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Abstract. The prefetching strategies used in modern distributed stor-
age systems generally are based on temporal and/or spatial locality of
requests. Due to the special properties of object-based storage systems,
however, the traditional tactics are almost incompetent for the job. This
paper presents a new prefetching approach, which takes the correlation-
ship among objects into account. Two orthogonal replica distribution
algorithms are proposed to aggregate prefetching operations. A moving
window mechanism is also developed to control prefetching. We imple-
ment these approaches in our object-based file system called NBJLOFS
(abbreviated for Nankai-Baidu Joint Lab Object-based File System). The
experimental results show that these approaches improves throughput by
up to 80%.

Key words: object-based storage, prefetching, object duplication, or-
thogonal layout

1 Introduction

With the continuous growth of storage device capacity and the rapid devel-
opment of applications, traditional block-based storage systems can no longer
meets the demand. Object-based storage technology emerged and has attracted
increasing attention. Generally, “object-based” means that the basic storage unit
is object instead of block. An object is a combination of file data and a set of
attributes [1]. In a distributed object-based file system, a file may be divided
into many objects, which are distributed over several storage nodes.

In modern computer systems, I/O time often dominates the total running
time. Cache and prefetching technologies are the standard way to alleviate the
performance gap between disk and main memory/CPU. Traditional prefetch-
ing strategies typically read additional blocks physically adjacent to the current
read request. That is, they assume that logically adjacent blocks are also physi-
cally adjacent. However, these strategies do not work in distributed object-based
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storage systems because objects are distributed over many storage nodes. More-
over, these strategies can not deal with prefetching based on other relationship
among objects. This paper puts forward an innovative prefetching strategy tak-
ing objects’ correlation into account. It gains “prefetching aggregating” by an
orthogonal object duplication layout. The experimental results show that this
new strategy increases throughput and decreases network traffic.

The rest of this paper is organized as follows. In Section 2, we briefly describe
NBJLOFS and namespace splitting algorithm. In Section 3, we introduce our
prefetching approach together with details of our implementation. In section 4,
we present the experimental results. Section 5 discusses related work and Section
6 concludes the paper.

2 NBJLOFS

NBJLOFS is a distributed object-based file system based on IP-SAN [2]. It
employs FUSE [3] as filesystem interface and Berkeley DB [4] as storage infras-
tructure. Every file in NBJLOFS is split into objects. Each object is uniquely
represented by a quintuple (fnso, fno, offset, type, flag) called object identifier
(OID). NBJLOFS has no metadata servers. The clients provide a standard file
system interface to the users, and the storage nodes (called Object-based Storage
Devices, OSDs for short) are in charge of object storing and accessing. When a
file is stored, the system splits it into fixed-size objects and distributes them over
OSDs. When a read request arrives, the client node dispatches it to the proper
OSD. The OSD will acknowledge the client with the required object and main-
tains a copy in its local cache. Objects are distributed according to a namespace
splitting algorithm. As shown in Fig. 1, a 32 bits identifier space is divided into
several segments. Each segment corresponds to a unique OSD. Every object is
mapped to a value in the identifier space using MD5 algorithm (Message-digest
Algorithm 5). Then the object is assigned to the corresponding OSD.
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Procedure map_object(object_id , osd_num) 

x   MD5(object_id) & 0xffffffff 

region   ( uint32_t )( ~0 ) 

interval_span   region / osd_num 

position   x / interval_span 

Distribute the object to osd[position] 

end procedure 

Fig. 1. Namespace splitting algorithm
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3 Correlation-Aware Prefetching

In a Distributed Object-based File System, objects are dispersed. The objects
stored on a single OSD may not be logically consecutive parts of a single file
according to the object distributed algorithm mentioned above. So the tradi-
tional prefetching strategy that reads additional disk blocks adjacent to the cur-
rent request no longer works. Instead, we should fetch logically related objects
from different OSDs. Since objects are distributed over OSDs, inevitably, lots of
prefetching requests are launched to many OSDs to prefetch a batch of logically
adjacency objects. Therefore, as the system size increases, the network traffic
will dramatically increases. In order to solve this problem, this paper presents a
“file-centralized” duplication strategy. This strategy aggregates the replicas be-
longing to the same file, so only one request is need to be issued for a prefetching
operation.

3.1 Object Duplication

We do not create mirror for each OSD like RAID-1 [5]. Instead, we adopt object-
oriented duplication. Moreover, we aggregate replicas according to their corre-
lationships. In this paper, we consider the “file-belonging” correlationship, that
is, replicas with the same “fno” field in OID are aggregated. Note that we can
easily aggregate replicas using other correlationships.

For each object, we make and maintain a replica for it and guarantee that
these two copies of the object are stored on different OSDs. For clarity, we
call them the original object and the replica object respectively. The former is
assigned to a OSD using the namespace splitting algorithm mentioned in Section
2. The replica is assigned to the OSD determined by the MD5 digest of its file
identifier (“fno”). As objects belonged to the same file share the same value in
field “fno”, the replica objects of a file aggregated in a specific OSD and the
original objects are distributed over other OSDs. For a certain file, we call the
specific OSD where all its replica objects aggregated as its replica OSD or replica
node, and other OSDs as its original OSDs or original nodes.

Fig. 2 shows an example of orthogonal distribution. We use Xi denote the
i-th original object of file X and Xi′ denote the replica. In this example, there
are four files A, B, C and D. Note that in NBJLOFS the objects are not really
indexed in this way, the indices are just used to illustrate this problem simply. We
can see that all replicas of file A are assigned to OSD1, and its original objects
are distributed over other OSDs. From Fig. 2, we can find that the replica objects
of a certain file didn’t reside with any of its original objects in the same OSD.
We call this way of distribution as orthogonal layout. The original objects and
replicas of other files are distributed in a similar way. Nevertheless, guaranteeing
orthogonal distribution is not straightforward. We can see that, compared with
the layout without duplication, some objects must be redistributed to avoid
conflicting with their replicas. We extend namespace splitting algorithm in two
ways for this purpose.
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Fig. 2. Orthogonal distribution
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Fig. 4. Repartition namespace
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Fig. 5. Repartition strategy

Migration Strategy This strategy does not remap all original objects. Instead,
it just redistributes those original objects on the replica node at the very start.
Fig. 3 illustrates this strategy. The replica node is OSD2 in this example. We
can see that the objects originally stored on ODS2, i.e., 1, 4, 13, 14 are migrated
to other OSDs.

Repartition Strategy This strategy repartitions the 32 bits identifier names-
pace into several segments. As shown in Fig. 4, the number of segments is just
one less than the number of OSDs. For each file, each segment corresponds to one
of its original nodes. By applying the namespace splitting algorithm, each orig-
inal object is mapped to a unique segment. Then the original object is assigned
to the corresponding original OSD. And all the replica objects are stored in its
exclusive replica node(mark as R in Fig. 4). The replica node of the file is not
involved in the process of namespace splitting. In other words, the replica OSD
is simply omitted when we distribute the original objects. Therefore original-
replica conflicts never occur. Fig. 5 illustrates this strategy.

At first glance, it seems that there is a serious load-imbalance among OSDs
because of replica objects’ aggregation and original objects’ dispersion of a single
file. However, from the perspective of the whole system, since there are huge
number of files, the load is essentially balanced. For each OSD, it plays not only
the role of the replica node of some files but also the role of a original node of
many other files.

Our experimental results show that both repartition and migration strategy
distributes original and replica objects over OSDs evenly. However, if we create a
duplication for an existing single-copy system, the repartition strategy must re-
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distribute all objects, while the migration strategy only redistributes the objects
on their replica nodes. So, we select the latter as our distribution algorithm.

3.2 Moving Windows

Prefetching excessively or incorrectly certainly could be helpless, even harmful
to system efficiency. In order to maximize the virtue of prefetching, we introduce
the dynamic window mechanism. We treat the batch of to-be-prefetched objects
as a window, and denote the number of objects in the window by window size.
This idea comes from the moving window concept in TCP/IP protocol. The
window extent will be dynamically changed according to the on the fly object
rather than keep stationary all the time. Here are also two alternative strategies:
forward window, which only prefetches the objects that following the current
request, and wing window, which prefetches both the previous and the following
objects. These two strategies have the same window size. Fig. 6(a) and Fig. 6(b)
illustrate the two strategies respectively, where the dark areas are prefetching
windows. Since spatial locality involves both forwards and backwards, we select
the wing window strategy as the moving windows mechanism of NBJLOFS. Both
“wings” have the same length, that called the wing length. This implies that the
wing length is equal to half of the value of window size.

   … oidx … oidx+50 … oidx+99 …  

(a) forward window

  
 … oidx-49 … oidx … oidx+50 …    

(b) wing window

Fig. 6. Two moving window strategies(window size = 100)

In NBJLOFS, the replica node of a file maintains a unique wing window for
each client that accesses this file, i.e., we have not implemented data sharing
window. Each client maintains a wing window for every file it accesses. The
windows in replica nodes and clients are always consistent. Any time a window
in the OSD changed, it notifies the corresponding client to synchronize. Objects
in the same file can be identified by their in-file offsets. We call the difference of
two objects’ offsets distance. For each window, we call the central object pivot.
For example, the oidx in Fig. 6(b) is the pivot.

On the client side, whenever an object is accessed, NBJLOFS will determine
whether it is within the wing window extent or not by comparing the wing length
with the distance between the pivot and the demanded object. If the latter is
numerically smaller, which means that the object has been already prefetched
from disk in the replica node, the client node will then send a request to the
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replica node, and correspondingly moves the window when reply is received. On
the contrary, the client node will send a request to the original node.

Whenever an original OSD receive an access request, it implies that the
required object has not been prefetched. The original OSD will read the required
object from disk, send it back to the client and issue a prefetching request to
the replica node.

On the replica node, if a request arrives, there are two cases.

i) The request is received from a client node. This implies that the required ob-
ject is within the window extent, which means that the previous prefetching
operation works. So the window size will remain unchanged. The required
object will be sent to the client node. This object is chosen as the new pivot,
and the difference between the new and the old windows, i.e., the objects
within the new window but out of the old window, will be prefetched from
disk. Fig. 7(a) shows the change of the window, where the dark area denotes
the newly prefetched objects.

ii) Otherwise, the request is received from an original node. This implies that
the distance is larger than the wing length, showing that the current win-
dow is not wide enough. So the replica node doubles the window size. In
our implementation, the initial value of window size is 1, and its maximum
is limited to 40 objects (amount to 5MB data). Similar with case i, the
required object is chosen as the new pivot and the difference of the new
and the old window is prefetched from disk. Fig. 7(b) shows this case. In
addition, the replica node will inform the related client to synchronize the
window.

oidx-49 ... ... ... oidx ... oidy ... oidx+50

oidy-49 ... oidx ... oidy ... oidx+50 ... oidy+50

... ...

... ...

(a) case 1: within the window’s range

oidx-49 ... ... oidx ... ... ... oidx+50

oidy-99 ... ... oidy-49 ... oidx+50 ... oidy ... oidy+50 ... oidy+100

(b) case 2: out of the window’s range

Fig. 7. Two window changing cases

3.3 Analysis

In our prototype, a traditional spatial locality based prefetching approach was
also implemented for comparison. It is very similar to the read-ahead strategy in
Linux kernel. We call it SPA. Now we analyze this algorithm and our correlation-
aware prefetching algorithm (COR for short).

Assume that the window size is W (W ≥ 1) and the number of OSDs is N
(N > 1). For simplicity, assume that N > W . When an OSD receives an access
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request from client, it should prefetch W objects. For SPA, since objects are
not duplicated, the OSD has to issue W prefetching requests to other W OSDs
assuming that the to-be-prefetched objects are evenly distributed. In contrast,
COR issues only one prefetching request to the replica node. In a single-user
system, COR may have no advantage over SPA if only a single file is accessed
simultaneously. After all, SPA also offers timely prefetching. However, if the
two algorithms are deployed in a multi-user system and many files are accessed
simultaneously, COR will show its superiority. Since it induces lighter network
traffic than SPA, there would be less occurrence of network saturation. Moreover,
since COR stores all replicas of a file in a single OSD and just these replicas are
prefetched, disk operations induced by prefetching requests are more likely to be
large sequential read operations. In contrast, disk operations in SPA system are
all small discontinuous (random) read operations. Our experimental results show
that these two advantages of COR lead to significant performance advantage over
SPA.

4 Experiment

4.1 Experimental environment

All experiments were performed on a cluster of seven single-core 3.06GHz Intel
Celeron nodes. Each machine has 512MB of memory and a 80GB hard disk.
Each node runs Red Hat Enterprise Linux AS 4. All the nodes are connected by
a Gigabit Ethernet. One of them acts as the client node, while other six nodes
act as OSDs.

4.2 Performance Evaluation

We used a modified Bonnie to generate sequential and random workload. In
each test, we first wrote five 100MB files, then tested sequential or random read
performance. Each data point is the average of 5 runs. Each file was composed
of 800 objects, that is, the object size was 128KB. The request generated by
Bonnie is of size 16KB. However, each read/write operation in NBJLOFS deals
with a complete object, namely is of size 128KB.
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In pervious version of NBJLOFS, common requests and prefetching requests
are processed in serial. This strategy apparently does not make full use of CPU.
So we implemented a double-threaded version. One thread processes only com-
mon requests and another processes prefetching request. Fig. 8 shows the re-
markable improvement of read performance. In this test, a single client read all
five files in a round robin fashion.

Next, we tested the impact of the cache size on the read performance. We
used a fixed window size 10 and files are still read in a round robin fashion. Fig. 9
shows that no matter how big the cache, correlation-aware prefetching outper-
form simple spatial locality based prefetching and NBJLOFS without prefetch-
ing. For a certain system, the minor performance difference is induced by cache
replacement.

We tried to figure out how the window size will impact the overall system
efficiency. Cache size was set to 40MB in this test (we just choose it randomly).
The window size was set changeless in every single run and varied from 5 to 25
in different runs. Beside sequential read test mentioned above, we also tested
completely random read. The 5 files were also read in a round robin fashion. As
shown in Fig. 10, the throughput keeps increasing as the window size grows until
reaches 15. Fig. 10 also shows that the random read benefits from big prefetching
window too.
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Scalability is important metrics for distributed systems. We tested different
system sizes. As illustrated in Fig. 11, the correlation-aware prefetching always
exhibits the best performance, regardless of the system size.

To prove that correlation-aware approach indeed decreases network traffic
compared with traditional one, we traced real network traffic of a single OSD
using Sysstat utilities. Fig. 12 shows the result. Since objects are distributed
over OSDs evenly and prefetching and common requests are evenly distributed
too in the sense of probability, we can conclude that correlation-aware approach
decreases both the number of packets sent and the number of bytes sent effec-
tively.

5 Related Work

Many literals about caching and prefetching have been published. Some of them
focused on utilizing the existence of locality in disk access patterns, both spatial
locality and temporal locality [6][7]. The modern operating system design con-
cept attempts to prefetching consecutive blocks from disk to reduce the cost of
on-demand I/Os [8][9]. However, when a file is not accessed sequentially or the
whole data of a file are not stored consecutive, prefetching can probably result
in extra I/Os. Thus numerous works have been done to find other prefetching
strategies. By implementing history log and data mining technique, [10][11][12]
detect access patterns which can be put to use in the future access. J.R.Cheng et
al [13] has considered semantic links among objects to prefetching data in object-
oriented DBMSs, while [1] tracking multiple per-object read-ahead contexts to
performance prefetching.

Besides, existing studies have aimed at changing the prefetching extent dy-
namically and adaptively without manual intervention. A window covers all the
objects has semantic link was proposed in [13]. Also, Linux kernel adopts read-
ahead window to manage its associated prefetching [8].

Our approach differs from these works. In NBJLOFS, since a file may be
scattered over many storage nodes, and the correlation among objects can be
determined easily by the object attributes, so the correlation-aware prefetching
with orthogonal layout is a natural solution. Our moving window mechanism is
largely derived from these previous works.

6 Conclusions and Future Work

This paper proposed an innovative prefetching strategy for distributed object-
based file system. The correlationship among objects was used to determine
which objects should be prefetched. We designed an orthogonal replica layout,
it reduces network traffic effectively compared with the scattered layout. We
presented two distribution algorithms to guarantee this kind of layouts. We also
designed two moving window strategies to adjust the size and the content of
the prefetching window automatically. Compared with the traditional spatial
based prefetching approach, our new approach decreases network traffic and may
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produce large sequential instead of small random disk operations. We admit, the
introducing of the prefetching mechanism bring some negative impacts along
with the dramatically benefits. The way object clustering only guarantees global
load balance, while load imbalance will occur locally. However, the experiment
results show that the benefits are far beyond the side effects. In the distributed
object-based file system, our new prefetching approach exhibited much higher
performance than the traditional spatial locality based approach.

This research can be extended in several directions. For example, in order to
alleviate the workload of replica node, we are thinking about dividing duplication
to several OSDs other than one single OSD. As a result, the migration strategy
also needs to be redesigned. Moreover, by studying the access pattern, more
works can be done to investigate other correlations among objects.

References

1. Tang, H., Gulbeden, A., Zhou, J., Strathearn, W., Yang, T., Chu, L.: The Panasas
ActiveScale Storage Cluster: Delivering Scalable High Bandwidth Storage. In:
Proceedings of the 2004 ACM/IEEE conference on Supercomputing, Pittsburgh,
PA, USA (Nov 2004) 53–62

2. Wang, P., Gilligan, R.E., Green, H., Raubitschek, J.: IP SAN - From iSCSI to
IP-Addressable Ethernet Disks. In: Proceedings of the 20 th IEEE/11 th NASA
Goddard Conference on Mass Storage Systems and Technologies, San Diego, CA,
USA (Apr 2003) 189–193

3. Lonczewski, F., Schreiber, S.: The FUSE-System:an Integrated User Interface
Design Environment. In: Proceedings of Computer Aided Design of User Interfaces,
Namur, Belgium (Jun 1996) 37–56

4. Olson, M.A., Bostic, K., Seltzer, M.: Berkeley DB. In: Proceedings of the annual
conference on USENIX Annual Technical Conference, Monterey, California, USA
(Jun 1999) 183–192

5. Patterson, D.A., Gibson, G., Katz, R.H.: A case for redundant arrays of inexpensive
disks (RAID). In: Proceedings of the 1988 ACM SIGMOD international conference
on Management of data, Chicago, Illinois, United States (Jun 1988) 109–116

6. Liu, H., Hu, W.: A Comparison of Two Strategies of Dynamic Data Prefetching in
Software DSM. In: Proceedings of the 15th International Parallel and Distributed
Processing Symposium, IEEE Proceedings 15th International, San Francisco, CA,
USA (Apr 2001) 62–67

7. Jiang, S., Ding, X., Chen, F., Tan, E., Zhang, X.: DULO: an Effective Buffer
Cache Management Scheme to Exploit both Temporal and Spatial Locality. In:
Proceedings of the 4th conference on USENIX Conference on File and Storage
Technologies, San Francisco, CA, USA (Dec 2005) 101–114

8. Butt, A.R., Gniady, C., Hu, Y.C.: The performance impact of kernel prefetching
on buffer cache replacement algorithms. In: Proceedings of the 2005 ACM SIG-
METRICS international conference on Measurement and modeling of computer
systems, Banff, Alberta, Canada (Jun 2005) 157–168

9. Pai, R., Pulavarty, B., Cao, M.: Linux 2.6 Performance Improvement through
Readahead Optimization. In: Proceedings of the Linux Symposium, July 2004,
Ottawa, Ontario, Canada (Jul 2004) 391–401



A Correlation-Aware Prefetching Strategy for Object-Based File System 11

10. Soundararajan, G., Mihailescu, M., Amza, C.: Context-aware prefetching at the
storage server. In: USENIX 2008 Annual Technical Conference on Annual Technical
Conference, Boston, Massachusetts (Jun 2008) 377–390

11. Patterson, R.H., Gibson, G.A., Ginting, E., Stodolsky, D., Zelenka, J.: Informed
Prefetching and Caching. In: Proceedings of the fifteenth ACM symposium on
Operating systems principles, Copper Mountain, Colorado, United States (Dec
1995) 79–95

12. Amer, A., Long, D.D.E., Burns, R.C.: Group-Based Management of Distributed
File Caches. In: Proceedings of the 22 nd International Conference on Distributed
Computing Systems, Vienna, Austria (Jul 2002) 525–534

13. Cheng, J.R., Hurson, A.R.: On The Performance Issues of Object-Based Buffering.
In: Proceedings of the First International Conference on Parallel and Distributed
Information Systems, Miami Beach, FL, USA (Dec 1991) 30–37


