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ABSTRACT
Major web search engines answer thousands of queries per
second requesting information about billions of web pages.
The data sizes and query loads are growing at an expo-
nential rate. To manage the heavy workload, we consider
techniques for utilizing a Graphics Processing Unit (GPU).
We investigate new approaches to improve two important
operations of search engines – lists intersection and index
compression.

For lists intersection, we develop techniques for efficient
implementation of the binary search algorithm for paral-
lel computation. We inspect some representative real-world
datasets and find that a sufficiently long inverted list has
an overall linear rate of increase. Based on this observa-
tion, we propose Linear Regression and Hash Segmenta-
tion techniques for contracting the search range. For in-
dex compression, the traditional d-gap based compression
schemata are not well-suited for parallel computation, so
we propose a Linear Regression Compression schema which
has an inherent parallel structure. We further discuss how
to efficiently intersect the compressed lists on a GPU. Our
experimental results show significant improvements in the
query processing throughput on several datasets.

1. INTRODUCTION
Current large-scale search engines answer thousands of

queries per second based on information distributed on bil-
lions of webpages, requiring efficient management of tera-
bytes of data. Index decompression and lists intersection
are two time-consuming operations used to process a query
[3, 23, 25]. In this paper we focus on improving the efficiency
of these search engine algorithms and, in particular, we fo-
cus on optimizing these two operations for modern Graphics
Processing Units (GPUs).
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Previous research work about improving the performance
of decompressing and intersecting lists mainly focused on
implementing these algorithms on single-core or multi-core
CPU platforms, while the GPU offers an alternative ap-
proach. Wu et al. [24] presented a GPU parallel intersec-
tion framework, where queries are grouped into batches by
a CPU, then each batch is processed by a GPU in parallel.
Since a GPU uses thousands of threads during peak perfor-
mance, we will require some kind of batched algorithm to
make optimum use of GPU. In this paper we consider tech-
niques for improving the performance of the GPU batched
algorithm proposed in [24] assuming sufficient queries at the
CPU end.

We begin with the problem of uncompressed sorted lists
intersection on the GPU, and then consider how to efficiently
intersect compressed lists. For uncompressed lists, we aim
to contract the initial bounds of the basic binary search algo-
rithm [7]. We propose two improvements, Linear Regression
(LR) and Hash Segmentation (HS). In the LR method, to
intersect two lists `A and `B , for each element in `A we pro-
pose bounds for its location in `B based on a linear regression
model. In the HS algorithm, an extra index is introduced to
give more precise initial bounds. For the case of compressed
lists, we will introduce a compression method called Linear
Regression Compression (LRC) to substantially improve the
decompression speed.

Upon inspection of representative real-world datasets from
various sources, we find that the inverted lists show signifi-
cant linear characteristics regardless of whether the docIDs
are randomly assigned or have been ordered by some pro-
cesses. The aim of this paper is to improve the efficiency of
search engine algorithms by exploiting this linearity property
on a GPU. Through experimentation, we find that an in-
verted list which has been reordered to have high locality
(i.e. clusters of similar values) [6] does not necessarily show
the best performance. An inverted index which has random
sorted docIDs will have better performance in the
algorithms described in this paper.

2. PRELIMINARIES

2.1 Lists Intersection
For simplicity, we consider the problem of querying for a

subset of a large text document collection. We consider a
document to be a set of terms. Each document is assigned a
unique document ID (docID) from 1, 2, . . . ,U , where U is the
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number of documents. The most widely used data structure
for text search engines is the inverted index [23], where, for
each term t, we store the strictly increasing sequence `(t) of
docIDs showing in which document the term appears. The
sequences `(t) are called inverted lists. If a k-term query
is made for t1, t2, . . . , tk, then the inverted lists intersection
algorithm simply returns the list intersection ∩1≤i≤k`(ti).
We may also assume that

|`(t1)| ≤ |`(t2)| ≤ · · · ≤ |`(tk)|, (1)

otherwise we may re-label t1, t2, . . . , tk so that (1) holds.
To illustrate, if the query “2010 world cup” is made, the

search engine will find the inverted lists for the three terms
“2010”, “world”, and “cup”, which may look like

`(cup) = (13, 16, 17, 40, 50),

`(world) = (4, 8, 11, 13, 14, 16, 17, 39, 40, 42, 50),

`(2010) = (1, 2, 3, 5, 9, 10, 13, 16, 18, 20, 40, 50).

The intersection operation returns the list intersection

`(cup) ∩ `(world) ∩ `(2010) = (13, 16, 40, 50).

In practice, search engines usually partition the inverted
indexes into levels according to the frequency in which the
corresponding term is queried. For example, Baidu, which is
currently the dominant search engine in Chinese, stores the
most frequently accessed inverted indexes in main memory
for faster retrieval. In this paper, we also store the frequently
accessed inverted indexes in the GPU memory, and only
consider queries that request these inverted indexes.

2.2 Index Compression
For the case of index compression, we only consider com-

pressing and decompressing the docIDs. Investigating com-
pression and decompression algorithms for other pertinent
information, such as data frequency and location, is beyond
the scope of this paper.

In real-world search engines, typically the lists `(t) are
much longer than in the above example. Some form of com-
pression is therefore needed to store the inverted lists `(t); a
straightforward approach is variable byte encoding [17]. To
further reduce the index size, modern search engines usually
convert an inverted list `(t) to a sequence of d-gaps ∆`(t)
by taking differences between consecutive docIDs in `(t).
For example, if `(t) = (8, 26, 30, 40, 118), then the sequence
of d-gaps is ∆`(t) = (8, 18, 4, 10, 78). If `(t) is assumed to
be a strictly increasing sequence from {1, 2, . . . ,U} chosen
uniformly at random, then the elements in ∆`(t) will con-
form to a geometric distribution [23]. Moreover, if |`(t)| is
sufficiently large with respect to U , we can expect `(t) to
approximately increase linearly (see Section 4.3 for details).

3. RELATED WORK
The problem of computing the intersection of sorted lists

has received extensive interest. Previous work focuses on
“adaptive” algorithms [2, 4, 11], which make no a priori
assumptions about the input, but determine the type of in-
stance as the computation proceeds. The run-time should
be reasonable in most instances, but not in a worst-case
scenario. For instance, the algorithm by Demaine et al. [8]
proceeds by repeatedly cycling through the lists in a round-
robin fashion.

In the area of parallel lists intersection, Tsirogiannis et
al. [22] studied lists intersection algorithms suitable for the
characteristics of chip multiprocessors (CMP). Tatikonda et
al. [21] compared the performance between intra-query and
inter-query models. Ding et al. [10] proposed a parallel lists
intersection algorithm Parallel Merge Find (PMF) for use
with the GPU.

Compression algorithms which have a good compression
ratio or fast decompression speed have been studied exten-
sively. Some examples are Rice Coding [26], S9 [1], S16 [25],
PForDelta [13], and so on.

A straightforward method of compressing inverted lists
`(t) is to instead store the sequence of d-gaps ∆`(t), whose
values are typically much smaller than the values in `(t).
Smaller d-gaps allow better compression when storing in-
verted lists. Therefore, reorder algorithms can be used to
produce “locality” in inverted lists to achieve better com-
pression. Bladford et al. [6] described a similarity graph
to represent the relationship among documents. Each ver-
tex in the graph is one document, and edges in the graph
correspond to documents that share terms. Recursive algo-
rithms are used to generate a hierarchical clustering based
on the graph, where the docIDs are assigned during a depth-
first traversal. Shieh et al. [19] also used a graph structure
similar to that of the similarity graph, however the weight of
the edges was determined by the number of terms existing in
both the two documents. The cycle with maximal weight in
the graph is then found, and the docIDs are assigned during
the traversal of the cycle. To reorder the docIDs in linear
time, Silvestri et al. [20] used a “k-means-like” clustering
algorithm.

4. GPU BASED LISTS INTERSECTION
We direct readers unfamiliar with GPU and the CUDA

architecture to Appendix A for an introduction. See Ap-
pendix B for details about the datasets used in this article.

4.1 Parallel Architecture
In order to fully utilize the processing power of the GPU,

we store queries in a buffer until sufficiently many are made,
then process them simultaneously on the GPU in one kernel
invocation. Since we are assuming heavy query traffic, we
also assume that there are no delays due to buffering. We
use the batched intersection framework PARA, proposed by
Wu et al. [24]. Suppose we receive a stream of queries that
give rise to the inverted lists `j(ti) from the i-th term in
the j-th query. The assumption (1) implies that |`j(t1)| =
mini |`j(ti)|. In PARA, a CPU continuously receives queries
until

∑
j |`j(t1)| ≥ c, where c is some desired “computa-

tional threshold”, and sends the queries to the GPU as a
batch. The threshold indicates the minimum computational
effort required for processing one batch of queries.

A bijection is then established between docIDs in `j(t1)
and GPU threads, which distributes computational effort
among GPU cores. Each GPU thread searches the other
lists to determine whether the docID exists. After all the
threads have finished searching, a scan operation [18] and
compaction operation [5] are performed to gather the re-
sults. Since the search operation occupies the majority of
the time, optimization for search algorithm is crucial to sys-
tem performance. In our paper, we focus on improving the
search operation of PARA.
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4.2 Binary Search Approach
In this paper we use binary search (BS) [7] as a “base”

algorithm for comparison between parallel algorithms. Al-
though it is neither the fastest algorithm on the CPU nor
on the GPU, it provides a baseline from which we can com-
pare the performance of the discussed algorithms. More
efficient algorithms, such as the skip list algorithm [14, 16]
and adaptive algorithms [4, 9] are inherently sequential, so
run efficiently on a CPU but not on a GPU, and cannot be
used to give a meaningful comparison. For state-of-art GPU
lists intersection, we give an analysis of Parallel Merge Find
(PMF) in Appendix C and show that binary search is better
choice of baseline in our case.

We choose binary search as our underlying algorithm and
adopt element-wise search techniques rather than list-wise
merging [4]. More specifically, we have a large number of
threads running in parallel, with each independently
searching for a single docID from the shortest list `j(t1)
in the longer lists (`j(ti))2≤i≤k. Moreover, we will discuss
methods for contracting the initial search range in order to
reduce the number of global memory accesses required.

4.3 Linear Regression Approach
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Figure 1: Scatter plots (sampling every 50-th)

Figure 1 gives some examples of scatter plots for inverted
lists `(t) obtained from the datasets GOV, GOVPR, GOVR,
BD, and BDR. We plot the i-th element in `(t) versus the
index i. Figure 1 suggests that inverted lists `(t) tend to
have linear characteristics.

Interpolation search (IS) [15] is the most commonly used
search algorithm, and exploits the linearity property of in-
verted lists. Interpolation search performs O(log log |`(t)|)
comparisons on average on a uniformly distributed list `(t),
although it can be as bad as O(|`(t)|). In our preliminary
work, we find that interpolation search is significantly slower
than the binary search on the GPU.

1) On a GPU, SIMT architecture is used. Each kernel
invocation waits for every thread to finish before con-
tinuing. In particular, a single slow thread will cause
the entire kernel to be slow.

2) As mentioned earlier, modern real-world datasets
generally reorder docIDs to improve compression ra-
tio. Reordering leads to local non-linearity in the in-
verted lists. Interpolation search does not perform well
in these circumstances.

3) A single comparison in an interpolation search is more
complicated than in a binary search – the former issues
3 global memory accesses while the latter issues only 1.

In conclusion, interpolation search does not suit the
GPU well. However, we will now describe a way to use the
linearity of inverted lists to reduce the initial search range
of a binary search.

We have shown the approximate linearity of inverted lists,
which motivates using linear regression (LR) to contract the
search range. Since this approach just contracts the initial
search range of binary search, it does not introduce addi-
tional global memory accesses. Moreover, it is not impacted
by local non-linearity significantly.

Provided |`(t)| and U are sufficiently large, we can ap-
proximate `(t) by a line ft(i) := αti + βt, where αt and βt
can be found using a least-squares linear regression. Sup-
pose we want to search for the value x ∈ {1, 2, ...,U} in
`(t). Then we can estimate the position of x in `(t) by
f−1
t (x) = (x − βt)/αt. For i ∈ {1, 2, . . . , |`(t)|}, let `[i] be

the i-th element of ` = `(t) and define the maximum left de-
viation Lt = maxi(f

−1
t (`[i])− i) and the maximum right de-

viation Rt = maxi(i−f−1
t (`[i])). If x is actually in `(t), then

x = `[i] for some i ∈ {j : f−1
t (x) − Lt ≤ j ≤ f−1

t (x) + Rt},
which we call the safe search range for x. We depict this
concept in Figure 2.
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Figure 2: Linear Regression approach

A simple strategy for implementing this observation, is to
store precomputed values of αt, βt, Lt, and Rt for all terms
t. Then whenever we want to search `(t) for x, we can simply
compute the safe search range of the stored values, and begin
a binary search whose range is the safe search range. Also
note that care needs to be taken to avoid rounding errors.

Compared with binary search on the range {1, 2, ..., |`(t)|},
the performance improvement is determined by the contrac-
tion ratio (Lt +Rt)/|`(t)|. A small contraction ratio implies
that the search range is contracted, so the subsequent binary
search is faster. We inspect several representative real-world
datasets and tabulate the average contraction ratio and the
average coefficient of determination R2

xy in Table 1. Note
that the inverted lists of datasets that have been randomized
tend to be more linear, that is R2

xy is closer to 1. Moreover,
when the inverted lists are more linear, the contraction ratio
tends to be better.

Another possible strategy is to use a local safe range,
which is the same as the safe search range strategy, but the
inverted list is first divided into g segments (similar to the
segmentation of PMF in Appendix C) and the safe search
range strategy is applied to each segment individually. Local
safe range will obtain a narrower search range, but requires
additional storage. Moreover, experimental results suggest
that local safe range is not superior due to extra floating
point operations.

4.4 Hash Segmentation Approach
Another range restricting approach we consider is hash

segmentation (HS). We partition the inverted list `(t) into
hash buckets Bh, where x ∈ `(t) is put into the hash bucket
Bh if h = h(x) for some hash function h. As usual, we
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Table 1: Average contraction ratio and R2
xy on different datasets

|`(t)| GOV GOVPR GOVR GOV2 GOV2R BD BDR

ratio R2
xy ratio R2

xy ratio R2
xy ratio R2

xy ratio R2
xy ratio R2

xy ratio R2
xy

(0K,100K) 0.2198 0.9613 0.2496 0.9573 0.1227 0.9870 0.4294 0.8731 0.1025 0.9898 0.3323 0.9271 0.1113 0.9891

[100K,200K) 0.0375 0.9991 0.0751 0.9952 0.0030 0.9999 0.2460 0.9636 0.0033 0.9999 0.1357 0.9746 0.0033 0.9999

[200K,400K) 0.0306 0.9995 0.0618 0.9966 0.0019 0.9999 0.1516 0.9847 0.0023 0.9999 0.0760 0.9943 0.0022 0.9999

[400K,600K) 0.0186 0.9997 0.0565 0.9972 0.0012 0.9999 0.1217 0.9896 0.0016 0.9999 0.0661 0.9957 0.0017 0.9999

[600K,800K) 0.0069 0.9999 0.0388 0.9985 0.0008 0.9999 0.1296 0.9884 0.0013 0.9999 0.0667 0.9973 0.0014 0.9999

[800K,1M) 0.0060 0.9999 0.0308 0.9990 0.0006 0.9999 0.1076 0.9946 0.0011 0.9999 0.0838 0.9955 0.0009 0.9999

assume that Bh is a strictly increasing ordered set. If we
wish to search for x ∈ {1, 2, ...,U} in an inverted list `(t), we
need only check whether x ∈ Bh(x) using a binary search.

As per our earlier discussion, real-world inverted lists tend
to have linear characteristics, so we choose a very simple
hash function. Let k be the smallest integer such that U ≤
2k. For some m ≤ k, we define h(x) = hm(x) to be the lead-
ing m binary digits of x (when written with exactly k binary
digits in total), which is equivalent to h(x) = bx/2k−mc.
Many hash buckets Bh will be empty, specifically those with
h > h(maxi `[i]) and most likely Bh(maxi `[i]) will contain
fewer docIDs than the other non-empty hash buckets.

In contrast to PMF, the cardinalities |Sj | are predeter-
mined and are all equal to 2k−m. Moreover, the hash buckets
do not need compaction when k-term queries are made and
k ≥ 3. The advantage of this scheme is that finding the
hash bucket Bh that x belongs to can simply be performed
by computing its hash value h(x) (as opposed to using a
Merge Find algorithm).

Implementing this scheme introduces some overhead. For
every term t, the hash bucket Bh can be stored as a pointer
(or an offset) to the minimum element of Bh (or, if Bh is
empty, we store a pointer to the minimum element of the
next non-empty hash bucket). So for each term t we will
require storage of d+1 pointers, where d = h(maxi `[i])+1 ∈
[1, 2m]. When we want to search for x in `(t), we compute
its hash value h = h(x). If h > h(maxi `[i]), then x 6∈ `(t)
and the search is complete. Otherwise, we find the pointers
for Bh and perform a binary search with the search range
restricted to Bh. In practice, the computation of h(x) and
finding Bh is negligible, so the number of steps required
to find x will be roughly the number of steps required to
perform a binary search for x in Bh where h = h(x). The
bigger m is, the fewer comparisons need to be performed by
the binary search. However, if m is too big, it will cause
overhead issues.

The set of terms in a given document and the assignment
of docIDs are determined by random processes outside of
our control. We assume that the probability of any given
docID x ∈ {1, 2, . . . ,U} being in a random `(t) is p = p(t) =
|`(t)|
U . Therefore, for a given term t, the cardinality of a

non-empty hash bucket Bh approximately follows a binomial
distribution |Bh| ∼ Bi(|`(t)|, p) where p = 2k−m/U , with
mean |`(t)|p and variance |`(t)|p(1− p).

Figure 3 displays a count of hash bucket cardinalities over
all inverted lists `(t) in the GOV dataset provided 212 + 1 ≤
|`(t)| ≤ 213 and all non-empty hash buckets, where m = 5.
We see the binomial distribution appearing, however it is
stretched since |`(t)| is not constant. In practice, we choose
m dynamically depending on |`(t)|, for example, we define

the algorithm HS256 to have the minimum m such that
|`(t)|/256 ≤ 2m (which we consider in Section 6). Even if the
inverted lists are not particularly linear, hash segmentation
still performs well; see Table 3 for experimental results.
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5. GPU BASED INDEX COMPRESSION

5.1 PFor and ParaPFor
Patched Frame-of-Reference (PFor) [13, 27] divides the

list of integers into segments of length s, for some s divisible
by 32. For each segment a, we determine the smallest b =
b(a) such that most integers in a (e.g. 90%) are less than 2b,
while the remainder are exceptions. Each of the integers in
a, except the exceptions, can be stored using b bits. For each
exception, we instead store a pointer to the location of the
next exception. The values of the exceptions are stored after
the s slots. If the offset between two consecutive exceptions
is too large, i.e. requires more than b bits to write, then we
force some additional exceptions in-between. We call PFor
on ∆`(t) PForDelta (PFD).

A variant of PFD, called NewPFD, was presented in [25].
In NewPFD, when an exception is encountered, the least
significant b bits are stored in a b-bit slot, and the remaining
bits (called the overflow) along with the pointer are stored
in two separate arrays. The separate arrays may be encoded
by S16 [25], for example.

Decompression speed is more important to the perfor-
mance of query processing since the inverted lists are de-
compressed while the user waits. On the other hand, com-
pression is used only during index building. Consequently,
we will focus on optimizing the decompression performance.
Typically PFor has poor decompression performance on the
GPU. In PFor, the pointers are organized into a linked
list. Therefore the decompression of the exceptions must be
executed serially. The number of global memory accesses
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a thread performs is proportional to the number of excep-
tions. So we make a modification to PFor called Parallel
PFor (ParaPFor). Instead of saving a linked list in the ex-
ception part, we store the indices of exceptions in the origi-
nal segment (See Appendix D for details). This modification
will lead to a worse compression ratio, but gives much faster
decompression on the GPU because exceptions can be re-
covered concurrently. Consequently, we will describe a new
index compression method, Linear Regression Compression.

5.2 Linear Regression Compression
As described in Section 4.3, for typical inverted lists, linear

regression can be used to describe the relationship between
the docIDs and their indices. We fix some term t. Given a
linear regression ft(i) := αti + βt of an inverted list `(t),
a given index i, and its vertical deviation δt(i), the i-th
element of `(t) is ft(i) + δt(i). Therefore, it is possible to
reconstruct `(t) from a list of vertical deviations (VDs) and
the function ft.

Vertical deviations may be rational numbers, positive or
negative, but for implementation, we map them to the non-
negative integers. Let Mt = −mini dδt(i)e (which is stored),
so Mt + dδt(i)e ≥ 0 for all i. Since the i-th element of
`(t) is ft(i) + δt(i), which is always a positive integer, we
store λt(i) = Mt + dδt(i)e. Hence the i-th element of `(t) is
ft(i) + δt(i) = bft(i) + λt(i)−Mtc.

We can perform compression by applying any index com-
pression technique on the normalized vertical deviations
(λt(i))1≤i≤|`(t)|. In this paper, we will use ParaPFor. We
call this compression method Linear Regression Compres-
sion (LRC). The advantage of LRC is that it can achieve
higher decompression concurrency over d-gap based com-
pression schemata.

We give a detailed analysis of LRC in Appendix E, which
gives a theoretical guarantee of the compression ratio and
can be easily extended to the contraction ratio of LR (Sec-
tion 4.3).

The fluctuation range of vertical deviations in LRC is
maxi λt(i). Again, if we divide the list (δt(i))1≤i≤|`(t)| into
segments, we can observe smaller fluctuation ranges locally.
We consider two segmentation strategies:

• Performing linear regression globally and then per-
forming segmentation to obtain better local fluctua-
tion ranges (LRCSeg),

• Performing segmentation first, then performing linear
regression compression for each segment (SegLRC ).

B

Regression Line of SegLRC

Regression Line of LRC and LRCSeg

segment 2A

C

D

segment 1

Figure 4: LRC, LRCSeg, and SegLRC

We depict these three methods in Figure 4. Note that
the two local regression lines of SegLRC have much better
goodness of fit than the global regression line of LRC and
LRCSeg. LRCSeg obtains a local fluctuation range on seg-
ment 2, smaller than the global fluctuation range of LRC.
Both LRCSeg and SegLRC give significantly better com-
pression than LRC (see Figure 7 for a comparison).

5.3 Lists Intersection with LRC on the GPU
PFD compresses d-gaps, so to find the i-th element of an

inverted list `(t), we need to recover the first i elements from
∆`(t). In LRC however, if the binary search accesses the i-th
element of `(t), we can decompress that element alone. The
number of global memory accesses required is proportional
to the number of comparisons made.

Algorithm 1 presents the lists intersection with LRC on
the GPU. For simplicity, we will forbid exceptions, which
should not significantly effect the compression ratio (see
Figure 7 for a comparison). We consider the inputs to be

• k inverted lists `C(t1), `C(t2), . . . , `C(tk) that have been
compressed using LRC, where we assume condition (1),

• for i ∈ {2, 3, . . . , k}, an auxiliary ordered list H(ti)
which contains the d|`(ti)|/se elements of `(ti) whose
coordinates are congruent to 0 (mod s). In fact, H(ti)
comprises the headers of all the segments of `(ti).

Algorithm 1 Lists Intersection with LRC

Input: k compressed lists `C(t1), `C(t2), . . . , `C(tk) and k − 1
ordered lists H(t2),H(t3), . . . ,H(tk) stored in global memory

Output: the lists intersection ∩1≤i≤k`(ti)
1: for each thread do
2: Recover a unique docID p from `C(t1) using ParaPFor De-

compression (see Appendix D.2) and linear regression of
`(t1).

3: for each list `C(ti), i = 2 . . . k do

4: Compute the safe search range [f−1
ti

(p)− Lti , f
−1
ti

(p) +

Rti ].
5: Perform binary search for p in the search interval

[(f−1
ti

(p)− Lti )/s, (f−1
ti

(p) + Rti )/s] of H(ti), to obtain

x such that H(ti)[x] ≤ p < H(ti)[x + 1].
6: Perform binary search for p in the x-th segment of `C(ti).
7: If p is not found in `C(ti), then break.
8: end for
9: If p is found in k lists, then record p ∈ ∩1≤i≤k`(ti).

10: end for

We assume that one global memory access takes time ta,
while one comparison takes time tc. Therefore it takes 2ta
to decompress an element from `C(ti) during each step of
the binary search (Line 6). The total running time required
to perform lists intersection under LRC is at most

k∑
i=2

( Line 5︷ ︸︸ ︷
(ta + tc)

⌈
log

crti |`(ti)|
s

⌉
+

Line 6︷ ︸︸ ︷
(2ta + tc)dlog(s)e

)
(2)

per thread, where crti is the global contraction ratio of `(ti)
for all i ∈ {2, 3, . . . , k}. In fact, the total running time
required by LRCSeg is also given by (2). For comparison,
we could also perform lists intersection with LRC without
the auxiliary lists, when the corresponding total running
time is at most

k∑
i=2

(
(2ta + tc) dlog(crti |`(ti)|)e

)
per thread. Experimental results suggest that the former
takes 33% less GPU time than the latter. The cost we pay
for such achievement is 0.80% reduction of compression ratio
due to the space occupied by the auxiliary ordered lists.

In SegLRC it is also possible to reduce the search range
using the linear regression technique described in Section 4.3.
After locating the segment, binary search can be performed
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on the compressed list segment, where again the search range
can be reduced by applying the linear regression technique
to the segment. The total running time per thread required
to perform lists intersection under SegLRC is at most

k∑
i=2

(
(ta + tc)

⌈
log

crti |`(ti)|
s

⌉
+ (2ta + tc)dlog(cr′tis)e

)
,

where cr′ti is the maximum local contraction ratio of `(ti)
for all i ∈ {2, 3, . . . , k}.

Furthermore, we can narrow the search range by com-
bining HS (as described in Section 4.4) with LRC. While
compressing, we apply LRC to the hash buckets. Although
the buckets may vary in size, experimental results show that
the compression ratio is almost the same as SegLRC (when
segments are of fixed width). We call this method HS LRC.
During lists intersection, we can locate the segment by the
docID’s hash value, and then we use a local linear regression
to narrow the search range. Experimental results suggest
that performance of lists intersection improves greatly as a
result, which we will discuss in the next section.

6. EXPERIMENTAL RESULTS
Appendix F.1 lists the details of experimental platform.

6.1 Throughput and Response Time
We now consider the performance of algorithms under dif-

ferent computational threshold c, as usual, assuming heavy
query traffic. As mentioned in Section 4.1, the chosen com-
putational threshold used for PARA determines the mini-
mum computational effort in one batch. A higher threshold
makes better use of the GPU, and the throughput will in-
crease. Furthermore, less PCI-E transfers are invoked since
more data can be packed into one PCI-E transfer. Since
fewer large PCI-E transfers are faster than many smaller
transfers, the overhead of PCI-E transferring could be re-
duced.
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Figure 5: System throughput on GOV

We first test the throughput of different parallel inter-
section algorithms on uncompressed lists. As Figure 5 il-
lustrates, LR and HS improve the throughput significantly.
This is mainly due to the reduction of memory accesses. The
search range of LR is determined by the safe search range,
while the search range of HS is determined by the bucket
size. When threshold is 1M, HS16 boosts the throughput to
91382 queries/s, which is 60% higher than BS. The cost we
pay for such achievement is 9% extra memory space. The
throughput of HS16 maintains the obvious upward trend
even when the threshold reaches 2M. Such trend suggests
the potential of the GTX480 has not been fully utilized.
Search engines with lighter load could equip their servers

with slower, less power-consuming GPU, like GTX460, so
as to save energy and reduce carbon emission.
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Figure 6: Average response time on GOV

The response time is a crucial indicator to user experience,
so it is another important performance criterion of lists in-
tersection. In the PARA framework, the response time is the
processing time for each batch, which consists of three parts:
CPU time, GPU intersection time, and transfer time. Since
a higher threshold implies that a batch contains more queries
before processing, the response time will be prolonged. Fi-
gure 6 presents the response time of each algorithm on un-
compressed lists. When the threshold is less than 128K,
the difference in response times is indistinguishable. This is
because all threads can process small batches within similar
time. As the threshold grows, the advantage of more efficient
algorithms becomes more significant. Major search engines
have strict requirements on response time, so the choice of
threshold should achieve a balance between throughput and
response time.

We also compare different algorithms intersecting com-
pressed lists. See Appendix F.2 for details.

6.2 Compression and Decompression
We will now compare the compression ratio and decom-

pression speed of the index compression techniques proposed
in this paper. We restrict the proportion of exceptions to at
most 0.6. We set the segment length in PFD, NewPFD, and
ParaPFD to 64, while the segment length in LRC, LRCSeg,
SegLRC, and HS LRC will be 256. We use the GOV dataset
for comparison. For compression, we take the compression
ratio over all inverted lists `(t), whereas for decompression
we take the decompression speed of shortest inverted list
`(t1) over all queries.
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Figure 7: Compression ratio on GOV

We calculate the compression ratio as the size of the
original inverted lists to the total size of the compressed
lists plus the auxiliary information. As Figure 7 shows, the
best compression ratio is obtained with PFD, NewPFD, and
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ParaPFD, while the compression ratio of LRCSeg, SegLRC,
and HS256 LRC is also reasonable. The compression ra-
tio of all the methods (except LRC) initially increases as
the proportion of exceptions increases, but then decreases,
which implies that too many exceptions reduce compression
efficiency. In particular, allowing no exceptions achieves a
compression ratio close to the maximum. For LRC, the com-
pression ratio remains practically unchanged as the propor-
tion of exceptions varies, indicating that the distribution of
vertical deviations in segments are similar, to which we at-
tribute the significant improvement in compression when we
adopt LRCSeg.
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Figure 8: Decompression speed on GOV

Figure 8 shows the decompression speed of the shortest
lists of all the queries in the GOV dataset. We only in-
clude the shortest lists since the algorithms presented in
this paper only need to decompress the shortest list com-
pletely for each query. We can see that the best results
are obtained with LRC, LRCSeg, and SegLRC, achieving
significantly faster decompression over PFD and NewPFD.
For PFD and NewPFD the decompression speed varies with
the number of exceptions, whereas ParaPFD and the LR
based methods have nearly constant decompression speed.

Table 2: Optimal compression ratio
PFD NewPFD ParaPFD LRC LRCSeg SegLRC HS256 LRC

GOV 3.62 3.66 3.55 2.09 3.00 3.16 3.12

GOVPR 3.63 3.68 3.57 2.02 2.85 3.11 3.00

GOVR 3.61 3.64 3.53 2.62 3.26 3.23 3.22

GOV2 3.71 3.75 3.63 1.73 2.82 3.19 3.18

GOV2R 3.60 3.62 3.51 2.41 3.24 3.22 3.21

BD 2.78 3.09 2.89 1.59 2.03 2.26 2.10

BDR 2.58 2.61 2.55 1.99 2.39 2.38 2.34

Table 2 gives the compression ratios of the various al-
gorithms over different datasets, optimized with respect to
the proportion of exceptions. LR based algorithms per-
form poorly on GOVPR, since GOVPR has been sorted
by PageRank, producing “locality”. An important obser-
vation is that LR based algorithms perform best on GOVR,
GOV2R, and BDR. Figure 1 indicates that GOVR and BDR
have strong linearity, and moreover, in Table 1 the R2

xy

values for GOVR, GOV2R, and BDR are closer to 1, imply-
ing that the inverted lists of the randomized datasets tend
to be more linear. Therefore, the vertical deviations should
typically be smaller and the compression ratios should there-
fore be better. All this suggests that LR based algorithms
will benefit from randomized docIDs.

6.3 Speedup and Scalability
We use the optimized version of skip list [16] as the “base-

line” algorithm on the CPU, from which other algorithms

can be compared. Experimental results indicate that it is
the fastest single-threaded algorithm, when compared to
those mentioned in [2, 4, 22]. The speedup obtained using
multi-CPU-based architecture is bounded above by the num-
ber of available CPUs [22]. In Table 3 we tabulate the
speedup of various algorithms over different datasets. HS16
achieves the greatest speedup among all algorithms on un-
compressed lists on all datasets, whereas HS128 LRC achie-
ves the greatest speedup for compressed lists. HS16 and
HS32 achieve their greatest speedup on GOVPR rather than
GOVR, indicating that linearity is not a key factor in HS
algorithms. For compressed lists intersection, the speedup
achieved by HS256 LRC is comparable to that of BS on un-
compressed lists. On BD and BDR, we also achieve 14.67x
speedup to uncompressed lists, and 8.81x speedup to com-
pressed lists.

In Table 3, we notice that LR performs better on BD
than BDR, and attribute this anomaly to branch divergency.
Using CUDA Profiler, we find that the number of divergent
branches is approximately 24% and 28% greater on BDR
than BD when running BS and LR, respectively. Branch di-
vergency plays a larger role when the dataset is randomized,
such as in BDR. Thus we have a trade-off between branch
divergency and linearity.

To investigate the speedup depending on the number of
GPU cores, we flush the BIOS of GTX480 so as to disable
some of the Streaming Multiprocessors (SMs). Figure 9 (a)
shows the speedup of HS16 and HS256 LRC on the GOV
dataset as the number of SMs increases. We set the compu-
tational threshold to 1M to fully utilize the GPU processing
power. We can see that the speedup of both algorithms
is almost directly proportional to the number of SMs. As
the number of SMs increases, the efficiency of both algo-
rithms decreases slightly, which is common to all parallel
algorithms.
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Figure 9: (a) Speedup as the number of SMs in-
creases and (b) the proportion of GPU Time

Figure 9 (b) shows the utilization of GPU of HS16 and
HS256 LRC on the GOV dataset with respect to the compu-
tational threshold. Note that the computational threshold
decides the batch size, therefore, for a batched computing
model, it is actually the problem size. We can see that
the proportion of GPU time to the total execution time
increases as the computational threshold increases, which
implies both algorithms obtain an increasing efficiency as
the problem size increases. Our experimental results show
that our new algorithms can maintain efficiency at a fixed
value by simultaneously increasing the number of processing
elements and the problem size, that is they are scalable [12].

Figure 9 (b) also illustrates another phenomenon. CPU-
GPU transfers and CPU computation always occupy more
than 20% of total execution time. Overlapping CPU compu-
tation and transfers with GPU computation therefore pre-
sents itself as a future avenue for improvement.
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Table 3: Speedup
Uncompressed Compressed

IS BS LR HS32 HS16 ParaPFD (0.2) ParaPFD (0.0) LRC LRCSeg SegLRC HS256 LRC HS128 LRC

GOV 8.69 14.59 16.22 22.14 23.29 4.05 5.86 10.79 10.79 12.07 14.26 14.38

GOVPR 7.67 14.81 15.86 22.45 23.54 4.10 5.94 10.68 10.67 11.74 14.10 14.22

GOVR 9.48 14.29 16.19 20.96 22.01 3.97 5.77 10.97 10.98 12.42 14.21 14.24

BD 2.16 9.86 9.98 14.19 14.67 2.65 3.87 7.22 7.24 7.42 8.60 8.78

BDR 5.64 8.70 9.42 12.35 12.96 2.43 3.53 7.24 7.22 7.93 8.80 8.81

7. CONCLUSION
In this paper, we present several novel techniques to opti-

mize lists intersection and decompression, particularly suited
for parallel computing on the GPU. Motivated by the sig-
nificant linear characteristics of real-world inverted lists, we
propose the Linear Regression (LR) and Hash Segmentation
(HS) algorithms to contract the initial search range of bi-
nary search. For index compression, we propose the Parallel
PFor (ParaPFor) algorithm that resolves issues with the de-
compression of exceptions in PFor that prevent it from per-
forming well in a parallel computation. We also present the
Linear Regression Compression (LRC) algorithm which fur-
ther improves decompression concurrency and can be readily
combined with LR and HS. We discuss the implementation
of these algorithms on the GPU.

Experimental results show that LR and HS, especially the
latter, improve the lists intersection operation significantly,
and LRC also improves the index decompression and lists
intersection on compressed lists while still achieving a rea-
sonable compression ratio. Experimental results also show
that LR based compression algorithms perform much better
on randomized datasets.
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A. GPU AND CUDA ARCHITECTURE
Graphics Processing Units (GPUs) are notable because

they contain many processing cores, for example, in this
work we use the NVIDIA GTX480 (Fermi architecture),
which has 480 cores. Although GPUs have been designed
primarily for efficient execution of 3D rendering applica-
tions, demand for ever greater programmability by graphics
programmers has led GPUs to become general-purpose ar-
chitectures, with fully featured instruction sets and rich me-
mory hierarchies.

Compute Unified Device Architecture (CUDA) [30] is the
hardware and software architecture that enables NVIDIA
GPUs to execute programs written with C, C++, and other
languages. CUDA presents a virtual machine consisting of
an arbitrary number of Streaming Multiprocessors (SMs),
which appear as 32-wide SIMD cores. The SM creates,
manages, schedules, and executes threads in groups of 32
parallel threads called warps. When a multiprocessor is
given one or more thread blocks to execute, it partitions
them into warps that get scheduled by a warp scheduler for
execution. A warp executes one common instruction at a
time, so full efficiency is realized when all 32 threads of a
warp agree on their execution path. When this does not
occur, it is referred to as branch divergency.

One of the major considerations for performance is me-
mory bandwidth and latency. The GPU provides several di-
fferent memories with different behaviors and performance
that can be leveraged to improve memory performance. We
briefly discuss two important memory spaces here. The first
one is global memory. Global memory, where our experi-
mental inverted indexes reside, is the largest memory space
among all types of memories in the GPU. Accessing global
memory is slow and access patterns need to be carefully
designed to reach the peak performance. The second one
is shared memory. Shared memory is small readable and
writable on-chip memory and as fast as registers. A good
technique for optimizing a naive CUDA program is using
shared memory to cache the global memory data, perform-
ing large computations in the shared memory and writing
the results back to the global memory.

B. DATASETS
To compare the various algorithms, we use the following

datasets:

1) TREC GOV [33] and GOV2 [32] document sets are col-
lections of Web data crawled from Web sites in the .gov
domain in 2002 and 2004, respectively. They are widely
used in IR community. We use the document sets to
generate the inverted indexes. The docIDs are the orig-
inal docIDs, and we do not have access to how the do-
cIDs were assigned. We use Terabyte 2006 (T06) [28]
query set which contains 100, 000 queries to test GOV
and GOV2 document sets. We focus on in-memory in-
dex, so we exclude the inverted lists `(t) for which t
is not in T06. The GOV and GOV2 datasets we used
contain 1053372 and 5038710 html documents, respec-
tively.

2) We use the method proposed in [31] to generate the
PageRank for all the documents in the GOV dataset,
and reorder the docIDs by PageRank, i.e. the document
with largest PageRank is assigned docID 1 and so on.
We call this index GOVPR.

3) We form another two datasets from GOV and GOV2 by
randomly assigning docIDs (Fisher-Yates shuffle [29]).
We call these indexes GOVR and GOV2R, respectively.

4) Baidu dataset BD was used on Baidu’s cluster (ob-
tained via private communication). Baidu is the leading
search engine in China responding billions of queries
each day. BD contains 15749656 html documents crawl-
ed in 2009. We use Baidu 2009 query set which contains
33337 queries to test BD document set.

5) We also generate the dataset BDR from the BD dataset
by randomly assigning docIDs.

C. PARALLEL MERGE FIND
Parallel Merge Find (PMF) [10] is the fastest GPU lists

intersection algorithm to date. The docIDs are partitioned
into ordered sets

S1 = (1, 2, . . . , |S1|),
S2 = (|S1|+ 1, |S1|+ 2, . . . , |S1|+ |S2|),
S3 = (|S1|+ |S2|+ 1, |S1|+ |S2|+ 2, . . . , |S1|+ |S2|+ |S3|),

and so on up to Sg. The inverted lists `(ti) are then split into
g parts `(ti) ∩ Sj . Splitting the inverted lists is performed
by a Merge Find algorithm.

A parallelized binary search is then performed on the
partial inverted lists `(t1) ∩ Sj , `(t2) ∩ Sj , . . . , `(tk) ∩ Sj ,
where each element of `(t1)∩Sj is assigned to a single GPU
thread.

In the case of a 2-term query, if `(t1) is divided evenly,
i.e. if each `(t1) ∩ Sj has roughly the same cardinality, then
the number of steps required by the GPU to perform PMF
is bounded below by

Merge Find︷ ︸︸ ︷⌈ g
C

⌉
log |`(t2)|+

binary search︷ ︸︸ ︷⌈
|`(t1)|
C

⌉
log
|`(t2)|
g

,

where C is the maximum concurrency of the GPU.
We need to apply Merge Find g times, of which we can

perform at most C in parallel, and each requires at least
log |`(t2)| steps. Afterwards, we apply binary search for each
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element in `(t1), and again we can perform C in parallel,
with each search requiring at least log(|`(t2)|/g) steps.

For comparison, the number of steps required for the bi-
nary search on the GPU (without splitting according to
PMF) is bounded below by⌈

|`(t1)|
C

⌉
log |`(t2)|.

Hence PMF is only superior to binary search when the
shortest list `(t1) is sufficiently long, say containing millions
of elements.

In Table 4 we list some data concerning the average ratios
of the lengths of the inverted lists `(ti) in a k-term search
using the GOV dataset.

For k-term searches with k ∈ {2, 3, . . . , 6}, in Stage x we
write

R :=
|`(t1) ∩ `(t2) ∩ · · · ∩ `(tx)|

|`(tx+1)| (3)

as a percentage. The percentage in brackets after the k value
gives the proportion of queries that are k-term queries. We
also write the average length of `(t1) in Stage x in K (x1000),
denoted |¯̀|. Table 4 shows that, in real-world datasets, most
of queries have a short shortest list `(t1). As the algorithm
progresses, that is as x increases, (3) decreases significantly.
Hence, even if we adopt a segmentation method like PMF,
it is hard to improve segment pair merging using shared
memory because of large length discrepancy. Therefore, per-
formance is obstructed by a large number of global memory
accesses.

Since we allocate 256 threads in one GPU block and the
distribution of docIDs is approximately uniform, a GPU
block might need to search through a range containing

256/(0.054%) ≈ 470000

docIDs, much larger than the shared memory on each SM.
If a GPU block runs out of memory on one SM, the number
of active warps will be reduced and the parallelism will be
less effective. Therefore, we set the goal of reducing the
dependency on global memory access.

Table 4: Length ratio R as intersection proceeds
Number of terms

2 (16.1%) 3 (24.5%) 4 (22.8%) 5 (14.8%) 6 (8.24%)

x R (%) |¯̀| (K) R (%) |¯̀| (K) R (%) |¯̀| (K) R (%) |¯̀| (K) R (%) |¯̀| (K)

1 13.6 8.6 23.1 8.7 28.6 8.4 32.0 8.0 34.4 8.0

2 - - 0.97 2.0 1.76 1.6 2.38 1.5 2.82 1.5

3 - - - - 0.22 0.8 0.35 0.6 0.50 0.6

4 - - - - - - 0.087 0.5 0.13 0.4

5 - - - - - - - - 0.054 0.4

D. PARAPFOR ALGORITHM

D.1 Compression
We consider a single segment of length s consisting of

the integers G = (g0, g1, . . . , gs−1), where we assume that
0 ≤ gi < 232 for all i ∈ {0, 1, . . . , s − 1}. The parameter s
should be chosen to best suit the hardware available; in this
paper we choose s to be the number of threads in one GPU
block. The least significant b bits of the value gj are stored
in lj . The index of the j-th exception is stored in ij and the
overflow is stored in hj . We assign the variables:

• b as described in Section 5.1,

• the width of every slot ij is ib := dlog(maxj ij)e,
• the width of every slot hj is hb := dlog(maxj gij )e − b,

and

• en is the number of exceptions.

These four pieces of information are stored in a header.

D.2 Decompression
The process of decompression is split into three distinct

stages.

1. Thread j reads lj and stores it in shared memory.

2. Thread j reads ij and stores it in a register.

3. Thread j reads hj and recovers the j-th exception gij
by concatenating hj and lij .

Only the first en threads will be used in Stages 2 and 3.
This process is illustrated in Figure 10 when the exceptions
happen to be g0, g1, and gs−2.

g0 g1 g2 gs‐2 gs‐1

l0 l1 l2 ls-2 ls-1b  ib  hb  en i0 i1 i2 h0 h1 h2

0 1 s‐2 s‐1...

...

2

t0 t1 t2 … ts-2 ts-1

...

thread 
block

header

Figure 10: ParaPFor decompression

Algorithm 2 describes ParaPFor decompression. Global
memory access is required in Lines 3, 4, 8, and 9. Since all
the numbers in the algorithm are at most 32-bit wide, each
thread accesses global memory between 2 and 4 times.

Algorithm 2 ParaPFor Decompression

Input: Compressed segment G′ in global memory
Output: (g0, g1, . . . , gs−1) in shared memory
1: for each thread do
2: j ← threadIdx.x (i.e. assign the j-th element to the current

thread)
3: Extract b, ib, hb, and en from header
4: Extract lj
5: gj ← lj
6: synchthreads()
7: if j < en then
8: Extract ij
9: Extract hj

10: gij ← gij | (hj << b) (i.e. concatenate hj and lij )

11: end if
12: synchthreads()
13: end for

E. THEORETIC ANALYSIS OF LRC
The aim of this section is to give a theoretic analysis of

LRC, and estimate the compression ratio with respect to
different length of inverted lists.
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Inverted lists `(t) are generated by random processes out-
side of our control. Here we will assume that `(t) is chosen
uniformly at random from all ordered lists of length n and
with elements belonging to {1, 2, . . . ,m}. This assumption
will be more reliable when e.g. the docIDs are renumbered
at random. Let Xi be the random variable for the docID of
the i-th document in the inverted list. There are

(
k−1
i−1

)(
m−k
n−i

)
sorted lists for which the i-th element is k (we choose i− 1
elements less than k to place before k and m − k elements
greater than k to place after k). Hence

Pr(Xi = k) =

(
k−1
i−1

)(
m−k
n−i

)(
m
n

) .

Using the binomial identities
(
k
i

)
= k

i

(
k−1
i−1

)
and

m∑
k=1

(
k

i

)(
m− k
n− i

)
=

(
m+ 1

n+ 1

)
,

we can find that

E(Xi) =

m∑
k=1

kPr(Xi = k) =
m+ 1

n+ 1
i.

One can draw a regression line for `(t) :

f(i) :=
m+ 1

n+ 1
i,

so that E(Xi) = f(i) for all 1 ≤ i ≤ n. We use this line to
approximate the linear regression line.

We claim that a docID in an inverted list can be com-
pressed in dlog(t) + 1e bits provided the probability of the
vertical difference between the regression line and the point
(i,Xi) greater than some t > 0 is smaller than a sufficiently
small value ε. So we will focus on finding a bound of the
form:

Pr[|Xi − f(i)| ≥ t] = Pr[|Xi − E(Xi)| ≥ t] < ε. (4)

Chebyshev’s Inequality implies that, for all t > 0,

Pr[|Xi − E(Xi)| ≥ t] ≤
Var(Xi)

t2
. (5)

However, (5) is too loose for our purposes. So next we will
show how to improve the upper bound of (5). For all r > 0
and t > 0,

Pr[|Xi − E(Xi)| ≥ t] = Pr[|Xi − E(Xi)|r ≥ tr],

so by Markov’s Inequality,

Pr[|Xi − E(Xi)| ≥ t] ≤
E[|Xi − E(Xi)|r]

tr
.

This inequality will enable us to improve the bound based
on the r-th central moment.

Let (x)p = x(x+1) · · · (x+p−1) denote the rising factorial
function, and xp = x(x− 1) · · · (x− p+ 1) denote the falling
factorial function.

Lemma E.1

E[(Xi)p] = (i)p
(m+ 1)p
(n+ 1)p

.

Proof. Let Xm,n
i denote the random variable Xi for

given parameters m and n. Then

Pr(Xm,n
i = k) · (k)p

= Pr(Xm+p,n+p
i+p = k + p) · (i)p

(m+ 1)p
(n+ 1)p

.

After summing over k ∈ {1, 2, . . . ,m}, the left-hand side
becomes E[(Xm,n

i )p], while the right hand,

m∑
k=0

Pr(Xm+p,n+p
i+p = k + p) · (i)p

(m+ 1)p
(n+ 1)p

= 1 · (m+ 1)p
(n+ 1)p

.

Next, we will give the formula of the central moment of
Xi of any order.

Lemma E.2 For 0 ≤ i ≤ n,

n∑
i=0

(x)i(−1)n−i
{n
i

}
= xn,

where
{

n
i

}
is the Stirling number of the second kind.

Proof. Apply x → −x in the identity
∑k

i=0 x
i
{

n
i

}
=

xn.

Theorem E.3 The r-th central moment E[|Xi−E(Xi)|r] is

E(Xi)
r +

r∑
l=1

(−1)r−l

(
r

l

)
l∑

j=0

(−1)l−j

{
l

j

}
E[(Xi)j ]E(Xi)

r−l.

Proof. By the Binomial Theorem,

[Xi − E(Xi)]
r =

r∑
l=0

(−1)r−l

(
r

l

)
Xl

iE(Xi)
r−l.

Now apply Lemma E.2 to Xl
i .

We will use r = 22 to find a bound of the form (4), since
the 22-nd central moment is a fairly high order to give us
a relatively accurate bound value. By Theorem E.3 and
Lemma E.1,

E[|Xi − E(Xi)|2] =
i(1 +m)(1− i+ n)(m− n)

(1 + n)2(2 + n)
. (6)

For fixed m and n satisfying m ≥ n, (6) is maximized
when i = b(n+ 1)/2c, so also is E[|Xi − E(Xi)|22]. We will
focus on this point next.

As an example, set ε = 10−5 in (4) and m = 224 according
to the number of documents in the BDR dataset. We list
dlog(min(t)) + 1e for various n in Table 5, where min(t) is
the least t that satisfies (4). Additionally, we pick some lists
with length n ∈ {100K, 200K, 400K, 800K, 1M, 2M} from
the compressed index (using LRC algorithm) of BDR dataset.
The average bit-width of a compressed list is the total num-
ber of bits of the list divided by the number of docIDs con-
tained in the inverted list. Table 5 shows that the theoretical
bit-width dlog(min(t)) + 1e is close to the average bit-width
of real lists with respect to different n. So if an inverted list
consists of randomized docIDs, we can estimate the com-
pression ratio based on the above method.
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Table 5: dlog(min(t)) + 1e and average bit-width

n 100K 200K 400K 800K 1M 2M

dlog(min(t)) + 1e 18 18 17 17 17 16

average bit-width 17 17 17 16 15 15

F. EXPERIMENTAL RESULTS

F.1 Experimental Platform
A brief overview of the hardware used in the experiments

is given in Table 6.

Table 6: Platform details
O.S. 64-bit Redhat Linux AS 5 with kernel 2.6.18

CUDA Version 3.0

Host

CPU AMD Phenom II X4 945

Memory 2GB × 2 DDR3 1333

PCI-E BW CPU → GPU 3.0GB/s

PCI-E BW GPU → CPU 2.6GB/s

Device

GPU NVIDIA GTX 480 (Fermi architecture)

SMs × Cores/SM 15 (SMs) × 32 (Cores/SM) = 480 (Cores)

Memory BW 177.4GB/s

F.2 Compressed Lists
Table 7 compares different algorithms intersecting com-

pressed lists on various datasets. TP denotes the throughput
(queries/s) and RT denotes the response time (ms/batch).
In the case of ParaPFD, the number in parentheses gives the
proportion of exceptions used in the experiment. To obtain

a short response time, we set the computational threshold to
1M, which limits the response time of LR based algorithms
to under 3ms. The performance of each individual algorithm
on the different datasets is similar.

SegLRC’s performance is better than LRC and LRCSeg.
The reason is that the search range is reduced by the local
contraction ratio. We can see that HS256 LRC performs
better than all of the other algorithms, although the de-
compression speed is not as good as the other LR based
algorithms (see Figure 8 for a comparison).

Table 7: Throughput and response time
GOV GOVPR GOVR BD BDR

TP RT TP RT TP RT TP RT TP RT

ParaPFD (0.2) 15879 7.66 16069 7.57 15587 7.81 58937 4.71 53952 5.15

ParaPFD (0.0) 22998 5.29 23302 5.22 22639 5.38 86000 3.23 78338 3.55

LRC 42336 2.88 41905 2.90 43034 2.83 160570 1.73 160898 1.73

LRCSeg 42347 2.88 41862 2.91 43078 2.83 160958 1.73 160338 1.73

SegLRC 47335 2.57 46054 2.64 48078 2.50 164903 1.68 176134 1.58

HS256 LRC 55955 2.18 55315 2.20 55735 2.18 191120 1.45 195520 1.42

G. REFERENCES
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