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Abstract

Storage systems usually leverage the power of spatial locality based prefetching to improve the read
performance. However, it is still a big challenge to initiate the prefetching requests effectively in
distributed environment. Since replication and parity are frequently employed techniques to provide
high reliability in distributed file systems, this paper presents a new prefetching approach which takes
advantage of both data redundancy and the correlation among objects. Two objects distribution
algorithms are proposed to guarantee both required fault tolerance and efficiently prefetching by means
of maintaining an orthogonal layout. The performance results from experiments on our testbed object-
based file system show that these approaches can improve the throughput significantly. The experimental
results also show that the overall performance can benefit from the proposed prefetching approach even
under the degraded mode.
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1 Introduction

With the rapidly burst of massive data and the continuous growth of cloud storage, the dis-
tributed file system has attracted increasing attentions. In distributed systems, frequent cache
missing implies massive disk read operations and network transfer, which leads to unacceptable
response time. Prefetching technologies, which fetch data from disk in advance before data is
really requested, are the commonly used methods to alleviate this kind of latency. Modern Oper-
ating systems (e.g. Linux) also employ prefetching strategy to improve the performance [5, 14].
Traditional prefetching strategies typically read consecutive blocks which are physically adjacent
to the current requested data [1, 6]. That is, they assume that physically adjacent blocks are also
logically adjacent, and user access pattern has good spatial locality. In a distributed object-based
file system (e.g. Panasas [13]), however, such assumptions do not stand any more since datum
are organized in the form of objects and are distributed over many storage nodes. Therefore, the
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objects stored on a single OSD may not be logically consecutive parts of a single file. Obviously,
the traditional prefetching methods would no longer work well and novel strategies which are
suitable for the distributed systems should be exploited.

On the other hand, as the size of storage systems grows larger and larger, the component failures
in server cluster become increasingly frequent. In order to offer a stable service, it is necessary
to employ replication and/or parity mechanism in distributed systems to provide high reliability
and high availability [3]. However, few references focus on improving prefetching performance
through redundant data layout.

In this paper, we extend the correlation-aware prefetching strategy introduced in [19]. The
recently proposed method allows applications to pre-fetch data objects according to the logical
relationship, avoiding the useless prefetching problem facing by traditional spatial locality based
prefetching strategy. When consider the correlation among objects, the multiple cross-nodes
prefetching requests can be transformed to a single prefetching operation which request consec-
utive blocks in a single server. The “aggregation” of prefetching requests draws support from a
carefully designed orthogonal data layout for replication and parity based storage systems. The
experimental results show that this new strategy increases throughput and decreases network
traffic remarkably, even under the degraded mode [20]. In fact, the performance in the rebuild
mode [20], as known as reconstruction mode, can also benefit from this orthogonal layout.

The rest of this article is organized as follows. Related work is summarized and discussed in
Section 2. Section 3 provides some details about our testbed distributed object-based file system
and the objects mapping algorithm used to distribute objects. Section 4 presents the details of our
orthogonal layout as well as the correlation-aware prefetching approach based on it. The double-
fault-tolerant feature is also explained in this section. Section 5 reports the detailed experimental
results as well as the analysis. Finally, Section 6 provides some concluding remarks and discusses
future work.

2 Related Work

Prefetching, also known as read-ahead, is a useful technique for alleviating the storage access
latency and reducing the response time in storage system. There are numerous works devoted to
it. Some of them focused on utilizing the existence of locality (both spatial and temporal) in disk
access patterns [10, 11], and tended to fetch consecutive blocks from disk. Others developed dif-
ferent prefetching strategies by investigating history logs and introducing data mining techniques.
[2, 9, 16, 18] detected some certain access patterns and used them to determine what data should
be pre-fetched.

Since a file may be scattered over multiple storage nodes in distributed object-based file systems,
traditional prefetching methods mentioned above may probably result in useless extra I/Os. Sui
et al. [19] proposed a correlation-aware prefetching strategy which can solve this problem in a
certain way. They took the correlation among objects into account and pre-fetched the objects
from a single node with the help of replications. Though this method can reduce the network
traffic caused by cross-nodes prefetching effectively, it brought some overhead as it required larger
(exactly twofold) disk space to store both the data and the replications. Our work extends this
correlation-aware idea with the consideration of fault-tolerant and introduces the mechanism of
parity. With replication and parity, the system is now double-fault-tolerant while the prefetching
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efficacy is still the same as the original method achieved. Moreover, the extra used disk space
gives full play to its effect now.

The motivation of replication and parity came from the existing storage system and fault-
tolerance approaches. Both Ceph [17] and GFS [8] used replication to maintain system availability
and ensure data safety. RAID 1 [15] and RAID 5 [7] are the most classic technologies to provide
high reliability. Furthermore, [21] combined mirroring, parity and parity de-clustering approaches
to construct more reliable erasure code. Our replication and parity mechanisms are closely related
to RAID 1 and RAID 5. Any systems that already have any kinds of replication and/or parity
mechanism(s), including RAID 1 and RAID 5, can adopt our prefetching model at a very low
cost.

3 Testbed Architecture

We implement the orthogonal layout (with replication and parity) and the prefetching strategy
on our previous work, OFS, a Ceph [17]-like distributed object-based file system which has been
introduced in [19]. In OFS, the client nodes provide the standard file system interface to the
users. And the storage nodes, called Object-based Storage Devices (OSDs) [12], are responsible
for objects storing and accessing.

The basic unit for data storage in OFS is objects. Every file in OFS is divided into fixed-size
objects that are assigned to several OSDs using an Objects Mapping Algorithm (OMA) [19], shown
as Algorithm 1. Each object is addressed by a unique object ID (128-bit) called ‘object identifier’
(OID), represented by a quintuple (fsno, fno, offset, type, flag). All the objects of one file share
the same value in both ‘fsno’ and ‘fno’ fields. The clients and OSDs access objects using the OID.

Objects are distributed over multiple OSDs according to the OMA. As shown in Algorithm 1,
an object is first represented by a fingerprint related to its OID (line 3-5). And then its fingerprint
is mapped into a segmented 32 bits namespace which has several intervals (line 6-8). After that,
this object is assigned to the corresponding OSD which is associated with a particular interval
(line 9). The experimental results show that this mapping algorithm distributes objects almost
evenly over OSDs (see Table 1), which is the same as [19] claimed.

Algorithm 1: Objects mapping

Input: File f and the number of OSDs osd num
Output: Distribute the objects of f to the OSDs on which they should resided

1 Divide f into objects set S.
2 foreach object o in S do
3 Mark o by corresponding OID oid.
4 Compute the MD5 fingerprint md5sum(oid) of o.
5 v ← md5sum(oid) AND 0xFFFFFFFF
6 region← (uint32 t)(∼ 0)
7 interval span← dregion ÷ osd nume
8 pos← dv ÷ interval spane
9 Distribute o to the pos-th OSD.

10 end
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x No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8

2000 265 249 251 263 244 242 233 252

4000 525 493 513 522 489 490 467 500

6000 766 755 772 768 734 747 705 752

8000 1033 992 1006 1020 983 1014 941 1010

4000 607 557 597 584 546 563 545 #

4000 695 669 689 653 635 658 # #

4000 805 820 827 762 785 # # #

4000 1018 1035 979 967 # # # #

Table 1: Evenly distribution of objects over multiple OSDs according to Algorithm 1. The
number of OSDs in the upper part of the table is fixed (which is 8), while in the lower part it
varies. x denotes the total amount of objects, and the value in the array denotes the number of

objects that resided on the j-th OSD (No. j).

4 Prefetching in Fault-tolerance Systems

4.1 Correlation-aware prefetching with replication system

A “relationship-clustering” replication idea for OFS has been presented in [19]. OFS keeps a
replica (replica object) for each object (original object) and guarantee that these two selfsame
copies are resided on different OSDs. A replica object is called as the twin of its original one,
and vice versa. Both the twinned copies of an object (that is, original and replica) are assigned
to their corresponding OSDs using the same OMA, that is, Algorithm 1. The only difference is
that it is the file identifier oid.fno instead of object identifier oid to be considered during the
mapping procedure of the replica objects. Therefore, replicas with the same “fno” field in OID,
i.e., belonging to the same file, are aggregated in a single OSD. The rectangular dotted line region
of Figure 1 shows an example. Xi denotes the i-th original object of file X and X ′

i denotes the
corresponding replica object. All the replica objects of file A resided on osd1 (the replica node of
A) while the original objects distributed over other OSDs (the original nodes of A). Two modified
OMA are proposed to extend the primitive one for maintain such an orthogonal layout.

This layout aggregates the replicas of logically adjacent objects, so only one request needs to be
initialized for a single prefetching operation, which is called correlation-aware prefetching strategy.
When a read request is initiated by a client, the prefetching is performed. Note that it is the
serving OSD rather than the client to initiate the prefetching requests in OFS. The serving OSD
dose not initiate multiple prefetching requests to many OSDs which have the logically contiguous
objects. Instead, it directly initiates a single prefetching request to the replica node of the current
required file. While the serving OSD acknowledges the client with the current required object, the
replica OSD continues its prefetching. These two procedures are overlapped, forming a pipeline,
which reduces idle time significantly. Then the following read requests can be properly (controlled
by a dynamic sliding window mechanism, proposed in [19]) redirected to the replica OSD, where
the objects have already resided in the main memory by previous prefetching.
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4.2 Correlation-aware prefetching with parity system

Though the replication aggregating method does reduce the number of prefetching requests and
disk access latency greatly, it requires 2-fold disk space to store both the data and the replicas.
Since it is common in storage systems to employ both replication and parity techniques to provide
high reliability, we can extend the replication idea to a fault-tolerant system by introducing the
parity.

For a certain file, the original objects are organized into parity stripes. Every stripe has its
own parity object that is the XOR sum of the data objects in the same stripes. All stripes again
form an orthogonal layout, that is, a file’s parity objects are stored in a particular OSD (parity
node of that file) while all its original and replica objects stored in other OSDs. To provide
double-fault-tolerant, the parity OSD and the replica OSD of one file should not be the same
node.
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Fig. 1: Orthogonal layout with parity

The right part of Figure 1 shows an example of orthogonal distribution with replication and
parity. The meaning of Xi and X ′

i are the same as in Section 4.1, while Pxi denotes the parity
object of the i-th parity stripe of file X. In this example, there are four files A, B, C, D. We can
see that object A0 together with A2 forms a parity stripe, while Pa0 is the parity object of this
stripe. Also we can find that all parity objects of file A are assigned to osd3, while all replica
objects are assigned to osd1. Like RAID-5, the parity OSDs of files are chosen in a round robin
way that leads to even parity distribution, therefore even updating load distribution. However,
compared with the layout without replication and parity (the most left part of Figure 1), some
original objects must be re-mapped in order to avoid superposing with their twins in a same OSD.
Thus, we extend the migration strategy and repartition strategy [19] to insure the orthogonality.

• Repartition Strategy This strategy repartitions the 32 bits namespace mentioned in
Section 3 into N −2 segments as shown in Figure 2. Here N equals to the number of OSDs,
while 2 corresponding to the preserved OSDs for replication and parity. In other words, the
replica node and the parity node are excluded during the mapping of original objects. By
applying the original OMA under the new partitioned namespace, each original object is
mapped to an OSD except its replica node (marked as R) and the parity node (marked as
P). Figure 3 illustrates an example.
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• Migration Strategy In contract with repartition strategy, this method dose not re-map
all the original objects. Instead, only the original objects that would be assigned to the R
node and the P node by the original OMA will be reassigned. As shown in Figure 4, eight
original objects reside on osd1 and osd3 are migrated to other original OSD evenly.
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Fig. 2: Namespace original vs. Namespace with replication and parity
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Fig. 3: Repartition strategy with parity
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Fig. 4: Migration strategy with parity

Note that there is no need to worried about the load imbalance problem that may raised by
using these two new re-mapping strategies. Recall Table 1, the objects will still be (almost) evenly
distributed over N−x OSDs in spite of x nodes are excluded out from the whole cluster (N nodes
in total). Then with this new load-balancing orthogonal layout, the correlation-aware prefetching
strategy can work the same way as described in Section 4.1. Let S denote the amount of the
original data. Layout in Section 4.1 costs 2S disk space while the new layout costs (2+1/(N−2))S.
That is, the reformed layout achieves the same efficacy and extra fault-tolerance than the former
one with only S/(N − 2) extra disk space cost.

5 Experimental Results

In this section, we present evaluation results for our correlation-aware prefetching strategy (COR
for short) under the reformed orthogonal layout, and compare it with a baseline approach which
considers the spatial locality only (denoted as SPA). To maximize the effectiveness of prefetching,
the dynamic sliding window mechanism mentioned in Section 4.1 is employed in the following ex-
periments. All experiments are conducted on a Gigabit Ethernet connected cluster of nine nodes.
One of them acts as the client node, while other 8 nodes perform as OSDs. Each machine has a
single-core 3.06GHz Intel Celeron processor and a 512MB memory, running Red Hat Enterprise
Linux AS 4.

For description convenience, we define these terms: “cor” and “spa” stand for OFS with our
correlation-aware prefetching method and with the spatial locality based prefetching method
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respectively, both of which employ replication mechanism only. “parity” stands for the normal
read (read operation in a non-fault system) in OFS which employs not only replication but also
parity mechanisms. In contrast, “degrade” stands for the degraded-mode read, which means read
performance under disk failure(s). Without special description, all the read operations in the
experiments are sequential read.

We use a modified Bonnie [4] as benchmark to generate sequential and random workload. In
each test, five 100MB files are written first and a single client reads all five files in a round robin
way to test the sequential or random read performance. Each file is composed of 800 objects,
that is, the object size is 128KB. Though the request generated by Bonnie is of size 16KB, each
read/write operation in OFS deals with exactly an object, namely is of size 128KB (this parameter
can be tuned when system initializes). Each result is the average of 5 runs.

We start by investigating how the cache size would affect the performance. We use a fixed win-
dow size (i.e. 10) and perform the experiment with five different cache sizes. Figure 5 shows that
COR method outperforms SPA method regardless the cache size. And the proposed prefetching
strategy can improve the throughput by up to 96% compared to the system without prefetch-
ing. Figure 6 illustrates the same trend too. When there is no disk failure occurring, the parity
is transparent to read requests processing. So adopting parity mechanism does not bring any
side-effect on the overall throughput. This conclusion can be easily perceived by comparing the
corresponding data of normal read in the following two figures.
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Next, we try to figure out the impact of the window size (a key parameter in dynamic sliding
window mechanism mentioned above) on the overall system performance. The cache size is set
to 40MB in this test. The window size is set constant in every single run and varies from 5 to 30
in different runs. We test the performance of both sequential read and completely random read,
and the results are presented in Figure 7 and Figure 8 respectively. When the window size is
not larger than 20, the throughput of COR method keeps increasing as the window size grows in
both two figures. However, when the window size exceeds 20, the performance of sequential read
stays unchanged while that of random read still getting improved (more slighter, though). The
performance of SPA method behaviors in a different but more interesting way. The throughput
begins to drop as the window size exceeds 20 in sequential read test, while the performance of
random read test, in contrast, still increasing slightly.
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It is self-evident that the random read benefits more from larger prefetching window than
sequential read. Since the contiguous requests of random read are not aiming at the logically
adjacent objects, the more objects the system pre-fetched, the better performance the system
would achieve. The reason that sequential read performs worse with larger window is also under-
standable. Because a mass of useless prefetching initiated by SPA could cause the memory cache
occupied by irrelevant data, which leads to the bad performance.
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In order to examine the scalability of OFS, we rerun the experiments with different number of
storage nodes (from 2-8). Note that the 2-nodes case corresponds to OFS with only replication
but not parity, since the orthogonal layout with replication and parity requires at least 3 nodes.
The cache size is also set to 40MB and the window size is set to 20 at the beginning of the test
(which will automatically adjusted during the whole running [19]). As illustrated in Figure 9, the
correlation-aware prefetching always exhibits the better performance, regardless of the system
size. Besides, it is worth noting that the gap between the performance of “cor”-class and “spa”-
class tests keeps increasing as the system size grows larger. This observation confirms the idea
that the more distributive the system is, the more useless the SPA method performs.
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Fig. 9: Scalability

Figure 6, 7, 8, 9 together demonstrate that even under the degraded mode, COR method
still performs better than SPA. That is, even under degraded mode can the overall performance
benefited from the novel prefetching approach. In OFS, every OSD acts as the replica OSD for
some certain files and the parity OSD for some other files, while it plays the role as one of the
original OSDs of the remain files. As a result, when one or two disk fails, only a few files lost their
replica OSDs. The other files can still be involved in the correlation-aware prefetching. Therefore,
the system can accomplish the degraded mode read as long as there are no more than two disks
fail, and still benefited from the prefetching approach.

6 Conclusions and Future Work

This paper extends the recently proposed correlation-aware prefetching strategy to fault-tolerant
distributed object-based file systems. In order to maintain the prefetching effectiveness as well as
the double-fault-tolerance, we carefully reform the orthogonal layout and proposed two objects
distribution algorithms. Furthermore, this work extends the single-fault-tolerance to double-fault-
tolerance with little overhead. The experimental results show that the novel prefetching strategy
together with the proposed data layout exhibits much better performance than the traditional
spatial locality based approach. Besides, the evaluation also demonstrates that the performance
of degraded mode can benefit from such prefetching method too.

This research can be extended in several directions. For example, in order to alleviate the
writing workload of replica and parity node, the replication and/or parity can be divided to
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several OSDs instead of just one single OSD. As a result, the orthogonal layout needs to be
carefully redesigned. Moreover, by employing data mining techniques on disk accessing log, other
correlations among objects can be investigated. From the point of fault-tolerance, more work can
be done to achieve higher reliability and better load balance, like introducing more complicated
encoding algorithm and parity de-clustering approach, etc.
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