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Abstract1 

 
In recent years, multi-erasure correcting coding 

systems have become more pervasive. RAID6 is an 
important 2-erasure correcting code specification. But 
there is no consensus on the best concrete RAID6 
coding scheme. Plank developed a brand new class of 
RAID6 codes called the Liberation codes that achieves 
good encoding, updating and decoding performance. 
In this paper, we present a chained decoding 
algorithm for the Liberation codes. Its performance is 
comparable with the bit matrix scheduling algorithm 
developed by Plank, but is more intuitive and reveals 
the essence better. In the process, we present a new 
class of Liberation codes called the Latin Liberation 
codes. These codes are based on column-hamiltonian 
Latin squares, hence the name. They are superior to 
the Liberation codes in parameter flexibility and 
structure flexibility. Finally, we analyze the 
performance of several XOR-based RAID6 codes and 
give some suggestion on their application.  
 
1. Introduction 
 

In recent years, as hard disks have grown greatly in 
size and storage systems have grown in size and 
complexity, it is more frequent that a failure of one 
disk occurs in tandem with unrecovered failures of 
other disks or latent failures of blocks on other disks. 
On a system using single-erasure correcting code such 
as RAID5, this combination of failures leads to a 
permanent data loss [1]. Hence, applications of multi-
erasure correcting codes have become more pervasive. 
RAID6 is a 2-erasure correcting code specification [2]. 
Several concrete RAID6 schemes have been developed, 
and some are applied successfully. This paper presents 
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a chained decoding algorithm for the Liberation codes 
- an important RAID6 scheme. Constructing Liberation 
codes by Latin squares is also discussed in this paper. 

The outline of this paper is as follows. In Section 2 
we discuss the known RAID6 codes. Section 3 is 
devoted to introducing some related combinatorics 
knowledge. In Section 4 we present the chained 
decoding algorithm, and the Latin Liberation codes are 
presented in Section 5. A theoretical analysis is 
discussed in Section 6. Conclusions and future works 
are presented in Section 7. 

 disk0 disk1 disk2 disk3 disk4
stripe0 D D D P Q 
stripe1 D P Q D D 
stripe2 Q D D D P 
stripe3 D D P Q D 
stripe4 P Q D D D 

… … 
Figure 1. A typical RAID6 system. 

 
2. Current RAID6 codes 
 

An erasure code for storage systems is a scheme 
that encodes the content on n data disks into m check 
disks so that the system is resilient to any t device 
failures [3]. Unfortunately, there is no consensus on 
the best coding technique for n, m, t > 1. RAID6 is a 
specification for m=t=2. A typical RAID6 system 
appears as depicted in Fig 1. Each disk is divided into 
fixed-size blocks (stripe units). All blocks with the 
same in-disk offset are organized into a stripe. Each 
stripe contains n data units and 2 check units P and Q. 
The identity of the data and check disks is rotated 
every stripe for small write load balance. A stripe is a 
self-contained 2-erasure correcting entity and the 
whole layout is just the cyclic repetition of a stripe, so 
we can focus only on single stripe when design a 
RAID6 code. Generally a RAID6 code should be a 
MDS code. 

The best known RAID6 codes are Reed-Solomon 
codes [4]. They are based on Galois Field, thus the 
computational complexity is a serious problem though 



optimized algorithms have been developed [5][6]. 
Another category is so-called array codes that 

design a stripe as an array of data and parity symbols. 
In this paper, we focus on the horizontal codes, such as 
EVENODD [7], RDP [1] and Liberation [8]. 
“Horizontal” means that some disks contain nothing 
but data symbols and the others contain only parity 
symbols. “Vertical” means that the data and parity 
symbols are stored together. Horizontal codes fit 
RAID6 specification well, but vertical codes don’t. So 
some important vertical codes, such as X-Code [9], B-
Code [10], are not within the scope of this paper. 
STAR Code [11] is a 3-erasure horizontal code, it boils 
down to EVENODD when applied to RAID6 scenarios; 
Pyramid Code [12] is not MDS; WEAVER Codes [13] 
and HoVer Codes [14] are not MDS too and are not 
horizontal. So they are all out of our sight. 

Fig 2.b shows the 7-disk EVENODD code. The 
standard EVENODD code with p+2 disks consists of a 
(p-1)*p data array and a (p-1)*2 parity array. Note that 
the whole array instead of each row corresponds to a 
stripe in Fig 1, and each column instead of each 
symbol corresponds to a stripe unit. The “disk P” 
stores horizontal parity symbols and the “disk Q” 
stores skew diagonal parity symbols. Dij denotes the 
data symbol that participates in Pi and Qj. Di* 
participates in Pi and all Qs. 

Array codes can be regarded as layouts of binary 
linear codes. For example, the symbols in the 7-disk 
EVENODD code are just the symbols (except P4, Q4 
and D40~D44) of the 35-disk 2d-parity code [15] shown 
in Fig 2.a (Di*=Di4). P4 and D40~D44 are deleted for 2-
erasure correcting. Q4 is deleted and the sum (over 
GF[2], namely XOR operation, the same hereinafter) S 
of its sons is added to every Q for MDS. Therefore, the 
computational performance is not optimal and each 
column instead of each symbol must be implemented 
as a stripe unit to achieve optimal update penalty. 
These properties are the inherent limitations of the 
MDS horizontal codes [16][17]. 

Fig 2.c shows the 6-disk RDP code. The standard 
p+1-disk RDP code can be described by a (p-1)*(p+1) 
code array. The disk P stores horizontal parity symbols 
and the disk Q stores skew diagonal parity symbols, 
too. RDP codes also can be constructed by clipped 2d-
parity codes. Its strategy for the deleted Q parity 
symbol is “parity dependent” - some P symbols have 
the second role as a data member of some Q. 

Fig 2.d shows the 7-disk Liberation code. It is also 
based on the 2d-parity code shown in Fig 2.a. A 
standard Liberation code can be described by a p*(p+2) 
code array. Unlike EVENODD and RDP, it adopts 
“addition” instead of “deletion”. The original 2d-parity 
code is well-preserved and some data symbols (Dijk) 
are arranged to participate in one extra Q group (Qk). 
Plank’s construction method lets the ith symbol in the 
jth disk participate in Pi and ( )modi j pQ − . When j is odd, 

the ( 1)
2

thp j+ −  data symbol is the “3-group” symbol 

and its 2nd Q group is the ( )
2

thp j−  Q group. When j is 

even (>0), the 3-group symbol is in row 1
2
j −  and it 

joins the ( )
2

thjp −  Q group. 

Note that the parameter p must be a prime for 
EVENODD, RDP and Liberation. This leads to bad 
parameter flexibility and implementation problems. 
We have tried to generalize EVENODD and RDP 
using Latin squares [18][19]. In this paper, we apply 
this technique to the Liberation codes. 

 
3. Related combinatorics knowledge 
 
3.1. Graph representation of 2-erasure codes 
 

Some literature refers to simple graph 
representation of parity independent 2-erasure linear 

Figure 2. Current RAID6 codes and CHLS.



codes in which each data symbol participates in 
exactly two parity groups [10][15][20]: let each vertex 
denote a parity symbol (group) and each edge denote a 
data symbol - the two endpoints of an edge are just the 
two parity symbols of the data symbol. So an array 
code can be described by a graph partition if the 
underlying linear code can be described by a simple 
graph. We have proven the following theorem [20]: 
Theorem 1. If an array code can be described by a 
partition of a simple graph, it is 2-erasure correcting iff 
the union of any pair of sub-graphs of the partition 
doesn’t contain the following two types of structures: 
1. A path and its two endpoints. We call this kind of 

unrecoverable erasure Closed Parity Symbols 
Subset, CPSS for short. 

2. A cycle. We call it CDSS - Closed Data Symbols 
Subset. 

Fig 3.a shows the graph that corresponds to a 15-
disk 2d-parity code. Fig 3.b shows an array code based 
on it. Fig 3.c gives a CPSS that corresponds to the 
unrecoverable 2-erasure (disk0, disk1), and Fig 3.d 
shows a CDSS that corresponds to the unrecoverable 
2-erasure (disk2, disk3). 
 
3.2. Perfect one-factorizations 
 

A one-factor of a graph G is a set of edges in which 
every vertex appears exactly once. A one-factorization 
of G is a partition of the edge-set of G into one-factors. 
A perfect one-factorization (P1F) is a one-factorization 
in which every pair of distinct one-factors forms a 
Hamiltonian cycle. There is a widely believed 
conjecture in graph theory: every complete graph with 
an even number of vertices has a P1F [21]. Fig 4 
shows a P1F of K5,5. 
 
3.3. Latin squares 
 

An n*n Latin square L is an n*n matrix of entries 

chosen from some set of symbols of cardinality n, so 
that no symbol is duplicated within any row or any 
column. We select Ζn={0, 1, …, n-1} as the symbol set, 
it is also can be used as the row and column number 
set. The symbol in row r, column c of L is denoted by 
Lrc. A Latin square of order n can be described by a set 
of n2 triples of the form (row, column, symbol). 

Each row r of a Latin square L is the image of some 
permutation σr of Ζn, namely Lri=σr(i). Each pair of 
rows (r; s) defines a permutation by σr,s=σrσs

-1. If σr,s 
consists of a single cycle for each pair of rows (r, s) in 
a Latin square L, we say L is row-hamiltonian. Similar 
concepts can be defined in terms of the column and 
symbol. In this paper, we are concerned with column-
hamiltonian Latin squares, CHLS for short. Fig 2.e 
shows a CHLS of order 5, and σ1,4 of it. It is just the 
Cayley table C5 of the cyclic group of order 5. In fact, 
Cp is a CHLS when p is a prime number. 

There is a CHLS L of order n iff Kn.n=(V,W,E) has a 
P1F F={F0, …, Fn-1} [21]. To show this, we create 
three one-to-one correspondence: between the row set 
and V, between the symbol set and W, and between the 
column set and F. Namely, ( , , ) ( )i j k L∈ corresponds 
to the edge (vi, wk) in Fj. Obviously, the cycle pattern 
in σr,s in L corresponds to that in Fr∪Fs. The P1F 
shown in Fig 4 corresponds to C5. There is another 
conclusion [21]: if Kn+1 has a P1F, then so does Kn,n. 
Thus we have a conjecture: Kn,n has a P1F (CHLS of 
order n exists) for n=2 and all odd positive integers n. 
Graph theorists have proven that all even(odd) 
numbers less than 54(53) are “Kn P1F numbers” 
(CHLS/Kn,n P1F numbers) and have found many larger 
Kn P1F numbers (CHLS/Kn,n P1F numbers).  
 
4. The chained decoding algorithm 
 

An 2-erasure array code can be described by a 
partition, a P1F is just a partition, and there is a 
bijection between CHLS and P1F of Kn,n. Thus a 

Figure 3. Simple graph representation.

Figure 4. A P1F of K5,5. 



natural idea is constructing 2-erasure array codes by 
CHLS. In [18] and [19], we have tried this idea. Two 
algorithms are developed to construct EVENODD-like 
codes and RDP-like codes respectively by CHLS. We 
call the first kind of codes PIHLatin codes (Parity 
Independent Horizontal Latin codes), and the second 
kind PDHLatin codes (Parity Dependent Horizontal 
Latin codes). The key ideas of the two algorithms are 
similar: each column of the CHLS is used to construct 
a disk; one row is deleted to break the Hamiltonian 
cycles induced by disk pairs - CDSS are avoided; 
finally, parity symbols are arranged properly to avoid 
CPSS. Therefore, 2-erasure correcting is guaranteed. 

PIHLatin and PDHLatin are superior to EVENODD 
and RDP in parameter flexibility because the 
distribution of P1F numbers is far denser than that of 
prime numbers. Although horizontal shortening 
(deleting some data disks - assuming they contain 
nothing but zeros) can alleviate EVENODD and 
RDP’s problem, we have shown that it is harmful to 
encoding/decoding/updating performance [18][19]. 
The PIHLatin and PDHLatin codes constructed by C5 
are respectively the 7-disk EVENODD code and the 6-
disk RDP code shown in Fig 2. In fact, PIHLatin and 
PDHLatin are the supersets of EVENODD and RDP 
respectively. We have shown that the relationship is 
proper superset [18][19]. 

Liberation codes can be described by Latin squares, 
too. Writing down the (first) Q index of every data 
symbol, we get a CHLS. For example, the 7-disk 
Liberation code shown in Fig 2.d corresponds to the 
CHLS shown in Fig 2.f. This CHLS is an isotopy of C5 
(constructed by performing column swapping on C5). 
Examining Plank’s construction method [8], we can 
see that all “Liberation CHLS” are of this kind. 

The Q index matrix of a Liberation code is a 
complete CHLS. This means that any pair of disks 
induces a Hamiltonian cycle (CDSS). So how do 
Liberation codes tolerant all 2-erasures? The answer is 
the 3-group data symbols. Plank has proven that the 
Liberation codes are 2-erasure correcting by matrix 
description. He also presented a decoding algorithm 
named bit matrix scheduling algorithm [8]. But it’s 
hard to understand the interior mechanism through 
matrix description. There is a simple and intuitive 
decoding algorithm for PIHLatin and PDHLatin codes. 
Suppose that a 2-erasure (disk1, disk2) occurs in a 6-
disk RDP coding system. All horizontal parity groups 
and the 2nd and 3th skew diagonal parity groups lose 
exactly two symbols, we can’t recover them directly. 
But Q0 and Q1 lose only one symbol, we can start 
decoding from them. D01 can be reconstructed by 
summing all surviving symbols in Q1 first, then D02 is 
reconstructed using the horizontal parity group P0, then 

D12 is reconstructed through Q2, and then D13 is 
recovered by P1, and so on, until D2 is recovered by P2. 
Similarly, D30 and D3 are reconstructed along another 
chain. Graph representation describes this algorithm 
visually. A reconstruction chain corresponds to an 
open path (the opposite of CPSS and CDSS) in the 
union of the failed disks (sub-graphs), and its starting 
point (D01, D30) corresponds to the end edge of the 
open path. Now we present a chained decoding 
algorithm for Liberation codes. We illustrate its 
correctness by several examples instead of a strict 
formal proof. 

The reconstruction of single-erasures is trivial, so 
we focus on four kinds of 2-erasures. 

The Two Parity Disks Fail 
In this case, decoding equals to encoding. 

The Disk Q and a Data Disk Fail 
Decodes the data disk using horizontal parity 

groups, and then encodes the Disk Q. 

The Disk P and a Data Disk Fail 
We can decode the data disk using Q parity groups. 

There is at most one 3-group data symbol in a data 
disk. Thus if the failed data disk contains a Dijk, we 
recover it through Qj first, and then recover Di’k 
through Qk (all other symbols in Qk including Dijk are 
prepared now). And then we can encode the disk P. 

 
Figure 5. Chained decoding algorithm. 

The First Data Disk and another Data Disk Fail 
The union of the two failed disks composes a cycle 

with a chord induced by the 3-group symbol. For 
example, Fig 5.a shows the sub-graph that corresponds 
to the 2-erasure (disk0, disk2) in a 7-disk Liberation 
coding system. The chord increases the degrees of v0 
and w4 to 3. But v0 touches only 2 edges because the 
two dashed lines both denote D034. w4 touches really 3 
edges. We call the former fake 3-vertex and the latter 
real 3-vertex. Examining the right sub-cycle, every 
involved parity groups (vertices) loses (touches) 
exactly 2 symbols (edges) except Q4 (w4) that loses 3 
symbols: D14, D44 and D034. So, we can reconstruct the 
“tail” D14 by summing all surviving symbols in these 



groups. This process can be described formally as 
follow. iP  is defined as the sum of the surviving 
symbols in Pi and iQ  as the sum of the surviving 

symbols in Qi. iP  ( iQ ) also equals to the sum of the 
lost symbols in the group. Huang et al gave them the 
name syndromes [11]. So we have: 

0 20034 00 00 20 20 22
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0 2 40 2 414
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= ⊕ = ⊕

= ⊕ ⊕
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We call this process cycle resolving and the 
traversal path resolving path. The dashed oval in Fig 
5.a shows the resolving path described by formula 1. 
After the resolving process, we can recover all lost 
symbols clockwise from D14. 

A feasible resolving path should be a “Q shape” - a 
cycle with a tail edge. Moreover, it must pass one and 
only one real 3-vertex that is just the connection point 
between the cycle and the tail. This structure 
guarantees that all edges are touched precisely twice 
except the tail only once. Therefore summing all the 
syndromes decodes the tail symbol. In addition, 
chained decoding should be performed along the tail 
direction after cycle resolving. The decoding path must 
pass a fake 3-verrtex before pass its corresponding real 
3-vertex. Otherwise, the decoding process will have to 
stop at the real 3-vertex. Thus, the left sub-cycle in  
Fig 5.a is also a feasible resolving path, but the 
decoding direction is anticlockwise. We can see that a 
resolving path always exists in this case, and chained 
decoding always complete. 

The syndromes seem to be calculated twice, one 
during cycle resolving and another during chained 
decoding. Therefore the decoding cost is far away 
from the optimal cost. But in fact, we can store the 
syndromes in the memory for the lost symbols once 
they are calculated during cycle resolving. Then they 
can be fetched and put into calculation immediately 
during chained decoding. Therefore, near-optimal 
performance is still guaranteed. 

Two Data Disks (Excluding the First Disk) Fail 
Fig 5.b shows the sub-graph that corresponds to the 

2-erasure (disk1, disk3) in a 7-disk Liberation coding 
system. The dashed chord denotes the 3-group symbol 
D212 and the wavy chord denotes D145. The decoding 
process is similar to the last case. Formula 2 shows a 
resolving path that decodes D32. Another path decodes 
D212 as Formula 3 shows. 

Fig 5.b is the only recoverable structure. The real 
and fake 3-vertices must be interleaved on the cycle. 

Otherwise, the two tails point to each other inevitably. 
Thus the decoding process from any real 3-vertex must 
quit halfway at another real 3-vertex. We will show 
that Plank’s method guarantees this structure. 

2 04212 24 24 04 04 02

2 02 4 202 212 32 32
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⇒ = ⊕ ⊕ ⊕ ⊕

     (3) 

Let a 2-erasure be described by an index pair ( , )i j  
(0 )i j p< < < . All erasures can be divided into four 
classes by the parity of i and j. Because the code 
structure is symmetric, we can focus only on the 
erasures involving disk1 or/and disk2. 

Now we show that a 2-erasure (1, j) (j>1 is an odd 
number) leads to the recoverable structure. All 
operations are mod p arithmetic. An erasure (1, j) 
induces a Hamiltonian cycle v0-w-1-vd-wd-1-v2d-w2d-1-...-
w(p-1)d-1-vpd(v0) (d=j-1). The two fake 3-vertices are 

1
2

pv −  and
1

2
p jv + −

. The two real 3-vertices are 1
2

pw −  and 

2

2 p j− . We replace the two real 3-vertices with their 

neighbors 1
2

pv +  and 
1

2
p jv − +

. This substitution doesn’t 

affect the relative order of the two kinds of vertices. 
We translate the original proposition into an 

equivalent problem: p is a prime; d is an even number 
between 2 and p-2; 0, d, …, (p-1)d is a permutation of 

{0, 1, …, p-1}; mark 1
2

p −  and 1 1
2

p d+ + −  as red, 

and 1
2

p +  and 1 1
2

p d− − +  as black; then the red and 

black numbers are interleaved in the permutation. 

We shift the four numbers to 0, 
2
d , 1 and 1

2
d− . 

This transformation doesn’t change the relative order 
of the vertices too. Suppose the indices of the four 
numbers in the permutation are x, y, u and v. Namely, 

0,  mod ,  1mod ,  (1 ) mod .
2 2
d dx yd p ud p vd p= = = = −

Thus 2 modyd d p= . Since y and d are relative prime, 

we get 2 1mody p= . So we have 1
2

py += . Note that 

( ) 0 mody v u d p+ − = , thus mody v u p+ = . Thus 

y v u+ = or y v u p+ = + . Thus 10 ( )
2

pv y u+< < = <  

or 0 u y v< < < . Anyway, the red and black numbers 
are interleaved. Therefore any 2-erasure of two disks 



with odd indices has the structure as Fig 5.b shows. 
Other cases can be proven in the similar way. We omit 
the proof due to lack of space. 

By then, we have shown that any 2-erasure in a 
Liberation coding system can be reconstructed by the 
chained decoding algorithm. This algorithm provides 
an intuitive decoding process and helps understand the 
interior mechanism of Liberation codes better. 
 
5. Constructing Liberation codes by CHLS 
 

Studying Plank’s construction method, we see that 
the key is that each pair of disks forms a Hamiltonian 
cycle. On this basis, arrange the 3-group symbols 
properly, 2-erasure correcting will be guaranteed. An 
intuitive idea is constructing Hamiltonian cycles using 
general CHLS instead of Cayley tables. The code in 
Fig 6 is constructed in this way. We call this kind of 
codes the Latin Liberation codes. Latin Liberation 
codes have advantage in parameter flexibility because 
of the dense distribution of CHLS numbers. Another 
advantage is good structure flexibility. The code in  
Fig 6 is based on the CHLS in Fig 2.g. This CHLS is 
not isotopic to C7. This means that the code is not 
isomorphic to the 9-disk Liberation code even if 
regardless of the 3-group symbols. Generally, the Latin 
Liberation codes may have more heterogeneous 
instances than the Liberation codes for a given size. 
Moreover, the larger the system is, the more 
remarkable this advantage is. 

disk0 disk1 disk2 disk3 disk4 disk5 disk6 disk7 disk8
D005 D01 D02 D03 D04 D05 D06 P0 Q0 

D11 D12 D13 D15 D162 D14 D10 P1 Q1 

D22 D23 D24 D26 D21 D20 D25 P2 Q2 

D33 D34 D353 D31 D30 D36 D32 P3 Q3 

D44 D45 D46 D40 D42 D436 D41 P4 Q4 

D55 D56 D50 D524 D53 D51 D54 P5 Q5 

D66 D6 D61 D64 D65 D62 D63 P6 Q6 

Figure 6. A 9-disk Latin Liberation code. 

Another interesting of this example is the data 
symbol D6 that is the reduced form of D600. This kind 
of 3-group symbols (1-group symbols in fact) 
decreases computational complexity obviously. 
However, we can arrange only one 1-group symbol 
and still satisfy “interleave property”. Otherwise, 2-
erasure correcting ability is not guaranteed. 

There still is a big problem: how to arrange the 3-
group symbols to guarantee that the real and fake 3-
vertices are interleaved on the cycle. We haven’t found 
a general arranging scheme that is suitable for all 
CHLS. And it seems that this kind of schemes doesn’t 
exist. But the schemes for specific families of CHLS 
and individual instance are possible.  

6. Performance analysis 
 

In this section, we compare the performance of the 
XOR-based RAID6 codes. Because these codes are 
neck and neck in reliability, check disk overhead, 
update penalty, group size, and extensibility and so on, 
we mainly focus on the computational performance of 
encoding/decoding/updating. The performance is 
measured in the number of XOR operations per data 
word. In this section, n denotes the number of the data 
disks, and p denotes the order of the underlying CHLS. 

Because PIHLatin is the superset of EVENODD, 
PDHLatin is the superset of RDP, and Latin Liberation 
performs equivalently with Liberation when p is a 
prime, we select PIHLatin, PDHLatin and Latin 
Liberation for comparison. PIHLatin has two versions 
that one has the same structure as EVENODD, and the 
other reverses the last Q parity symbol. We call the 
former PIHLatin I, and the latter PIHLatin II. Although 
PIHLatin II codes are only near-MDS, they still can be 
used in a RAID6 coding system. 

Besides standard codes, horizontally shortened 
codes are also discussed. We can see that deleting the 
first data disk in a PIHLatin I coding system shrinks 
each P and Q parity group exactly by 1. Deleting each 
of the others shrinks each P parity group by 1, p-1 Q 
parity groups by 1 and the “S” group by 1. Thus, the 
deleting order makes no sense to the encoding 
performance. But the first data disk carries the lowest 
updating load, so we delete the disks from right to left. 
In a PIHLatin II coding system, because all data disks 
are symmetric, the deleting order is insignificant. 

Deleting the first data disk from a PDHLatin code 
yields a code that performs equivalently [19]. We call 
it a buddy code. Moreover, the first data disk carries 
higher load than all of the others. So, the disks are 
deleted from left to right. 

In a Latin Liberation coding system, the first data 
disk carries the lowest load. Thus the deleting order is 
from right to left. 

Since the system is just the cyclic repetition of a 
stripe, performance analysis on a stripe is enough. In 
addition, we focus only on the 2-erasures of two data 
disks which have the highest reconstruction load. 

Table 1 shows the encoding/decoding/updating 
performance of above codes. Due to lack of space, we 
can only explain calculation of these results briefly. 

Encoding and decoding a parity group with size of 
g (g data symbols and 1 parity symbol) both perform 
g-1 XORs. So it is not hard to calculate per data word 
encoding cost of the above codes. 

Decoding a PIHLatin I stripe decomposes into two 
stages: calculating “S” by summing all parity symbols, 



and then recovering the lost symbols zigzag. Decoding 
a PDHLatin stripe performs as many XORs as 
encoding.  As for Latin Liberation codes, compared 
with encoding, the decoding process induces l-1 extra 
XORs during resolves a cycle with size of l, and saves 
2 XORs at the real 3-vertex during zigzag decoding. 
Because there are at most 2p vertices on 2 resolving 
paths, the decoding process performs at most 2p-6 
XORs more than encoding. Thus the decoding cost of 
these codes is as Table 1 shows. 

Updating Dij induces 3 XORs: 
ij ij

old newt D D= ⊕ , 
new old

i iP P t= ⊕  and new old
j jQ Q t= ⊕ . Updating Dijk 

induces 4 XORs. Updating Di* needs p+1 XORs. Thus 
the updating cost can be calculated easily. 

We learn from Table 1 that PDHLatin has the best 
encoding/decoding performance. In fact, it achieves 
the optimal performance. Thus, it is the best choice for 
the systems with a heavy encoding/decoding workload 
(for example, encoding/decoding file objects is the 
main workloads in a P2P publish/subscribe system). 
PDHLatin has the highest updating cost. Moreover, the 
performance of a shortened code is outstandingly 
lower than the standard/buddy code with the same size. 
Thus, if we have to use shortened codes or updating is 
frequent, we should not choose PDHLatin. 

The encoding/decoding performance of PIHLatin II 
is as good as that of PDHLatin. PIHLatin II also has 
the optimal updating performance. Thus, if we don’t 

mind a slight inefficiency in capacity, PIHLatin II is 
almost good for all storage applications. 

PIHLatin I has moderate performance. Shortening 
is harmful to its performance, too. But the gap between 
the shortened codes and the standard codes with the 
same size is narrow. 

Latin Liberation is interesting. The performance of 
a shortened Latin Liberation code is better than that of 
the standard code with the same size. Moreover, the 
more disks you delete, the more performance increase 
you gain. This means that maybe we should construct 
storage systems never by the standard Latin Liberation 
codes. In addition, we can see that the performance of 
the chained decoding algorithm is comparable with the 
bit matrix scheduling algorithm. 
 
7. Conclusion 
 

In this paper, we presented a chained decoding 
algorithm for the Liberation codes. We also show that 
it can recover any 2-erasure in a Liberation coding 
system. Compared with the bit matrix scheduling 
algorithm, the new algorithm provides the comparable 
performance. Moreover, it is more intuitive and is 
helpful to comprehend the interior mechanism of 
Liberation codes. Then we discussed the possibility of 
constructing Liberation codes by general CHLS. We 
call this kind of codes the Latin Liberation codes. The 
Latin Liberation codes are superiority to the Liberation 

code encoding cost decoding cost updating cost 

standard 
(n=p) 

12
1n

−
−

 
12

( 1)n n
−

−
 24

n
−  

PIHLatin I 
(EVENODD) shortened 

(n<p) 
1 12

( 1)n n p
− −

−
 1 12

1n p
+ −

−
 1 1 14

1 ( 1)n p n p
− − +

− −
 

standard 
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2 12
( 1)n n n

− −
−

 32
n

−  3  
PIHLatin II 

shortened 
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2 12
( 1)n n p

− −
−

 2 12
( 1)n p

− −
−

 3  

standard 
(n=p-1) 

22
n

−  22
n

−  2

2 14
n n

− +  

buddy 
(n=p-2) 

22
n

−  22
n

−  
24

1p
−

−
 PDHLatin 

(RDP) 
shortened 
(n<p-2) 

1 1 12
1 ( 1)n p n p

− − −
− −

 1 1 12
1 ( 1)n p n p

− − −
− −

 24
1p

−
−

 

standard 
(n=p) 2

1 12
n n

− −  2

1 7(2 )
n n

≤ + −  2

1 13
n n

+ −  
Latin 

Liberation shortened 
(n<p) 

2 1 12
n p np

− + −  1 7(2 )
p np

≤ + −  1 13
p pn

+ −  

Table 1. The computational performance of XOR-based RAID6 codes. 



codes in parameter flexibility and structure flexibility. 
Finally, we compared the computational performance 
of the XOR-based RAID6 codes and gave some 
suggestion on their application. 

We have found only a few Latin Liberation code 
instances until now. Design of general construction 
methods for specific families of CHLS and searching 
algorithm for individual CHLS are important future 
works. Constructing Liberation codes of even size 
(especially the powers of two) is another important 
work. Moreover, the chained decoding algorithm needs 
to be refined further. Implementing fast encoding/ 
decoding/updating algorithm on CPU/GPU and 
integrating the Latin Liberation codes into a real 
system are also planned. 
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