
Constructing Liberation Codes Using Latin Squares*

Wang Gang, Liu Xiaoguang, Lin Sheng, Xie Guangjun, Liu Jing
Department of Computer, College of Information Technology Science, Nankai University

wgzwp@163.com

Abstract1

In recent years, multi-erasure correcting coding

systems have become more pervasive. RAID6 is an
important 2-erasure correcting code specification. But
there is no consensus on the best concrete RAID6
coding scheme. Plank developed a brand new class of
RAID6 codes called the Liberation codes that achieves
good encoding, updating and decoding performance.
In this paper, we present a chained decoding
algorithm for the Liberation codes. Its performance is
comparable with the bit matrix scheduling algorithm
developed by Plank, but is more intuitive and reveals
the essence better. In the process, we present a new
class of Liberation codes called the Latin Liberation
codes. These codes are based on column-hamiltonian
Latin squares, hence the name. They are superior to
the Liberation codes in parameter flexibility and
structure flexibility. Finally, we analyze the
performance of several XOR-based RAID6 codes and
give some suggestion on their application.

1. Introduction

In recent years, as hard disks have grown greatly in
size and storage systems have grown in size and
complexity, it is more frequent that a failure of one
disk occurs in tandem with unrecovered failures of
other disks or latent failures of blocks on other disks.
On a system using single-erasure correcting code such
as RAID5, this combination of failures leads to a
permanent data loss [1]. Hence, applications of multi-
erasure correcting codes have become more pervasive.
RAID6 is a 2-erasure correcting code specification [2].
Several concrete RAID6 schemes have been developed,
and some are applied successfully. This paper presents

* This paper is supported partly by the National High
Technology Research and Development Program of China
(2008AA01Z401), NSFC of China (90612001), RFDP of
China (20070055054), and Science and Technology
Development Plan of Tianjin (08JCYBJC13000)

a chained decoding algorithm for the Liberation codes
- an important RAID6 scheme. Constructing Liberation
codes by Latin squares is also discussed in this paper.

The outline of this paper is as follows. In Section 2
we discuss the known RAID6 codes. Section 3 is
devoted to introducing some related combinatorics
knowledge. In Section 4 we present the chained
decoding algorithm, and the Latin Liberation codes are
presented in Section 5. A theoretical analysis is
discussed in Section 6. Conclusions and future works
are presented in Section 7.

 disk0 disk1 disk2 disk3 disk4
stripe0 D D D P Q
stripe1 D P Q D D
stripe2 Q D D D P
stripe3 D D P Q D
stripe4 P Q D D D

… …
Figure 1. A typical RAID6 system.

2. Current RAID6 codes

An erasure code for storage systems is a scheme
that encodes the content on n data disks into m check
disks so that the system is resilient to any t device
failures [3]. Unfortunately, there is no consensus on
the best coding technique for n, m, t > 1. RAID6 is a
specification for m=t=2. A typical RAID6 system
appears as depicted in Fig 1. Each disk is divided into
fixed-size blocks (stripe units). All blocks with the
same in-disk offset are organized into a stripe. Each
stripe contains n data units and 2 check units P and Q.
The identity of the data and check disks is rotated
every stripe for small write load balance. A stripe is a
self-contained 2-erasure correcting entity and the
whole layout is just the cyclic repetition of a stripe, so
we can focus only on single stripe when design a
RAID6 code. Generally a RAID6 code should be a
MDS code.

The best known RAID6 codes are Reed-Solomon
codes [4]. They are based on Galois Field, thus the
computational complexity is a serious problem though

optimized algorithms have been developed [5][6].
Another category is so-called array codes that

design a stripe as an array of data and parity symbols.
In this paper, we focus on the horizontal codes, such as
EVENODD [7], RDP [1] and Liberation [8].
“Horizontal” means that some disks contain nothing
but data symbols and the others contain only parity
symbols. “Vertical” means that the data and parity
symbols are stored together. Horizontal codes fit
RAID6 specification well, but vertical codes don’t. So
some important vertical codes, such as X-Code [9], B-
Code [10], are not within the scope of this paper.
STAR Code [11] is a 3-erasure horizontal code, it boils
down to EVENODD when applied to RAID6 scenarios;
Pyramid Code [12] is not MDS; WEAVER Codes [13]
and HoVer Codes [14] are not MDS too and are not
horizontal. So they are all out of our sight.

Fig 2.b shows the 7-disk EVENODD code. The
standard EVENODD code with p+2 disks consists of a
(p-1)*p data array and a (p-1)*2 parity array. Note that
the whole array instead of each row corresponds to a
stripe in Fig 1, and each column instead of each
symbol corresponds to a stripe unit. The “disk P”
stores horizontal parity symbols and the “disk Q”
stores skew diagonal parity symbols. Dij denotes the
data symbol that participates in Pi and Qj. Di*
participates in Pi and all Qs.

Array codes can be regarded as layouts of binary
linear codes. For example, the symbols in the 7-disk
EVENODD code are just the symbols (except P4, Q4
and D40~D44) of the 35-disk 2d-parity code [15] shown
in Fig 2.a (Di*=Di4). P4 and D40~D44 are deleted for 2-
erasure correcting. Q4 is deleted and the sum (over
GF[2], namely XOR operation, the same hereinafter) S
of its sons is added to every Q for MDS. Therefore, the
computational performance is not optimal and each
column instead of each symbol must be implemented
as a stripe unit to achieve optimal update penalty.
These properties are the inherent limitations of the
MDS horizontal codes [16][17].

Fig 2.c shows the 6-disk RDP code. The standard
p+1-disk RDP code can be described by a (p-1)*(p+1)
code array. The disk P stores horizontal parity symbols
and the disk Q stores skew diagonal parity symbols,
too. RDP codes also can be constructed by clipped 2d-
parity codes. Its strategy for the deleted Q parity
symbol is “parity dependent” - some P symbols have
the second role as a data member of some Q.

Fig 2.d shows the 7-disk Liberation code. It is also
based on the 2d-parity code shown in Fig 2.a. A
standard Liberation code can be described by a p*(p+2)
code array. Unlike EVENODD and RDP, it adopts
“addition” instead of “deletion”. The original 2d-parity
code is well-preserved and some data symbols (Dijk)
are arranged to participate in one extra Q group (Qk).
Plank’s construction method lets the ith symbol in the
jth disk participate in Pi and ()modi j pQ − . When j is odd,

the (1)
2

thp j+ − data symbol is the “3-group” symbol

and its 2nd Q group is the ()
2

thp j− Q group. When j is

even (>0), the 3-group symbol is in row 1
2
j − and it

joins the ()
2

thjp − Q group.

Note that the parameter p must be a prime for
EVENODD, RDP and Liberation. This leads to bad
parameter flexibility and implementation problems.
We have tried to generalize EVENODD and RDP
using Latin squares [18][19]. In this paper, we apply
this technique to the Liberation codes.

3. Related combinatorics knowledge

3.1. Graph representation of 2-erasure codes

Some literature refers to simple graph
representation of parity independent 2-erasure linear

Figure 2. Current RAID6 codes and CHLS.

codes in which each data symbol participates in
exactly two parity groups [10][15][20]: let each vertex
denote a parity symbol (group) and each edge denote a
data symbol - the two endpoints of an edge are just the
two parity symbols of the data symbol. So an array
code can be described by a graph partition if the
underlying linear code can be described by a simple
graph. We have proven the following theorem [20]:
Theorem 1. If an array code can be described by a
partition of a simple graph, it is 2-erasure correcting iff
the union of any pair of sub-graphs of the partition
doesn’t contain the following two types of structures:
1. A path and its two endpoints. We call this kind of

unrecoverable erasure Closed Parity Symbols
Subset, CPSS for short.

2. A cycle. We call it CDSS - Closed Data Symbols
Subset.

Fig 3.a shows the graph that corresponds to a 15-
disk 2d-parity code. Fig 3.b shows an array code based
on it. Fig 3.c gives a CPSS that corresponds to the
unrecoverable 2-erasure (disk0, disk1), and Fig 3.d
shows a CDSS that corresponds to the unrecoverable
2-erasure (disk2, disk3).

3.2. Perfect one-factorizations

A one-factor of a graph G is a set of edges in which
every vertex appears exactly once. A one-factorization
of G is a partition of the edge-set of G into one-factors.
A perfect one-factorization (P1F) is a one-factorization
in which every pair of distinct one-factors forms a
Hamiltonian cycle. There is a widely believed
conjecture in graph theory: every complete graph with
an even number of vertices has a P1F [21]. Fig 4
shows a P1F of K5,5.

3.3. Latin squares

An n*n Latin square L is an n*n matrix of entries

chosen from some set of symbols of cardinality n, so
that no symbol is duplicated within any row or any
column. We select Ζn={0, 1, …, n-1} as the symbol set,
it is also can be used as the row and column number
set. The symbol in row r, column c of L is denoted by
Lrc. A Latin square of order n can be described by a set
of n2 triples of the form (row, column, symbol).

Each row r of a Latin square L is the image of some
permutation σr of Ζn, namely Lri=σr(i). Each pair of
rows (r; s) defines a permutation by σr,s=σrσs

-1. If σr,s
consists of a single cycle for each pair of rows (r, s) in
a Latin square L, we say L is row-hamiltonian. Similar
concepts can be defined in terms of the column and
symbol. In this paper, we are concerned with column-
hamiltonian Latin squares, CHLS for short. Fig 2.e
shows a CHLS of order 5, and σ1,4 of it. It is just the
Cayley table C5 of the cyclic group of order 5. In fact,
Cp is a CHLS when p is a prime number.

There is a CHLS L of order n iff Kn.n=(V,W,E) has a
P1F F={F0, …, Fn-1} [21]. To show this, we create
three one-to-one correspondence: between the row set
and V, between the symbol set and W, and between the
column set and F. Namely, (, ,) ()i j k L∈ corresponds
to the edge (vi, wk) in Fj. Obviously, the cycle pattern
in σr,s in L corresponds to that in Fr∪Fs. The P1F
shown in Fig 4 corresponds to C5. There is another
conclusion [21]: if Kn+1 has a P1F, then so does Kn,n.
Thus we have a conjecture: Kn,n has a P1F (CHLS of
order n exists) for n=2 and all odd positive integers n.
Graph theorists have proven that all even(odd)
numbers less than 54(53) are “Kn P1F numbers”
(CHLS/Kn,n P1F numbers) and have found many larger
Kn P1F numbers (CHLS/Kn,n P1F numbers).

4. The chained decoding algorithm

An 2-erasure array code can be described by a
partition, a P1F is just a partition, and there is a
bijection between CHLS and P1F of Kn,n. Thus a

Figure 3. Simple graph representation.

Figure 4. A P1F of K5,5.

natural idea is constructing 2-erasure array codes by
CHLS. In [18] and [19], we have tried this idea. Two
algorithms are developed to construct EVENODD-like
codes and RDP-like codes respectively by CHLS. We
call the first kind of codes PIHLatin codes (Parity
Independent Horizontal Latin codes), and the second
kind PDHLatin codes (Parity Dependent Horizontal
Latin codes). The key ideas of the two algorithms are
similar: each column of the CHLS is used to construct
a disk; one row is deleted to break the Hamiltonian
cycles induced by disk pairs - CDSS are avoided;
finally, parity symbols are arranged properly to avoid
CPSS. Therefore, 2-erasure correcting is guaranteed.

PIHLatin and PDHLatin are superior to EVENODD
and RDP in parameter flexibility because the
distribution of P1F numbers is far denser than that of
prime numbers. Although horizontal shortening
(deleting some data disks - assuming they contain
nothing but zeros) can alleviate EVENODD and
RDP’s problem, we have shown that it is harmful to
encoding/decoding/updating performance [18][19].
The PIHLatin and PDHLatin codes constructed by C5
are respectively the 7-disk EVENODD code and the 6-
disk RDP code shown in Fig 2. In fact, PIHLatin and
PDHLatin are the supersets of EVENODD and RDP
respectively. We have shown that the relationship is
proper superset [18][19].

Liberation codes can be described by Latin squares,
too. Writing down the (first) Q index of every data
symbol, we get a CHLS. For example, the 7-disk
Liberation code shown in Fig 2.d corresponds to the
CHLS shown in Fig 2.f. This CHLS is an isotopy of C5
(constructed by performing column swapping on C5).
Examining Plank’s construction method [8], we can
see that all “Liberation CHLS” are of this kind.

The Q index matrix of a Liberation code is a
complete CHLS. This means that any pair of disks
induces a Hamiltonian cycle (CDSS). So how do
Liberation codes tolerant all 2-erasures? The answer is
the 3-group data symbols. Plank has proven that the
Liberation codes are 2-erasure correcting by matrix
description. He also presented a decoding algorithm
named bit matrix scheduling algorithm [8]. But it’s
hard to understand the interior mechanism through
matrix description. There is a simple and intuitive
decoding algorithm for PIHLatin and PDHLatin codes.
Suppose that a 2-erasure (disk1, disk2) occurs in a 6-
disk RDP coding system. All horizontal parity groups
and the 2nd and 3th skew diagonal parity groups lose
exactly two symbols, we can’t recover them directly.
But Q0 and Q1 lose only one symbol, we can start
decoding from them. D01 can be reconstructed by
summing all surviving symbols in Q1 first, then D02 is
reconstructed using the horizontal parity group P0, then

D12 is reconstructed through Q2, and then D13 is
recovered by P1, and so on, until D2 is recovered by P2.
Similarly, D30 and D3 are reconstructed along another
chain. Graph representation describes this algorithm
visually. A reconstruction chain corresponds to an
open path (the opposite of CPSS and CDSS) in the
union of the failed disks (sub-graphs), and its starting
point (D01, D30) corresponds to the end edge of the
open path. Now we present a chained decoding
algorithm for Liberation codes. We illustrate its
correctness by several examples instead of a strict
formal proof.

The reconstruction of single-erasures is trivial, so
we focus on four kinds of 2-erasures.

The Two Parity Disks Fail
In this case, decoding equals to encoding.

The Disk Q and a Data Disk Fail
Decodes the data disk using horizontal parity

groups, and then encodes the Disk Q.

The Disk P and a Data Disk Fail
We can decode the data disk using Q parity groups.

There is at most one 3-group data symbol in a data
disk. Thus if the failed data disk contains a Dijk, we
recover it through Qj first, and then recover Di’k
through Qk (all other symbols in Qk including Dijk are
prepared now). And then we can encode the disk P.

Figure 5. Chained decoding algorithm.

The First Data Disk and another Data Disk Fail
The union of the two failed disks composes a cycle

with a chord induced by the 3-group symbol. For
example, Fig 5.a shows the sub-graph that corresponds
to the 2-erasure (disk0, disk2) in a 7-disk Liberation
coding system. The chord increases the degrees of v0
and w4 to 3. But v0 touches only 2 edges because the
two dashed lines both denote D034. w4 touches really 3
edges. We call the former fake 3-vertex and the latter
real 3-vertex. Examining the right sub-cycle, every
involved parity groups (vertices) loses (touches)
exactly 2 symbols (edges) except Q4 (w4) that loses 3
symbols: D14, D44 and D034. So, we can reconstruct the
“tail” D14 by summing all surviving symbols in these

groups. This process can be described formally as
follow. iP is defined as the sum of the surviving
symbols in Pi and iQ as the sum of the surviving

symbols in Qi. iP (iQ) also equals to the sum of the
lost symbols in the group. Huang et al gave them the
name syndromes [11]. So we have:

0 20034 00 00 20 20 22

42 22 42 42 44

4 44 14 034

0 2 40 2 414

P D D Q D D P D D

Q D D P D D

Q D D D

D P Q P Q P Q

= ⊕ = ⊕ = ⊕

= ⊕ = ⊕

= ⊕ ⊕

⇒ = ⊕ ⊕ ⊕ ⊕ ⊕

(1)

We call this process cycle resolving and the
traversal path resolving path. The dashed oval in Fig
5.a shows the resolving path described by formula 1.
After the resolving process, we can recover all lost
symbols clockwise from D14.

A feasible resolving path should be a “Q shape” - a
cycle with a tail edge. Moreover, it must pass one and
only one real 3-vertex that is just the connection point
between the cycle and the tail. This structure
guarantees that all edges are touched precisely twice
except the tail only once. Therefore summing all the
syndromes decodes the tail symbol. In addition,
chained decoding should be performed along the tail
direction after cycle resolving. The decoding path must
pass a fake 3-verrtex before pass its corresponding real
3-vertex. Otherwise, the decoding process will have to
stop at the real 3-vertex. Thus, the left sub-cycle in
Fig 5.a is also a feasible resolving path, but the
decoding direction is anticlockwise. We can see that a
resolving path always exists in this case, and chained
decoding always complete.

The syndromes seem to be calculated twice, one
during cycle resolving and another during chained
decoding. Therefore the decoding cost is far away
from the optimal cost. But in fact, we can store the
syndromes in the memory for the lost symbols once
they are calculated during cycle resolving. Then they
can be fetched and put into calculation immediately
during chained decoding. Therefore, near-optimal
performance is still guaranteed.

Two Data Disks (Excluding the First Disk) Fail
Fig 5.b shows the sub-graph that corresponds to the

2-erasure (disk1, disk3) in a 7-disk Liberation coding
system. The dashed chord denotes the 3-group symbol
D212 and the wavy chord denotes D145. The decoding
process is similar to the last case. Formula 2 shows a
resolving path that decodes D32. Another path decodes
D212 as Formula 3 shows.

Fig 5.b is the only recoverable structure. The real
and fake 3-vertices must be interleaved on the cycle.

Otherwise, the two tails point to each other inevitably.
Thus the decoding process from any real 3-vertex must
quit halfway at another real 3-vertex. We will show
that Plank’s method guarantees this structure.

2 04212 24 24 04 04 02

2 02 4 202 212 32 32

P D D Q D D P D D

Q D D D D P Q P Q

= ⊕ = ⊕ = ⊕

= ⊕ ⊕ ⇒ = ⊕ ⊕ ⊕
(2)

10 3301 10 10 13 13 43

4 143 41 41 301 212

1 40 3 1212

Q D D P D D Q D D

P D D Q D D D

D Q P Q P Q

= ⊕ = ⊕ = ⊕

= ⊕ = ⊕ ⊕

⇒ = ⊕ ⊕ ⊕ ⊕

 (3)

Let a 2-erasure be described by an index pair (,)i j
(0)i j p< < < . All erasures can be divided into four
classes by the parity of i and j. Because the code
structure is symmetric, we can focus only on the
erasures involving disk1 or/and disk2.

Now we show that a 2-erasure (1, j) (j>1 is an odd
number) leads to the recoverable structure. All
operations are mod p arithmetic. An erasure (1, j)
induces a Hamiltonian cycle v0-w-1-vd-wd-1-v2d-w2d-1-...-
w(p-1)d-1-vpd(v0) (d=j-1). The two fake 3-vertices are

1
2

pv − and
1

2
p jv + −

. The two real 3-vertices are 1
2

pw − and

2

2 p j− . We replace the two real 3-vertices with their

neighbors 1
2

pv + and
1

2
p jv − +

. This substitution doesn’t

affect the relative order of the two kinds of vertices.
We translate the original proposition into an

equivalent problem: p is a prime; d is an even number
between 2 and p-2; 0, d, …, (p-1)d is a permutation of

{0, 1, …, p-1}; mark 1
2

p − and 1 1
2

p d+ + − as red,

and 1
2

p + and 1 1
2

p d− − + as black; then the red and

black numbers are interleaved in the permutation.

We shift the four numbers to 0,
2
d , 1 and 1

2
d− .

This transformation doesn’t change the relative order
of the vertices too. Suppose the indices of the four
numbers in the permutation are x, y, u and v. Namely,

0, mod , 1mod , (1) mod .
2 2
d dx yd p ud p vd p= = = = −

Thus 2 modyd d p= . Since y and d are relative prime,

we get 2 1mody p= . So we have 1
2

py += . Note that

() 0 mody v u d p+ − = , thus mody v u p+ = . Thus

y v u+ = or y v u p+ = + . Thus 10 ()
2

pv y u+< < = <

or 0 u y v< < < . Anyway, the red and black numbers
are interleaved. Therefore any 2-erasure of two disks

with odd indices has the structure as Fig 5.b shows.
Other cases can be proven in the similar way. We omit
the proof due to lack of space.

By then, we have shown that any 2-erasure in a
Liberation coding system can be reconstructed by the
chained decoding algorithm. This algorithm provides
an intuitive decoding process and helps understand the
interior mechanism of Liberation codes better.

5. Constructing Liberation codes by CHLS

Studying Plank’s construction method, we see that
the key is that each pair of disks forms a Hamiltonian
cycle. On this basis, arrange the 3-group symbols
properly, 2-erasure correcting will be guaranteed. An
intuitive idea is constructing Hamiltonian cycles using
general CHLS instead of Cayley tables. The code in
Fig 6 is constructed in this way. We call this kind of
codes the Latin Liberation codes. Latin Liberation
codes have advantage in parameter flexibility because
of the dense distribution of CHLS numbers. Another
advantage is good structure flexibility. The code in
Fig 6 is based on the CHLS in Fig 2.g. This CHLS is
not isotopic to C7. This means that the code is not
isomorphic to the 9-disk Liberation code even if
regardless of the 3-group symbols. Generally, the Latin
Liberation codes may have more heterogeneous
instances than the Liberation codes for a given size.
Moreover, the larger the system is, the more
remarkable this advantage is.

disk0 disk1 disk2 disk3 disk4 disk5 disk6 disk7 disk8
D005 D01 D02 D03 D04 D05 D06 P0 Q0

D11 D12 D13 D15 D162 D14 D10 P1 Q1

D22 D23 D24 D26 D21 D20 D25 P2 Q2

D33 D34 D353 D31 D30 D36 D32 P3 Q3

D44 D45 D46 D40 D42 D436 D41 P4 Q4

D55 D56 D50 D524 D53 D51 D54 P5 Q5

D66 D6 D61 D64 D65 D62 D63 P6 Q6

Figure 6. A 9-disk Latin Liberation code.

Another interesting of this example is the data
symbol D6 that is the reduced form of D600. This kind
of 3-group symbols (1-group symbols in fact)
decreases computational complexity obviously.
However, we can arrange only one 1-group symbol
and still satisfy “interleave property”. Otherwise, 2-
erasure correcting ability is not guaranteed.

There still is a big problem: how to arrange the 3-
group symbols to guarantee that the real and fake 3-
vertices are interleaved on the cycle. We haven’t found
a general arranging scheme that is suitable for all
CHLS. And it seems that this kind of schemes doesn’t
exist. But the schemes for specific families of CHLS
and individual instance are possible.

6. Performance analysis

In this section, we compare the performance of the
XOR-based RAID6 codes. Because these codes are
neck and neck in reliability, check disk overhead,
update penalty, group size, and extensibility and so on,
we mainly focus on the computational performance of
encoding/decoding/updating. The performance is
measured in the number of XOR operations per data
word. In this section, n denotes the number of the data
disks, and p denotes the order of the underlying CHLS.

Because PIHLatin is the superset of EVENODD,
PDHLatin is the superset of RDP, and Latin Liberation
performs equivalently with Liberation when p is a
prime, we select PIHLatin, PDHLatin and Latin
Liberation for comparison. PIHLatin has two versions
that one has the same structure as EVENODD, and the
other reverses the last Q parity symbol. We call the
former PIHLatin I, and the latter PIHLatin II. Although
PIHLatin II codes are only near-MDS, they still can be
used in a RAID6 coding system.

Besides standard codes, horizontally shortened
codes are also discussed. We can see that deleting the
first data disk in a PIHLatin I coding system shrinks
each P and Q parity group exactly by 1. Deleting each
of the others shrinks each P parity group by 1, p-1 Q
parity groups by 1 and the “S” group by 1. Thus, the
deleting order makes no sense to the encoding
performance. But the first data disk carries the lowest
updating load, so we delete the disks from right to left.
In a PIHLatin II coding system, because all data disks
are symmetric, the deleting order is insignificant.

Deleting the first data disk from a PDHLatin code
yields a code that performs equivalently [19]. We call
it a buddy code. Moreover, the first data disk carries
higher load than all of the others. So, the disks are
deleted from left to right.

In a Latin Liberation coding system, the first data
disk carries the lowest load. Thus the deleting order is
from right to left.

Since the system is just the cyclic repetition of a
stripe, performance analysis on a stripe is enough. In
addition, we focus only on the 2-erasures of two data
disks which have the highest reconstruction load.

Table 1 shows the encoding/decoding/updating
performance of above codes. Due to lack of space, we
can only explain calculation of these results briefly.

Encoding and decoding a parity group with size of
g (g data symbols and 1 parity symbol) both perform
g-1 XORs. So it is not hard to calculate per data word
encoding cost of the above codes.

Decoding a PIHLatin I stripe decomposes into two
stages: calculating “S” by summing all parity symbols,

and then recovering the lost symbols zigzag. Decoding
a PDHLatin stripe performs as many XORs as
encoding. As for Latin Liberation codes, compared
with encoding, the decoding process induces l-1 extra
XORs during resolves a cycle with size of l, and saves
2 XORs at the real 3-vertex during zigzag decoding.
Because there are at most 2p vertices on 2 resolving
paths, the decoding process performs at most 2p-6
XORs more than encoding. Thus the decoding cost of
these codes is as Table 1 shows.

Updating Dij induces 3 XORs:
ij ij

old newt D D= ⊕ ,
new old

i iP P t= ⊕ and new old
j jQ Q t= ⊕ . Updating Dijk

induces 4 XORs. Updating Di* needs p+1 XORs. Thus
the updating cost can be calculated easily.

We learn from Table 1 that PDHLatin has the best
encoding/decoding performance. In fact, it achieves
the optimal performance. Thus, it is the best choice for
the systems with a heavy encoding/decoding workload
(for example, encoding/decoding file objects is the
main workloads in a P2P publish/subscribe system).
PDHLatin has the highest updating cost. Moreover, the
performance of a shortened code is outstandingly
lower than the standard/buddy code with the same size.
Thus, if we have to use shortened codes or updating is
frequent, we should not choose PDHLatin.

The encoding/decoding performance of PIHLatin II
is as good as that of PDHLatin. PIHLatin II also has
the optimal updating performance. Thus, if we don’t

mind a slight inefficiency in capacity, PIHLatin II is
almost good for all storage applications.

PIHLatin I has moderate performance. Shortening
is harmful to its performance, too. But the gap between
the shortened codes and the standard codes with the
same size is narrow.

Latin Liberation is interesting. The performance of
a shortened Latin Liberation code is better than that of
the standard code with the same size. Moreover, the
more disks you delete, the more performance increase
you gain. This means that maybe we should construct
storage systems never by the standard Latin Liberation
codes. In addition, we can see that the performance of
the chained decoding algorithm is comparable with the
bit matrix scheduling algorithm.

7. Conclusion

In this paper, we presented a chained decoding
algorithm for the Liberation codes. We also show that
it can recover any 2-erasure in a Liberation coding
system. Compared with the bit matrix scheduling
algorithm, the new algorithm provides the comparable
performance. Moreover, it is more intuitive and is
helpful to comprehend the interior mechanism of
Liberation codes. Then we discussed the possibility of
constructing Liberation codes by general CHLS. We
call this kind of codes the Latin Liberation codes. The
Latin Liberation codes are superiority to the Liberation

code encoding cost decoding cost updating cost

standard
(n=p)

12
1n

−
−

12

(1)n n
−

−
 24

n
−

PIHLatin I
(EVENODD) shortened

(n<p)
1 12

(1)n n p
− −

−
 1 12

1n p
+ −

−
 1 1 14

1 (1)n p n p
− − +

− −

standard
(n=p)

2 12
(1)n n n

− −
−

 32
n

− 3
PIHLatin II

shortened
(n<p)

2 12
(1)n n p

− −
−

 2 12
(1)n p

− −
−

 3

standard
(n=p-1)

22
n

− 22
n

− 2

2 14
n n

− +

buddy
(n=p-2)

22
n

− 22
n

−
24

1p
−

−
 PDHLatin

(RDP)
shortened
(n<p-2)

1 1 12
1 (1)n p n p

− − −
− −

 1 1 12
1 (1)n p n p

− − −
− −

 24
1p

−
−

standard
(n=p) 2

1 12
n n

− − 2

1 7(2)
n n

≤ + − 2

1 13
n n

+ −
Latin

Liberation shortened
(n<p)

2 1 12
n p np

− + − 1 7(2)
p np

≤ + − 1 13
p pn

+ −

Table 1. The computational performance of XOR-based RAID6 codes.

codes in parameter flexibility and structure flexibility.
Finally, we compared the computational performance
of the XOR-based RAID6 codes and gave some
suggestion on their application.

We have found only a few Latin Liberation code
instances until now. Design of general construction
methods for specific families of CHLS and searching
algorithm for individual CHLS are important future
works. Constructing Liberation codes of even size
(especially the powers of two) is another important
work. Moreover, the chained decoding algorithm needs
to be refined further. Implementing fast encoding/
decoding/updating algorithm on CPU/GPU and
integrating the Latin Liberation codes into a real
system are also planned.

Acknowledgement
Many thanks to Dr. Ian M. Wanless for his kind help
regarding the knowledge of Latin squares!

References

[1] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,

J. Leong and S. Sankar, “Row-Diagonal Parity for Double
Disk Failure Correction,” In Proceedings of the 3th
USENIX Conference on File and Storage Technologies,
San Francisco, CA, USA, Mar, 2004, pp.1-14.

[2] P. M Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D.
A. Patterson, “RAID: high-performance, reliable
secondary storage,” ACM Computing Surveys 26(2), pp.
143-185, June 1994.

[3] J. S. Plank, “Erasure Codes for Storage Applications,”
Tutorial of the 4th Usenix Conference on File and
Storage Technologies, San Francisco, CA, Dec, 2005.

[4] J. S. Plank, “A Tutorial on Reed-Solomon Coding for
Fault-Tolerance in RAID-like Systems,” Software -
Practice & Experience 27(9), pp. 995-1012, Sep 1997.

[5] J. Blomer, M. Kalfane, M. Karpinski, R. Karp, M. Luby
and D. Zuckerman, “An XOR-Based Erasure-Resilient
Coding Scheme,” Technical Report TR-95-048,
International Computer Science Institute, August, 1995.

[6] J. S. Plank and Lihao Xu, “Optimizing Cauchy Reed-
Solomon Codes for Fault-Tolerant Network Storage
Applications,” In Proceedings of the 5th IEEE
International Symposium on Network Computing and
Applications, Cambridge, MA, Jul, 2006, pp.173-180.

[7] M. Blaum, J. Brady, J. Bruck, J. Menon, “EVENODD: an
efficient scheme for tolerating double disk failures in
RAID architectures”, IEEE Trans. on Computers 44(2),
pp. 192-202, Feb, 1995.

[8] J. S. Plank, “The RAID-6 Liberation Codes”, 6th
USENIX Conference on File and Storage Technologies,
San Francisco, 2008, pp. 97–110.

[9] L. Xu and J. Bruck, “X-Code: MDS Array Codes with
Optimal Encoding,” IEEE Trans. on Information Theory
45(1), pp.272-276, Jan, 1999.

[10] L. Xu, V. Bohossian, J. Bruck, and D.G. Wagner, “Low-
Density MDS Codes and Factors of Complete Graphs,”
IEEE Trans. on Information Theory 45(6), pp.1817-1826,
Sep, 1999.

[11] C. Huang, L. Xu, “STAR: An Efficient Coding Scheme
for Correcting Triple Storage Node Failures,” In
Proceedings of the 4th USENIX Conference on File and
Storage Technologies, San Francisco, Dec, 2005, pp.197-
210.

[12] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible
schemes to trade space for access efficiency in reliable
data storage systems,” In NCA-07: 6th IEEE International
Symposium on Network Computing Applications,
Cambridge, MA, USA, July, 2007, pp. 79-86.

[13] J. L. Hafner, “WEAVER Codes: Highly Fault Tolerant
Erasure Codes for Storage Systems,” In Proceedings of
the 4th USENIX Conference on File and Storage
Technologies, San Francisco, Dec, 2005, pp.211-224.

[14] J. L. Hafner, “HoVer Erasure Codes For Disk Arrays,”
International Conference on Dependable Systems and
Networks, Philadelphia, PA, USA, Jun, 2006, pp. 217-
226.

[15] Lisa Hellerstein, Garth A. Gibson, Richard M. Karp,
Randy H. Katz and David A. Patterson, “Coding
techniques for handling failures in large disk arrays,”
Algorithmica 12(2/3), pp.182-208, Aug, 1994.

[16] M. Blaum, J. Bruck, and A. Vardy, “MDS array codes
with independent parity symbols,” IEEE Trans. on
Information Theory 42(2), pp. 529-542, Mar, 1996.

[17] Wang Gang, Dong Sha-sha, Liu Xiao-guang, Lin Sheng,
Liu Jing, “Construct double-erasure-correcting Data
Layout Using P1F,” ACTA ELECTRONICA SINICA,
34(12A), pp.2447-2450, Mar, 2007.

[18] Gang Wang, Sheng Lin, Xiaoguang Liu, Guangjun Xie,
Jing Liu, “Combinatorial Constructions of Multi-Erasure-
Correcting Codes with Independent Parity Symbols for
Storage Systems,” In Proceedings of the 13th IEEE
Pacific Rim Dependable Computing conference,
Melbourne, Victoria, Austrilia, Dec, 2007, pp. 61-68.

[19] Wang Gang, Liu Xiaoguang, Lin Sheng, Xie Guangjun,
Liu Jing, “Generalizing RDP Codes Using the
Combinatorial Method,” In NCA-08: 7th IEEE
International Symposium on Network Computing
Applications, Cambridge, MA, USA, July, 2008, pp.93-
100.

[20] Zhou Jie,Wang Gang, Liu Xiaoguang, Liu Jing, “The
Study of Graph Decompositions and Placement of Parity
and Data to Tolerate Two Failures in Disk Arrays:
Conditions and Existance,” Chinese Journal of Computer,
Vol. 26, No. 10, pp.1379-1386, Oct, 2003.

[21] I. M. Wanless, “Perfect factorisations of complete
bipartite graphs and Latin squares without proper
subrectangles,” Electron. J. Combin, Vol. 6, 1999, R9.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

