures of protein molecules by their 
amino acid sequences. 

Many simplifications were proposed because of the 
difficulty of this problem. A popular simplified model 
is the so-called HP model [1,2] where only two types 
of monomers: H (hydrophobic) and P (polar) ones. The 
polymer is modeled as a self-avoiding chain (amino 
acid sequences) on a regular lattice with repulsive or 
attractive interactions between neighboring non-
bonded monomers. The energies are defined as εHH=-1, 
and εHP=εPP=0, and the objective is to find the lowest-
energy states. 

Even if this simplification is too strong, searching 
the lowest energy states is also a paradigm of 
combinatorial optimization. So many computational 
strategies have been tried to find low-energy states 
efficiently, such as Monte Carlo schemes [3], chain 
growth algorithms [4], genetic algorithms [5], PERM 
and improved PERM [6], etc. Unlike these methods, 
Huang devised a continuous model and a quasi-
physical algorithm for this problem [7]. But the 
algorithm has some defects, we revised it [8], the 
revised version can produce good results, but was 
slow. In this paper, parallelization of the quasi-physical 
algorithm is discussed. 

 
2. Quasi-Physical Algorithm 
 

Huang’s model considers each amino acid monomer 
as a rigid ball, then protein folding can be transform 
into finding a layout of the chain in 3D Euclidean 
space that has maximum tangent balls. Of course, 
neighboring balls in chain must be tangent and any ball 
can’t embed in others. 

Huang presented a “quasi-physical” algorithm for 
the continuous model [7], the algorithm get low-energy 
state by simulating n-balls system. We can imagine 
that all the balls are connected by a spring, and 
consider three types of forces: p

ijF - the pull force of 

spring between any two neighboring balls, r
ijF - the 

repulsion forces between any two embedded balls and 
g

ijF - the gravitational forces between any two H balls 
(εHH=-1, εHP=εPP=0). Thus, at any time, composite 
force iF  decides the motion direction and velocity of 
ball i: 
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Apparently, under the exertion of three types of 
forces, the H balls tend to congregate to form a center, 
and the P balls tend to layout peripherally. When the 
system reaches an equilibrium state, we get a good 
approximation to 3D protein structure. 

We found some defects of Huang’s algorithm and 
revised them [8]. The new algorithm is described 
below: 
Algorithm 1. Quasi-physical algorithm for 3D protein 
Begin 
For t = 1 to l do 
For i = 1 to n – 1 do 
For j = i + 1 to n do 
Calculate the force ball j 

extert to ball i: g
ji

r
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p
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End 
Calculate new position of ball 

i: i
t

i
t

i Frr ×+=+ λ1  
End 
Adjust step λ  if necessary 

End 
Calculate energy, output solution 

End 
If we define the computation of one Fij (and Fji) as 

basic operation, and assume that it take unit time, the 
run time of algorithm 1 is approximately n(n-1)l/2, 
where l is the number of iterations. The experiments 
show that the solutions produced by our algorithm 
have lower energy than those produced by other 
methods. But the algorithm needs very big l (generally 
hundreds of millions) to get good result. For long 
amino acid sequences, the run time of this algorithm is 
not acceptable. So we consider parallelizing the 
algorithm. 

 
3. Parallel Algorithm 
 
3.1. Fine-Grained Partition 
 

One intuitive task decomposition strategy is data 
decomposition. The n balls are distributed to p 
processes, each process is responsible for n/p balls (and 
computation related to these balls). This strategy is 
quite simple and has good load balance, but suffers 
from a significant disadvantage: it can’t easily exploit 
symmetry and redundancy of computation, performs 
n(n-1) basic operations per iteration which is twice that 
of sequential algorithm. It means that the speedup can’t 
be greater than p/2. To do the same amount of work as 
the sequential algorithm, the parallel algorithm must 
transfer every Fij from the owner of ball i to the owner 
of ball j, or contrariwise. The communication is 
complex and slow. 

The cause of poor performance is that the parallel 
algorithm considers the computation of one Fi as an 
atomic operation. In fact, we can break it into n tasks 
(computation of Fi0~Fi n-1). Then the parallel algorithm 
does exactly the same amount of work as the 
sequential algorithm. The n(n-1)/2 tasks are distributed 
evenly to p processes. At the beginning of each 
iteration, each process computes n(n-1)/2p Fij, and then 
all the processes do an All-Reduce communication 
altogether to calculate all the Fis, finally every process 
calculates the new positions of it’s own balls and the 
next iteration can be started. The algorithm is 
described below, where “id” is the rank number of the 
process. 
Algorithm 2. Fine-grained parallel algorithm 

Begin 
For t = 1 to l do 
For k = n(n-1)/(2p)*id to n(n-

1)/(2p)*(id+1)-1 do 
Convert k to upper triangle 

matrix coordinate (i, j) 
Calculate the force ball j 

extert to ball i: g
ji

r
ji

p
jiji FFFF ,,,, ++=  

End 

Do All-Reduce to calculate all iF  
Calculate new positions of all 

the balls 
Adjust step if necessary 

End 
Process 0 calculate energy, output 

solution 
End 

The parallel run time Tp, speedup S, efficiency E 
and isoefficiency function are given below, where ts is 
the startup time of messages passing, tw is the per-word 
transfer time. 
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Obviously, the algorithm is cost-optimal if 
plogp=O(n). But the results of the experiments are 
depressing. For some instances, the parallel algorithm 
is even slower than the sequential algorithm. The 
reason is that the communication overhead exceeds the 
effective computation time. 
 
3.2. Coarse-Grained Parallel Algorithm 
 

Remarkably, our objective is not to calculate 
movement of n balls system precisely, but just to get a 
low-energy state. If we use coarse gained data 
decomposition strategy, and exchange data between 
processes per r iterations (r > 1) instead of per one 
iteration, the processes will use “outdated” data, and 
don’t need to communicate with each other frequently. 
If we choose r properly, the algorithm also can get 
good results. Although the amount of computation is 
still twice that of the sequential algorithm, the 
communication overhead is decreased dramatically. 
Algorithm 3. Coarse-grained parallel algorithm 
Begin 
For t = 1 to l do 
For i = n/p*id to n/p*(id+1)-1 do 
For j = 1 to n do 



Calculate iF j  if necessary, 

calculate jiF , accumulate iF  

      End 
End 
If (t % r == 0) Do All-to-All 

Broadcast to exchange new positions 
Adjust step if necessary 

End 
Process 0 calculate energy, output 

solution 
End 

The parallel run time, speedup, efficiency, 
isoefficiency function are: 
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(3) 
It’s easy to see that algorithm 3 has higher 

scalability than algorithm 2. Although algorithm 3 has 
extra computation overhead, but in fact, the amount of 
computation is less than twice that of sequential 
algorithm. 
 
4. Experimental Results 
 

We tested algorithm 3 on Nankai Star 
supercomputer, which is composed of 400 nodes, two 
3.0G Hz Intel Xeon CPUs per node, all the nodes are 
connected by Myrinet. Other parameters and inputs of 
our experiment are the same as those in [8]. 
 
4.1. Performance for a given problem size as p 
increases and r increases 
 

Figure 1 shows the run times for instance n = 58 
and precision = 1e-4. It is easy to see that the run time 
decreases as r increases or p increases as we expected. 
But the curves are fluctuant, the main reasons are: 

Firstly, the instance size is not only decided by n, 
but also l. The algorithm 3 has to use “outdated” data 
sometimes, and the amount of “outdated” data 
increases as p increases or r increases. Thus generally, 
for a given instance, the algorithm 3 need to do more 
computation to get solutions with the same energies as 
p or r increases. 

Secondly, for a given instance, the amount of extra 
computation goes up as p increases. Thus if n and r are 

fixed, the performance maybe decrease as p increases. 
Especially, if the first reason was also considered, the 
probability of performance degradation will become 
higher. For example, figure 1 shows that for n = 58 and 
r = 1, the parallel runtime increases as p increases. 

Thirdly, we can’t control CPU assignment of 
Nankai Star, the scheduler may assign 1 CPU or 2 
CPUs from a node to our program. Moreover, the 
nodes of Nankai Star are partitioned into three subnets, 
and we can’t control node assignment too. So the 
communication overhead can’t be predicted accurately, 
the performance maybe decreases as p increases, 
especially for small r. 

Lastly, compared with CPU speed, the Myrinet 
communication speed of our supercomputer is slow. 
The cost of All-to-All broadcast and All-Reduce are 
superlinear functions of p. Thus for small instance and 
small r, the communication overhead dominates the 
parallel run time, and increases rapidly as p increases. 
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Fig. 1. Parallel run time for instance n=58 
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Fig. 2. Run time for a given p as n increases 

 
4. 2. Performance for a given p and a given r as 
the problem size increases 
 

Figure 2 shows the performance for p = 8 and r = 8 
(we found that if r > 8, it is hard to get satisfactory 
solutions) as n increases, the run time of the sequential 
algorithm is also shown in the figure. In the 
experiments, the precision is set to 1e-6. It’s easy to 
see that the speedup tend to increase as the problem 
size increases. Since algorithm 3 is cost-optimal, this 
result is expectable. As the precision of solution 



increases, the speedup also tend to increase, detailed 
results are not listed here for paper length limit. But we 
can see that the speedup does not keep increasing, it 
varies from 3.01 to 7.26. It looks like that some values 
much higher than theoretic value given by equation 3, 
and some values much less than theoretic value. The 
reason was described in section 4.1, the problem size is 
not only decided by n, but also l which influenced by p 
and r. Thus it seems hard to predict the speedup. 
 
4.3. Energy of the results 
 

It was stated above that the using of “outdated” data 
will make the algorithm to do more iterations, and 
much more seriously, it’s possible to lose solution with 
lower energy. But interestingly, for some instances, 
algorithm 3 can get better solution than the sequential 
algorithm. The reason needs further study. The lower 
energy structure for the instance n=58 is shown in 
figure 3. 

 
Fig. 3. Lower energy solution for instance 

n=58 
 

 
5. Discussion 
 

In this paper we present a new parallel algorithm for 
3D protein structure prediction. It’s the parallel version 
of the quasi-physical algorithm presented in [8]. The 
main idea of the parallel algorithm is that using coarse-
grained data composition strategy to partition tasks, 
and exchanging data between processes periodically to 
minimum communication overhead. Theoretic analysis 
indicates that this algorithm is cost-optimal and 
scalable. The experiment results prove the theoretic 
analysis, the algorithm can indeed utilize increasing 
processes effectively as the problem size increases. 
Compared with sequential algorithm, the parallel 
algorithm decreases the run time greatly. For some 
instances, the parallel algorithm can get better solution 
than sequential algorithm. 

Our work is based on Huang’s continuous model, 
but our method can be used for a much wider range of 

application. In the future work, we will do more 
experiments to validate our algorithm, and will try to 
apply our method to more realistic protein models. We 
also plan to add more information about the proteins 
into our algorithm, such as molectronics, experiential 
data, and examine the improvement on performance of 
the enhanced algorithm. 
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