

A Cascading Latin Scheme to Tolerate Double Disk

Failures in RAID Architectures1*

Lin Sheng, Wang Gang, Liu Xiaoguang, Liu Jing

(Nankai-Baidu Joint Lab, College of Information and Technical Science, Nankai University, Tianjin 300071, China)

Abstract: In recent years, a lot of XOR-based coding schemes have been developed to tolerate double
disk failures in Redundant Array of Independent Disks(RAID) architectures, such as EVENODD-code,
X-code, B-code and BG-HEDP. Despite those researches, the decades-old strategy of Reed-Solomon
(RS) code remains the only popular space-optimal (Maximum Distance Separable) code for all but the
smallest storage systems. The reason is that all those XOR-based schemes are too difficult to be
implemented, it mainly because the Coding-Circle of those codes vary with the number of disks. By
contrast, the Coding-Circle of RS code is a constant. In order to solve this problem, we develop a new
MDS code named Latin code and a cascading scheme based on Latin code. The cascading Latin
scheme is a nearly MDS code (with only one or two more parity disks compared with the MDS ones).
However, it keeps the Coding-Circle of the basic Latin code (i.e. a constant) and the low
encoding/decoding complexity similar to other parity array codes.

Key words: 2-erasure code； RAID(Redundant Array of Independent Disks)；Latin square

I. Introduction

With the increasing requirements of disk systems, very large storage systems have to face the
problem of two or more disks failing at the same time. However, there is no easy way to resolve
that just like what the single-failure-tolerable RAID system does. Therefore, researches on
erasure-coding have blossomed in recent years. The Reed-Solomon (RS) code [1, 2, 3], which
introduced from coding theory, can meet the requirements and becomes popular in these years.
Actually, RS code has been used to build some massive storage systems in real life. However, the
RS code’s shortcomings are also obvious. Following the coding theory, RS code is a general
scheme to solve t-erasure-correcting problem, and its computational complexity is much higher
than that of XOR-based codes.
 In recent years, many XOR-based 2-erasure-correcting codes have been designed, such as
EVENODD[4-7], X-code[8], B-code[9] , BG-HEDP[10-13] and Liberation-code[14] etc. All of
the codes have reached the Singleton bound, that is to say they are space-optimal codes.
Compared with RS code, the decoding complexity of these codes is much lower. However, it is
very interesting that RS code is the only 2-erasure-correcting code which is widely used by
industrial community. RS code became the winner because it is easier to be implemented than
other codes.

1 Manuscript received date: April 19,2009 ; revised date: December 2,2009.
This work was supported in part by the National High Technology Research and Development Program of China (2008AA01Z401), the National Science
Foundation of China (60903028), Doctoral Fund of Ministry of Education of China (20070055054), and Science and Technology Development Plan of Tianjin
(08JCYBJC13000).
Communication author: Lin Sheng, born in 1973, male, Doctor. Nankai-Baidu Joint Lab, College of Information and Technical Science, Nankai University,
Tianjin 300071. shshsh.0510@gmail.com.

In the following sections of this paper, we discussed the details of the codes mentioned above
and gave a careful analysis about the reasons of their difficulties to be implemented. The
contributions of this paper can be described as follows:

Firstly, we gave some new criteria for the code availability. Secondly, we designed a new
2-erasure-correcting MDS code named Latin code. Finally, based on Latin code, we developed an
appropriate scheme which can meet all new criteria.

II. Analysis of Coding Availability

The XOR-based coding schemes, such as EVENODD code, have excellent characters to
meet the requirements of massive storage system. We sum up them as below:

(1) Almost all of them are space-optimal coding schemes. It means that only two parity
disks are required to tolerate 2-erasure in the system.

(2) They have optimal update penalty. It means that when a data disk is updated, only two
corresponding parity disks need to be updated.

(3) Compared with other RS-like coding schemes, the encoding/decoding complexity is
much lower [4,5].

However, the XOR-based coding schemes have some shortcomings which prevent them from
being applied.

(1) Some schemes, such as EVENODD and X-code, require the number of disks must be a
prime number. Other schemes, such as B-code and BG-HEDP, are not so strict, but can not be
applied to any array sizes.

(2) We call the average amount of data units on every disk in a parity stripe as the coding
cycle of a code scheme. The coding cycle of XOR-based coding schemes is linear with a number
of disks. It means that the XOR-based coding schemes are not a general method for massive
storage systems. Because the cycle is related to the number of disks, users must pay more attention
to setting the coding cycle according to capacity and the number of disks. On the contrary, RS
code is a general code (For a given GF(2n), its coding cycle can be seen as a constant), therefore ,
it can be implemented easily.

(3) The extensibility of XOR-based coding schemes is weak. The system is difficult to be
extended after having been built. The reason lies in the changing coding cycle.

If the number of disks n<259, using Fermat prime numbers, a feasible scheme was presented
for EVENODD code in Ref [5]. The coding cycle in this scheme is 256. It is easy to be mapped to
physical storage devices (a coding cycle apropos construct 32 bytes, namely 256 bits). For storage
systems, 256 devices are enough for most cases. Unfortunately, the next Fermat prime number is
65537, which is too big for coding cycle. To choose other primes, it is very difficult the keep the
coding cycle divided exactly by the usually disk Read/Write unit size (for instance 4k bytes).
Therefore, while n is bigger than 259, it is a challenge to find a feasible prime number.

Full-2 code [10, 15] is also a general code (its coding cycle is a constant). But its redundancy
is O(n1/2), which is too high (the optimal value is only 2).

Maximal projective code (Hamming code) has optimal redundancy when we fixed the coding
cycle to 1, but its update penalty is too high (about n/2 on average, the optimal is 2).

B-code, with an exact 2 update penalty and a space-optimal character, has a various coding
cycle (linear to the number of disks) that makes it rather hard to be implemented.

In a word, the tradeoff among code length, coding cycle, update penalty and redundancy must
be considered when a coding scheme is designed.

From the comparison in Tab 1, we can conclude why the RS code is so popular. It is the
easiest one to be implemented for an arbitrary number of disks. A constant coding cycle is a very
important property since it determines the way how a scheme be mapped into a physical system.
Compared with the implementing difficulty, the redundancy may be a minor problem.

Tab1 Comparison between 2-erasure-correcting codes
Coding
scheme

Coding cycle (C)
Universal

Disk number (N) encoding
complexity

Redundancy

RS For the RS code based on F8,
C=8, each cycle forms one-byte.

N<2C
When C=8, N<256

High 2/N

EVENODD C=N-1, N should be a prime
number, not universal

N<=C+3 Low 2/N

X-Code C=N-2, N should be a prime
number

N<=C+4 Low 2/N

B-code C=N/2 N<=C/2 Low 2/N
BG-HEDP C=N N<=C+3 Low 2/N
Full-2 C=1 No limit Low N1/2/N
2D array C=1 No limit Low N1/2/N
Hamming
code

C=1 No limit Low lg(N)/N

Based on the above analysis, we give our new criteria for a “Good” 2-erasure-correcting

scheme, and give more priority to implementing difficulty:
(1) The Coding cycle keeps a constant number (it makes the scheme easier to be

implemented);
(2) Redundancy <= O(lgN) for N data disks (Be the same with Hamming code, it is the

best possibility);
(3) A constant update penalty (Compared with being fixed to 2, it has been loosed).
In next two sections, we focus on constructing a code scheme to achieve all these 3 criteria.

III. Latin –code

To achieve the metrics proposed in Section II, firstly, we introduce a new MDS code:
Latin-code.
Definition 1 a Latin square consists of N permutations of {1, 2, …, N} which are arranged in such
a way that no row and column contains the same number twice [16,17].
We denote the permutation in the i-th column by σr, the symbol in Row i, Column j by σj(i). We
define σr,s=σrσs

-1, that is, the cycle pattern formed by Column r and Column s.
Definition 2 A Latin square is column-Hamiltonian if each pair of columns forms a single cycle,
that is, σr,s contains a single cycle [17].

A column-Hamiltonian Latin square of order 9 - L9 is given in Fig. 1.
Suppose L is a given reduced (the first row and the first column are in natural order)

column-Hamilton Latin square, then we can construct a new double disk failures tolerable system
based on it.
Algorithm 1:
Step1 Map each column to a disk, and each symbol in the square represents a stripe unit except
the last row. We regard the last row as a dummy row and suppose the dummy data unit is always
zero.
Step2 Add two parity check disks named P, Q to the system. Suppose Dj,k denotes the k-th stripe
unit in the j-th data disk and Pi and Qi denotes the i-th stripe units in the first and the second parity
check disk respectively, then Pi and QI are calculated by:

,
1

i j i
j n

P D
≤ ≤

= ⊕ , ni ≤≤1 (1)

,
1 , ()

()
j

i j k
j n k i

Q D S
σ≤ ≤ =

= ⊕⊕ , ni ≤≤1 (2)

,
1 , ()

()
j

j k
j n k n

S D
σ≤ ≤ =

= ⊕ (3)



































854126739
529347168
143295687
312478596
238961475
796813254
465782913
671539842
987654321

Fig 1 A column-Hamiltonian Latin square of order 9 - L9
It is obvious that P is the horizontal parity check of each row. S is the sum of all symbols

labeled “n” in the Latin square. The i-th symbol in Q is the sum of S and all symbols labeled “i”.
We call this check disk the Latin parity disk, the parity groups on it the Latin parity groups, and
the parity units the Latin parity units.

Theorem 1 System constructed by Algorithm 1 can tolerate any double disk failure.
Proof： Without loss of generality, suppose the i-th and the j-th disks fail (1≤i<j≤n). We can
deduce that starting from a dummy unit we can recalculate each error data unit step by step.
Case 1 Suppose two data disks fail. From j, since the last unit is the dummy one, there is at most
one unit failed (Di,a) in the Latin parity group σj(n) (note that σj(n)≠n). So Di,a can be reconstructed.
Then we can reconstruct Dj,a by Pa. So the Latin parity group σj(a) contains only one failed unit
now, we can reconstruct it, and so on. Note that we can reconstruct S by XORing all units in the
two parity disks, and constructing algorithm breaks the single cycle σi,j into paths. Therefore ,this
zigzag way can reconstruct all failed data units step by step. Fig.2 shows an example.
Case 2 Suppose a data disk i and P1 fail. If i=1, S is calculated first; otherwise S is calculated by

, ()
1 , , () ()

()
i

j i

j k n
j n j i k n

S D Qσ
σ σ≤ ≤ ≠ =

= ⊕⊕

According to the basic properties of Latin square, it is clear that each Latin parity group
only includes one single failed data unit, therefore all the failed units in disk i can be
reconstructed by Q and S. Then we can recalculate P by Eq. (1).

Case 3 Suppose a data disk i and the Latin parity disk Q fail, disk i is reconstructed through P first,
and then Q is recalculated by Eq. (2).
Case 4 Suppose the two check disks fail, decoding equals to encoding.

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

1 2 3 4 5 6 7 8 9
2 4 8 9 3 5 1 7 6
3 1 9 2 8 7 5 6 4
4 5 2 3 1 8 6 9 7
5 7 4 1 6 9 8 3 2
6 9 5 8 7 4 2 1 3
7 8 6 5 9 2 3 4 1
8 6 1 7 4 3 9 2 5
9 3 7 6 2 1 4 5 8

P Q
P Q
P Q
P Q
P Q
P Q
P Q
P Q
P Q

  
  
  
  
  
  
  
  
  
  
  
  
     

Fig. 2 Decoding of Latin-code
We can see that the decoding algorithm is similar to that of the EVENODD. In fact, when

n is a prime number, Latin Code is just EVENODD. That is, EVENODD is a special case of
Latin Code. According Ref.[16,17], there is a bijection between column-Hamilton Latin squares
and the P1Fs (Perfect 1-Factorizations) of complete bipartite graphs. Moreover, we can construct
a P1F of the complete bipartite graph Kn,n through a P1F of the complete graph Kn+1 [16]. There
is a long history and widely believed conjecture in graph theory field: every complete graph with
an even number of vertices has a P1F [16]. So Latin code exists for all odd number if this
conjecture holds. Latin code is similar to BG-HEDP and PIHLatin code [11-13] except that the
latter two preserve S instead of XORing it into all other Latin parity units. A common limit of
these three coding schemes is that no theory can guarantee the existence of them for an arbitrary
disk number. Especially for some large non-prime number, it is very hard to find a proper
column-Hamilton Latin square. Therefore, a system developer can not use those schemes directly
and freely. Although horizontal shortening [11] alleviates this problem, it leads to bad encoding
and decoding performance. However, we will show that we can get a good coding scheme for
arbitrary disk number based on a concrete column-Hamilton Latin square. Specially, the Latin
code based on L9 has a coding cycle 8. If a symbol represent one bit, then a cycle form nicely a
byte which is highly universal.

Now, the remaining problem is how to support more data disks with less parity disks.
Through the cascading Latin scheme introduced in the next section, we can see that if one more
parity check disk is used, the amount of data disks supported increases greatly.

IV. Cascading Latin Scheme

1. The union of the basic-systems
In this section, we will construct a new system according to the Latin code based on L9 to

achieve the aims described in Section II. For convenience, we called the L9 based Latin coding

Failed column

dummy row

system an L9-basic-system. The scheme is described as follows:
Algorithm 2:
Step1 We combine k L9-basic-systems into a large system called k-fold system. It is easy to see
that the new system can also tolerate double disks failures. It contains 9k data disks {Dij | 1≤i≤k,
1≤j≤9} and 2k parity disks {P1, P2, …, Pk, Q1, Q2, …, Qk} where {P1, P2, …, Pk} denote the
horizontal parity disks, {Q1, Q2, …, Qk} denote the Latin parity disks.
Step2 Add a new parity disk named PH, and let

1
PH ii k

P
≤ ≤

= ⊕ (4)

Apparently, PH is the sum of all data disks. Now, there are 9k data disks and 2k+1 parity disks in
the system. We call this new system PH-system.
Step3 We construct a MDS 3-erasure-correcting system called the Q3-system - {PH, Q1, Q2, …,
Qk, PP1, PP2, PP3 }, that is, we take {PH, Q1, Q2, …, Qk} as data disks and add 3 check disks {PP1,
PP2, PP3}. We name the whole system (including 9k data disks and 2k+4 parity disks) redundant
3-erasure based cascading system.
Note that we have not explained the detail how to calculate PP1, PP2 and PP3, however we know
there are code schemes can do this, such as RS code or a generalized EVENODD code.
Step4 Remove {PH, P1, P2, …, Pk, Q1, Q2, …, Qk} from the redundant 3-erasure based cascading
system, the remaining 9k data disks and three check disks {PP1, PP2, PP3} compose a new system
named the 3-erasure based cascading system.

Theorem 2 A 3-erasure based cascading system can tolerate any double disk failure.
Proof There are 3 kinds of double disk failures:
Case 1 The two failed disks are all parity disks.

This case is trivial. We can simply re-encode the failed check disks.
Case 2 A data disk Dij and a check disk PPj fails.

Because of the failure of Di, we can not compute PH and Qi directly. However ,the
Q3-system is a 3-erasure-correcting system, and we can calculate all other Qs, so we can
reconstruct PH, Qi and PPj, and then Di can be reconstructed using PH.

Case 3 Two data disks fail.
Similarly, PH and at most 2 Qs can not be recomputed, we can reconstruct them using the

Q3-system. However, we can not reconstruct the two failed data disks through PH now, let us
consider 2 cases:
Case 3.1 The two failed data disks Dij and Dik belong to the same L9-basic-system Li

Then Pi is the only horizontal parity disk that can not be reconstructed, we can reconstruct it
using single-erasure-correcting system {PH, P1, P2, …, Pk}, and then the two failed data disks can
be reconstructed though Lj (a 2-erasure-correcting system).
Case 3.2 The two failed data disks Dik and Dja belong to two different L9-basic_systems Li and Lj.

Then we can not compute Pi, Pj, Qi, Qj and PH directly. Like Case 2, we can reconstruct Qi,
Qj and PH using the Q3-system, and then reconstruct Pi, Pj and failed data disks in Li, Lj.

2. 3-erasure-correct scheme

Which 3-erasure-correcting scheme is the best for constructing the Q3-system? RS codes is a
choice. However, the cascading scheme will not be superior to other 2-erasure-correcting codes in

computational complexity and coding cycle - extensibility conflict of RS code. We can use other
3-erasure-correcting codes, such as STAR code[18],Weaver code[19] or Hover code[20] to
overcome the high complexity problem. However, most of them have prime limitation, which may
cause serious imbalance between the data disks and the check disks.

Considering the special status of PH, we can design a better scheme:
Algorithm 3:
Step 1 Same as Constructing Algorithm 2.
Step 2 Same as Constructing Algorithm 2.
Step 3 We regard {Q1, Q2, …, Qk} as k data disks, and add two parity disks PP1, PP2 to construct a
L9-Basic-System called the Q2-system - {Q1, Q2, …, Qk, PP1, PP2}. The whole system contains 9k
data disks and 2k+3 parity disks. We call it the redundant cascading system.
Step 4 Delete the 2k parity disks {P1, P2, …, Pk, Q1, Q2, …, Qk} from the redundant cascading
system, then we get a new system with 9k data disks and 3 parity disks {PH, PP1, PP2}, we name
it the two-level cascading Latin system. Fig. 3 gives illustration.

 Note that k must ≤ 9, otherwise the Q2-system is not 2-erasure-correcting.

Fig. 3 Illustration of two-level cascading system.
Theorem 3 If k≤9, the two-level cascading Latin system can tolerate any double disk failure.
Proof There are 4 kinds of double disk failures:
Case 1 The two failed disks both belong to {PH, PP1, PP2}.
 We can simply re-compute the two failed parity disks.
Case 2 PH and a data disk Dij (belonging to Lj) fail.
 Qi is the only un-reckonable Latin parity disk, we can reconstruct it through the Q2-system,
then the failed data disk can be reconstructed using Li, and then PH is recomputed.
Case 3 One failed disk belongs to {PP1, PP2}, without the loss of generality, suppose PP1 fails.
Another failed disk is a data disk Dij.

 Firstly, we reconstruct Dij using PH, and then recompute PP1.
Case 4 Two data disks Dik and Dja fail.

…
…

…
…

Horizontal parity

disks

User data disks Latin parity

disk

 All Latin parity disks can be recomputed except Qi and Qj, so we can reconstruct Qi and Qj
using the Q2-system, and then:
Case 4.1 i=j, then Pi can be reconstructed using PH and other horizontal parity disks, and then the
two failed data disks are reconstructed in Li.
Case 4.2 i≠j, then we can reconstruct the two failed disks using Qi and Qj.

3. Analysis of two-level cascading Latin systems
Coding cycle: Cascading Latin scheme has a constant coding cycle of 8. It is universal and very
easy to be used in large storage system.
Redundancy Rate: 3/n.
Coding length: The number of data disks n should be less than 9k, while k is the number of the
L9-basic-systems.
Extensibility: Within 9k data disks, the system is very easy to be extended.

The scheme described above achieves universal property, only at the cost of little extra
redundancy, and keeps low encoding/decoding complexity. But this scheme has strong restriction
on coding length. The maximum number of data disks is 81, which is much less than that of
EVENODD code. If we use L17 as basic-system, the whole system can support up to 17×17=289
data disks.

4. Multi-level cascading latin construction

In step 3 of Algorithm 3, a L9-basic-system is used to tolerate double failures in the
Q2-system. However, the L9-basic-system limits the number of data disks that k should be less
than 9. We can use a two-level cascading system rather than a L9-Basic-System. It is obvious that
the new system can also tolerate any double disk failure, while the system can support up to 9×9
×9=729 data disks. To achieve this, another more parity check disk should be added to the system,
and we should take totally 4 parity disks. Using the Latin scheme in this manner is the reason why
we named the scheme “Cascading Latin scheme”.

5. The analysis of multi-level cascading latin system
 In a cascading Latin system, the coding cycle keeps a constant number. However, while
seeking for the arbitrary system size, the parity disk overhead increases to [(logcn)+1]/n, c=9 for
L9 based cascading Latin scheme. That is to say, we need logcn+1 check disks to provide
2-erasure-correcting guarantee for n data disks.
 Compared with RS code, cascading Latin scheme needs much less XOR operations to do
encoding/decoding, the former needs O(n3) XORs [4], the latter needs only O(n2) XORs, which is
comparative with EVENODD.
 The space efficiency is also a very important problem, and it is directly related to the coding
cycle. For all other schemes, the coding cycle keeps changing with the number of disks. The best
record belongs to the RS code, is about O(nlgn). To cascading Latin, it needs only O(n) memory.
 At last, another characteristic of cascading Latin scheme is its unlimited extensibility. System
extension is usually a nightmare for other XOR based codes. However, for the cascading Latin
scheme, the only thing needed to do is adding zeroed new disks and doing a bit of XORs.

The update penalty of the cascading Latin scheme is not optimal. To update one data disk, we
must change the contents of all the check disks. For two-level cascading Latin scheme, the update

penalty is 3, while the optimal value is 2. However, this weakness may cause sharp performance
degradation only for the systems with high load, and most array accesses are small writes. For the
system where a few of the accesses are small writes, the cascading Latin scheme will perform as
good as other 2-erasure-correcting codes with optimal update penalty.

In a large system, the only alternative of cascading Latin codes is the RS codes. Which
scheme is more attractable is due to whether the large amount disk I/Os or the large amount
memory and CPU resource used in encoding is the most serious bottleneck of the whole system.

V. Conclusion

From the viewpoint of a system developer, this paper has analyzed the problems of the
known XOR based 2-erasure-correcting codes. With a new scheme based on column-Hamiltonian
Latin squares - cascading Latin coding scheme, we provide the ability to convert the amount of
encode/decode calculation or the inconvenient various coding cycle to a few more redundant
parity check disks. With this ability, system developer can decide freely which property is the
most important in their system.

Theoretical and practical studies on encoding/decoding algorithms for cascading Latin codes
are the most important future works. Generalizing this scheme to multiple erasure correcting is
also worth serious study.

References

[1] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems. Software: Practice

and Experience, 27(1999)9, 995-1012.

[2] J S. Plank and Lihao Xu. Optimizing Cauchy Reed-Solomon Codes for Fault-Tolerant Network Storage

Applications. In Proceedings of the 5th IEEE International Symposium on Network Computing and

Applications (IEEE NCA,06), Cambridge, MA, July 2006,173-180.

[3] Shu Lin and Daniel J. Costello. Error Control Coding Second Edition. ISBN-10: 0130426725, Prentice

Hall,2004-06-07 ,156-179

[4] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An efficient scheme for tolerating double disk

failures in RAID architectures. IEEE Transactions on Computing, 44(1995)2,192– 202.

[5] M. Blaum, J. Brady, J. Bruck, J. Menon, and A. Vardy.The EVENODD code and its generalization.High

Performance Mass Storage and Parallel I/, JohnWiley& Sons, INC., 2002, 187-208,.

[6] M. Blaum, J. Bruck, and A. Vardy. MDS array codes with independent parity symbols. IEEE Transactions on

Information Theory, 42(1996)2, 529-542.

[7] M. Blaum, R. M. Roth. New array codes for multiple phased burst correction. IEEE Transactions on

Information Theory, 39(1993)1, 66-77.

[8] L. Xu and J. Bruck. X-Code: MDS array codes with optimal encoding. IEEE Transactions on Information

Theory, 45(1999)1, 272-276.

[9] L. Xu, V. Bohossian, J. Bruck, and D. Wagner. Low density MDS codes and factors of complete graphs.

http://www.ccebook.net/author/_Daniel_J__Costello�
http://www.ccebook.net/author/_Daniel_J__Costello�
http://www.ccebook.net/pub/Prentice_Hall�
http://www.ccebook.net/pub/Prentice_Hall�

IEEE Transactions on Information Theory, 45(1999)1, 1817-1826.

[10] Wang Gang, Dong Sha-Sha, Liu Xiao-guang, Lin Sheng and Liu Jing . Construct two-erasure data layout

using P1F (利用图的完全 1-因子分解构造双容错数据布局). ACTA ELECTRONICA SINICA,34(2006)12A,

2447-2450.

[11] Wang Gang, Lin Sheng, Liu Xiaoguang, Xie Guangjun and Liu Jing.Combinatorial constructions of

multi-erasure-correcting codes with independent parity symbols for storage systems. IEEE PRDC 2007,

Melbourne, Victoria, Australia, Dec, 2007, 61-68.

[12] Wang Gang, Xiaoguang Liu, Sheng Lin, Guangjun Xie and Jing Liu. Constructing double- and

tripe-erasure-correcting codes with high availability using mirroring and parity approaches. icpads, vol. 1,

13th International Conference on Parallel and Distributed Systems - Volume 1 (ICPADS'07), 2007,1-8.

[13] Wang Gang, Lin Sheng, Liu Xiaoguang, Xie Guangjun and Liu Jing.A generalization of RDP code via

combinatorial method. Seventh IEEE International Symposium on Network Computing and

Applications, 2008 ,93 – 100.

[14] J. S. Plank.The RAID-6 Liberation Codes. 6th USENIX Conference on File and Storage Technologies, San

Francisco, 2008, 97–110.

[15] Lisa Hellerstein, Garth A. Gibson, Richard M. Karp, Randy H. Katz, and David A. Patterson. Coding

techniques for handling failures in large disk arrays. Algorithmica, 12(1994)2/3,182-208.

[16] I. M. Wanless. Perfect factorizations of bipartite graphs and latin squares without proper subrectangles. The

Electronic Journal of Combinatorics,6(1999)1,R9.

[17] Charles J. Colbourn and Jeffrey H. Dinitz . Handbook of Combinatorial Designs . 2nd ed. (Discrete

Mathematics and Its Applications) “ , Chapman and Hall/CRC; 2 edition (November 2, 2006),135-151.

[18] Cheng Huang and Lihao Xu. STAR: An efficient coding scheme for correcting triple storage node failures.

4th USENIX Conference on File and Storage Technologies, San Francisco, 2005, 197-210.

[19] J. L. Hafner. WEAVER codes: highly fault tolerant erasure codes for storage systems. In Proceedings of the

4th USENIX Conference on File and Storage Technologies, San Francisco, Dec. 2005, 211-224.

[20] J. L. Hafner. Hover erasure codes for disk arrays. International Conference on Dependable Systems and

Networks, Philadelphia, PA, USA, Jun. 2006, 217-226.

	A Cascading Latin Scheme to Tolerate Double Disk Failures in RAID Architectures10F*
	I. Introduction
	II. Analysis of Coding Availability
	III. Latin –code
	IV. Cascading Latin Scheme
	V. Conclusion

