An Improved Parallel Implementation of 3D DRIE
Simulation on GPU

Fan Zhang, Gang Wang, Xiaoguang Liu, Jing Liu
Nankai-Baidu joint lab, College of Information Technical Science, Nankai University
Weijin Road 94, Tianjin, 300071, China
Email: zhangfan555@gmail.com, wgzwp@ 163.com, liuxg74 @yahoo.com, jingliu@mail.nankai.edu.cn

Abstract—Deep reactive ion etching (DRIE) technique is a
new and powerful tool in Micro-Electro-Mechanical Systems
(MEMS) fabrication. A 3D DRIE simulation can help researcher
understand the time-evolution of Bosch process used in DRIE.
Due to the high complexity of the algorithm used in the simula-
tion, it is necessary to develop an algorithm that can accelerate
the simulation. This paper presents a parallel implementation
of the 3D DRIE simulation based on GPU, built on Nvidia’s
Compute Unified Device Architecture (CUDA) platform. This
paper also presents a fast morphological operation, which reduces
the complexity of mathematical morphology operation part of the
algorithm from O(N?) to O(N?). The experiment results show
the parallel program on Nvidia GTX260+ GPU obtains about
70x to 75x speedup over the 4-threads parallel version on Intel
Q6600 CPU.

I. INTRODUCTION

In Micro-Electro-Mechanical Systems (MEMS) fabrication,
Deep Reactive Ion Etching (DRIE) is a new and powerful tool
for etching very deep trenches with nearly vertical sidewalls.
The most popular silicon DRIE technique is Bosch process
patented by Robert Bosch GmbH [1] in which etch and
polymerization cycles alternate in an induced coupled plasma
reactive ion etcher (ICP-RIE) system. Since the procedure
of Bosch process is more complex than other etchings’, an
accurate and fast simulator is necessary to help researchers
understand the time-evolution of the topography. Guangyi Sun
et al. [2] has proposed a visual 3D simulation for DRIE
process. But the simulation is very slow running on CPU, it is
necessary to develop a parallel version which can accelerate
the simulation progress using the novel GPU technology.

We make the following contributions in this paper:

1) To the best of our knowledge, there is no 3D DRIE
simulation implemented on GPU, it is the first work which
implemented 3D DRIE simulation on GPU.

2) We proposed the fast morphological operation to reduce
the time of MO phase of the simulation.

The rest of this paper is organized as follows. Section 2
presents an overview of GPU architecture and the program-
ming environment on which our parallel program is built.
Section 3 introduces the serial algorithm used in 3D DRIE
simulation. Section 4 gives a rough explanation of the fast
morphological operation. Section 5 explains our implemen-
tation on the GPU. We show our results in Section 6 and
conclusion in Section 7.

II. GPU PROGRAMMING ARCHITECTURE

In this section we discuss major micro architectural features
of the latest GeForce graphics processors and Nvidia’s Com-
pute Unified Device Architecture (CUDA). A more detailed
description can be found in [6,7,9,10].

A. Hardware Model

At the hardware level, the GPU is a collection of multi-
processors, with several processing elements in each. For
instance, the Nvidia GeForce GTX 280 has 30 multiprocessors
with 8 scalar processor (SP) in each. The many-core feature
makes GPU efficiently support a very large number of threads,
so the efficiency reaches the peak when massive threads
are running on GPU. Each processor in the multiprocessor
executes the same instruction in every cycle. Each can operate
on its own data, which makes each a SIMD processor. Next we
describe the programming model we use in our application.

B. Programming Model

The programming model we use is the Nvidia’s Compute
Unified Device Architecture (CUDA). CUDA is a program-
ming interface to use the parallel architecture of Nvidia GPUs
for general purpose computing. CUDA produces a set of
library functions as extensions of the C language. A compiler
generates executable code for the CUDA device. The CPU
sees a CUDA device as a multi core co-processor. All memory
available on the device can be accessed using CUDA with no
restrictions on its representation though the access times vary
for different types of memory.

For the programmer, the CUDA consists of a collection of
threads running in parallel. The programmer can select the
number of threads to be executed. If the number of threads is
more than the warp size (32), they are time-shared internally
on the multiprocessor. A collection of threads called block runs
on a multiprocessor at a given time. Multiple blocks can be
assigned to a single multiprocessor for time-shared execution.
They also divide the common resources like registers and
shared memory equally among them. A single execution on
a device generates a number of blocks. The collection of all
blocks in a single execution is called a grid. Each thread and
block is given a unique ID that can be accessed within the
thread during its execution. All threads of the grid execute
a single program called the kernel. We next describe the
algorithm use in the 3D DRIE simulation.



Silicon

Fig. 1.

Principle of DRIE

III. ALGORITHM OF 3D DRIE SIMULATION

A. Principle of the DRIE

The principle of the DRIE is schematically shown in Fig.1.
The typical etch cycle lasts 5 to 15s, uses SFg to etch silicon.
In the next cycle, a fluorocarbon polymer, about 10nm thick, is
plasma deposited using Cy F as a source gas. In the following
etch cycle the energetic ions (SF,) remove the protective
polymer at the bottom of trench, but the film remains relatively
intact along the sidewalls. The repetitive alternation of etch
and passivation steps results in high directional etch at rates
between 1.5 and 4um/min, high aspect ratio up to 30:1, high
selectivity to mask (75:1 to photoresist).

B. Serial Algorithm of the 3D DRIE Simulation

According to the principle of DRIE, 3D DRIE simula-
tion includes two parts, one is etching and the other is the
polymerization. Because the etching part is more complex
than the polymerization process, the method and optimizations
mentioned below are all about etching process.

Guangyi’s DRIE model [2] is based on voxel, the silicon is
treated as a set of voxels, if the value is mapped into {0,1}: the
voxels assigned 1 representing opaque objects and the voxels
assigned O representing the transparent background.

At each step of the etching process, first find all the surface
voxels, where the surface voxel is defined to be the voxel
whose at least one of the six adjacent voxels is 0 (transparent
background). Then the program will run a shadow test function
to calculate the amount of rays each surface voxels receives
under the mask, these rays make up a solid angle. Fig.2 gives
the illustration of shadow test and solid angle. The etching
rate of each surface voxels can be calculated from a serials
of formulas given in [2,3] using the solid angle. After the
rate has been calculated, erase the voxels within the sphere
whose center is the surface voxel and the radius is the rate,
this operation is called Mathematical Morphology Operation
(MO) [2]. One shadow test operation and one MO operation
is called one etching step” in the 3D DRIE simulation which
consists of several steps in order to etch very deep trenches.
Algorithm 1 illustrates the serial algorithm of one single step

B {Visibie)

Fig. 2. Schematic illustration of shadow test and calculation of visible solid
angle

of etching process. In the next section we will discuss the
optimization of the MO phase.

Algorithm 1 Etch process of one step in 3D DRIE simulation

//Shadow test phase
fori:=110 2 step 1 do
for j:=1to z step 1 do
for k:=1to y step 1 do
if the voxel[i,j,k] of the silicon is surface point
then calculate the etch rate using shadow test
fi
end
end
end
//IMO phase
fori:=110 2 step 1 do
for j:=11to z step 1 do
for k:=11o y step 1 do
if the voxel[i,j,k] of the silicon is surface point
then erase the voxels within the sphere whose
center is voxel[i,j,k] and radius is the rate
calculated in the shadow test phase

fi
end
end
end

IV. FAST MORPHOLOGICAL OPERATION

We first make an improvement on the MO phase of Al-
gorithm 1 which we call the new method fast morphological
operation (FMO). Fig.3 gives the 2D schematic illustration.
Different with the original morphological algorithm [3-5],
it is not necessary to access every point inside the sphere
when performing erasing operations since a large number of
voxels overlap between two adjacent spheres. As shown in
Fig.3, P, and P, are two adjacent morphological operation
elements which are the spheres mentioned in Algorithm 1,
the overlapped oblique line part only needs to be erased one
time. This could be implemented as follows: when etching
the sphere P, only erase the different part of sphere P,
compared to sphere P,,.

In one step of the 3D DRIE simulation, most mathematical
morphological operations take place on the same horizontal



Morphology structure element

Different
set

Pn PO

e Mask
Morphology opeﬁélion A

Potl

Substrate

Fig. 3.

@ee

different set different set different set

Illustration of fast morphological operation

Fig. 4. three situations of fast operation

plane perpendicular to the z-axis, we only use the fast mor-
phological operations in the following three situations shown
in Fig.4. The left one, if the current point has the same etch rate
as the left neighbor voxel’s in x-axis, use the pre-calculated
different set of that rate to erase the voxels. The middle one
is same as the left one only it’s along the y-axis. The right
one will get more performance improvement. If the current
voxels have the same rate as left and upper neighbor voxel’s,
only the corner different set will be used. The FMO roughly
reduce the sphere erasing operation’s complexity from O(N3)
to O(N?).

V. GPU 3D DRIE SIMULATION USING CUDA
A. Basic design considerations

The differences between CPU and GPU is the first design
consideration: multi-core CPU only forks a few threads to
get the job done, while GPU needs 1000s of threads for
full efficiency. So if a task is massively parallel, it is well
suitable for running on GPU. Another consideration is the
global memory issue [6]. Global memory bandwidth is used
most efficiently when the simultaneous memory accesses by
threads in a half-warp can be coalesced into a single memory
transaction, where warp is a collection of threads that are
scheduled for execution simultaneously on a multiprocessor.
Threads in a half-warp must access the words in sequence:
The k;;, thread in the half-warp must access the k;; word,
where word can be 32 bits, 64 bits or 128 bits. If threads
not follow the above condition, the memory access is non-
coalesced, and throughput is significantly reduced. Based
on this point, the mapping technique for data partition in
GPU programming is quite different from traditional multi-

thread CPU programming, where CPU there can be block
distribution, block-cyclic distribution etc. [14], these mapping
techniques can not satisfy the memory coalescing requirement
while on GPU assigning the continuous data to continuous
threads is more suitable.

From the serial DRIE simulation algorithm, we can see that
it is well adapted to run on GPU because the task is massively
parallel. Because each voxel of the silicon is independent of
each other, we could assign a single thread from the GPU
to a voxel or more of the silicon. In other word, one thread
charges of all the operations of a voxel in the volume. For the
purpose of memory coalescing, continuous voxels are assigned
to continuous threads, it’s a typical one-dimensional cyclic
distribution.

Another principle in designing the CUDA program is
avoiding costly data transfer back and forth to host. The
implementation uses the following kernels: Shadow test kernel,
MO kernel, Polymerization kernel. After the volume data
is transferred to GPU, host code invoke the shadow test
kernel, the MO kernel and polymerization kernel iteratively
several steps, at last transfer the volume data back to CPU
for displaying, this scheme will minimize the transfer time
between CPU and GPU.

B. Reduce thread divergence

To manage hundreds of threads running several different
programs, the multiprocessor employs an architecture we call
SIMT (single-instruction, multiple-thread). Every instruction
issue time, the SIMT unit selects a warp that is ready to
execute and issues the next instruction to the active threads
of the warp. A warp executes one common instruction at a
time, so full efficiency is realized when all threads of a warp
agree on their execution path. If threads of a warp diverge
via a data-dependent conditional branch, the warp serially
executes each branch path taken, disabling threads that are not
on that path, and when all paths complete, the threads converge
back to the same execution path. Branch divergence occurs
only within a warp; different warps execute independently
regardless of whether they are executing common or disjointed
code paths. The highest performance is achieved when the
threads avoid divergence and perform the same operation on
their data elements.

Both the shadow test and MO kernel will detect the surface
points first. If we choose every voxel of the volume as the input
of kernel, and decide which voxel is the surface point for the
subsequent computation, this scheme will lead to high thread
divergence when etching deeply into the silicon and will lead
to low performance. We need to distinguish surface points and
non-surface voxels and put all those surface voxels into a new
array for the next step of shadow test and MO kernel. This
operation in GPU is called compaction [11]. However before
it can be done, we must use a GPU building block called
scan [12] to decide where each surface points should be put
into the new array. In our CUDA program we use the scan
operation implemented in Cudpp [13], where the algorithm
used is called segmented scan [12]. The compaction operations



is in O(N), there will be insignificant overhead compared to
the performance gained. From the experiment result shown in
Section 6, with surface points compaction, the CUDA program
gets substantial speedup.

C. Other efficiency considerations

Constant Memory: Although the constant memory is very
tiny, using it efficiently will get substantial performance
improvement. For compute capability 1.0 [7], the constant
memory is 64KB over all multiprocessors, we put the sphere
data and difference sets of two adjacent spheres having same
radius into the constant memory which is totally 5S6KB, less
than the size limitation. With constant memory, the MO step
gains about 2x speedup.

Threads per block: The number of threads of each block is
also a factor that affects the performance, first choose threads
per block as multiple of warp size (32) to avoid wasting
computation on under-populated warps. Second, more threads
per block will lead to better memory latency hiding, but more
threads per block means that fewer register per thread, and
in the experiment, we have encountered some situations that
kernel invocations failed if too many registers are used. Based
on experiment profiling, we always choose 256 or 128 threads
per block.

Besides, template loop unrolling and CUDA built-in arith-
metic operations will help CUDA program get good perfor-
mance.

VI. EXPERIMENT RESULTS

We use the following devices for testing: CPU: Intel Core
2 CPU Q6600 @ 2.40 GHz, 2GB RAM and GPU: NVIDIA
GeForce GTX 260+, 768 MB global memory.

The version of CUDA is 2.2, GPU program compiler is
nvce and CPU program compiler is MS Visual Studio 2005.
The masks we select are representative masks of 256 pixels
width and 256 pixels length.

Fig.5 and Fig.6 give the run time of different methods, time
for the GPU program does not include the data transferring
time between CPU and GPU memory. The methods include:

trivial version of CUDA program on GPU(CUDA)
CUDA program with fast morphological operation(FMO)
using in the MO kernel(CUDA/FMO)

CUDA program with surface volexs compaction
(CUDA/Compaction)

CUDA program with fast morphological and compaction
(CUDA/FMO and Compaction)

serial program with FMO on CPU(CPU)

4-threads parallel program with FMO on

4-Core CPU(4-Core CPU)

The program successively etches the silicon a reasonable
number of steps, in this paper the number is 9. We can see
that programs with FMO perform well on GPU. Another fact
need to be noticed is the comparison between CUDA/FMO
and CUDA/Compaction, for the first 2 steps, CUDA/FMO
is better than CUDA/Compaction, but since the 3rd step

w
=3
=]

== CUDA

s)
§ &

- CUDA/FMO

-
«
o

CUDA/FMO and
Compaction

=>é=CUDA/Compaction

Running Time (m
.
I
o

;

Fig. 5.
step

Time of 9 steps with different methods - time of MO phase of each

100000

10000 e ==cubA
z ——0—0—0—0—"—0—o &~ CUDA/FMO
£ 1000 e CUDA/FMO and
';n Compaction
E == CUDA/Compaction
S 100 e — e %
« - =¥=CPU

10 =®=4 Core CPU

Fig. 6. Time of 9 steps with different methods - overall time of each step

CUDA/Compaction gets better. As etching deeply into the
silicon, more volexs became surface volexs, more threads of
FMO will become divergent threads, so Compaction method
is better.

Fig.6 shows the overall time of each step including the
shadow test, MO, scan and compaction kernel. Methods with
FMO seems not to perform that well as shown in Fig.6 because
shadow test kernel is the dominating part while MO kernel
become insignificant. The time of CUDA and CUDA/FMO
increases much as etching deeply into the silicon. Because,
when etching deeply into the silicon, more voxels become the
surface voxels, this will lead more threads to become divergent
threads, and the performance will decrease. But compaction
will efficiently reduce the thread divergence.

Fig.7 gives the comparison between GPU program and
parallel CPU program, the GPU program includes the data
transferring time between CPU and GPU memory, and the
speedup is about 75x.

VII. CONCLUSION

In this paper we presents a parallel implementation of
the 3D DRIE simulation based on GPU, built on Nvidia’s
CUDA platform. This paper also presents a fast morphological
operation, which reduces the complexity of MO part of the
algorithm from O(N3) to O(N?). The experiment results
show the parallel version with fast morphological operation



35000

30000

25000

=
£
o
£ 20000 —
':o HGPU
£
€ 15000 — 4CoreCPU
&
10000 —
5000 —
0
GPU 4 Core CPU
Fig. 7. Time of 9 steps with different methods - overall time of each step

and surface points compaction on Nvidia GTX260+ GPU
obtains 70 to 75x speedup over the 4-threads parallel version
on Intel Q6600 CPU. In the future work, we will try larger
volume and use multi-GPU to do the job.

VIII. ACKNOWLEDGMENT

This paper is supported partly by the National High
Technology Research and Development Program of
China (2008AA01Z401,2009AA04Z320), NSFC of China
(60674068,60903028), SRFDP of China (20070055054),
and Science and Technology Development Plan of Tianjin
(08JCYBJC13000,08JCZDJC22000), and we thank Guangyi
Sun for providing the source code of 3D DRIE simulation.

REFERENCES

[1] L.Franz and S. Andrea, “A Method of anisotropically etching silicon”, US
Patent Specification 5501893, German Patent Specification DE4241045.

[2] G. Sun, X. Zhao, H. Zhang, L .Wang, and G. Lu, “3-D Simulation of
Bosch Process with Voxel-Based Method”, Proceedings of the 2nd IEEE
International Conference on Nano/Micro Engineered and Molecular
Systems, Bangkok, Thailand,2007pp. 45-49, Jan 2007.

[3] R. Zhou, H. Zhang, Y. Hao, and Y. Wang, “Simulation of the bosch
process with a string-cell hybrid method,” IOP J. Micromech. Microeng,
vol. 14, pp. 851-858, 2004.

[4] E. Strasser and S. Selberherr, “Algorithms and models for cellular based
topography simulation”. IEEE Trans. on CAD of Integrated Circuits and
Systems 14 (9): 1104-1114, 1995

[5] G. Sun, X. Zhao, and G. Lu, “Voxel-Based Modeling and Rendering for
Virtual MEMS Fabrication Process” ,IEEE/RSJ IROS2006Beijing, China,
pp. 306311, 2006.

[6] NVIDIA “CUDA Compute Unified Device Architecture Programming
Guide, V. 2.0”, 06/07/2008

[7] CUDA http://developer.nvidia.com/object/cuda.html.

[8] F. Zhang, G. Wang, “An Improved Parallel Implementation of 3D DRIE
Simulation on CPU”, I0TH IEEE International Conference on High
Performance Comuting and Communications HPCC 2008, Dalian, Chin:
pp. 891-896, Sept. 2008.

[9] J. Nickolls and I. Buck, “NVIDIA CUDA software and GPU parallel
computing architecture”. Microprocessor Forum, May 2007.

[10] A. E. Lefohn, S. Sengupta, J. Kniss, R. Strzodka, and J. D. Owens,
“Glift: Generic, efficient, random-access GPU data structures.” ACM
Trans. Graph, 25 (1): 60-99, 2006.

[11] D. Horn, “Stream reduction operations for GPGPU applications”.
In GPU Gems 2, Pharr M., (Ed.).AddisonWesley, ch.36, pp.573-589,
Mar.2005

[12] S. Sengupta, M. Harris, Y. Zhang and J. D. Owens, “Scan primitives
for GPU computing”, Proc. of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, 2007.

[13] CUDPP http://www.gpgpu.org/developer/cudpp/

[14] A. Grama, A. Gupta, G. Karypis, V. Kumar, “Introduction to Parallel
Computing (Second Edition)”, Pearson Education, 2003.



