
hUBI: An Optimized Hybrid Mapping Scheme for NAND Flash-Based SSDs

Guangjun Xie

Baidu Inc., Beijing, China
Nankai-Baidu Joint Lab, Nankai University, Tianjin, China

Email: xieguangjun1980@163.com

Guangzhi Xu, Gang Wang, Xiaoguang Liu, Rui Cao, Yan Gao

Nankai-Baidu Joint Lab, Nankai University, Tianjin, China
Email: xgz.nku@mail.nankai.edu.cn, wgzwp@163.com, liuxg74@yahoo.com.cn

Abstract—NAND flash-based SSDs have become attractive
alternatives to hard disk drivers due to their high random read
performances and low power consumptions. However, the poor
random write performances highly limit their popularization
in commercial applications.

In this paper, we propose a novel mapping scheme called
hybrid mapping unsorted block images (hUBI). hUBI aims for
(1) optimized random write performances, (2) low write laten-
cies, and (3) low space consumptions. It optimizes traditional
hybrid mapping schemes to achieve (1). In hUBI, the merge
operation involves only a single block. So, (2) is guaranteed. To
avoid introducing a high space cost maintaining the metadata,
hUBI puts its metadata into out-of-band (OOB) areas of SSD
pages, which obtains (3). Our experimental results show that
hUBI provides a considerable random write performance and
holds low write latencies at the same time.

I. INTRODUCTION

Over the last decade the CPU speed has increased dra-

matically while the access time of traditional disks has only

improved slowly [1]. The bottleneck seems more apparent

when parallel workloads introduced by rapid developing IT

applications increase. As the traditional hard disks using

spinning disks and movable read/write heads can not meet

applications’ requirements, people seek for new storage

medium that can solve this problem. At the end of last cen-

tury, solid-state disks (SSD) were introduced into the storage

industry, and nowadays become increasingly alternatives for

traditional hard disks [2].

SSDs have the properties of low power consumptions and

high access speeds. Now, most SSDs are based on NAND

flash chips. Along with the attractive properties of low costs

and high densities, the NAND flash chip has a problem

that blocks should be erased before being written and erase

operations are quite slow. In consideration of wear leveling

and read/write latencies, dynamic mappings are used in most

SSD drivers.

Mapping schemes can be divided into three dimensions:

block-mapping, page-mapping and hybrid mapping. Block-

Mapping schemes [3] maintain mappings between logical

blocks and physical blocks. Each page update will cause

a block erase and several page copy operations. Block-

Mapping schemes imply simple implementations and low

space costs for their metadata. However, due to their high

write latencies, block-mapping schemes have poor random

write performances. To improve the write performance,

page-mapping schemes [4] maintain fine-grained mappings

between logical pages and physical pages. In page-mapping

schemes, page writes are performed on free pages. Com-

pared to block-mapping schemes, page-mapping schemes

need fewer erase operations and thus get higher random

write performances. However, page-mapping schemes con-

sume a lot of spaces to store their metadata. Hybrid mapping

schemes [5] [6] [7] combine the advantages of block-

mapping schemes and page-mapping schemes. They group

blocks into data area and log area. Pages in the log area

are addressed like page-mapping schemes. Page writes are

performed on free pages in the log area. When the log

area has no free pages, a merge operation [10] is triggered

to erase log area blocks and stores valid pages in data

area blocks. By this means, hybrid mapping schemes get

considerable random write performances and hold space-

efficiency at the same time. However, in traditional hybrid

mapping schemes, complex merge operations may cause

high write latencies, which could be catastrophic in time-

sensitive applications.

In this paper, we present a novel hybrid mapping scheme

called hybrid mapping unsorted block images (hUBI). hUBI

contributes in several aspects:

• hUBI uses a optimized hybrid mapping algorithm giv-

ing high random write performances.

• The merge operation in hUBI involves only one block,

which leads to a guaranteed low write latency.

• hUBI maintains its metadata in the out-of-band (OOB)

areas, which reduces the space consumption and the

number of I/O operations.

Experimental results show that hUBI provides an consid-

erable random write performance and a low timeout rate

under mixed read and write workload.

2011 International Joint Conference of IEEE TrustCom-11/IEEE ICESS-11/FCST-11

978-0-7695-4600-1/11 $26.00 © 2011 IEEE

DOI 10.1109/TrustCom.2011.139

1015

The following parts of this paper are organized as follow:

Section 2 introduces other related works. Section 3 de-

scribes the design of hUBI in details. Section 4 shows our

analysis and experiments of hUBI. And finally Section 5

gives the conclusion.

II. RELATED WORK

Unsorted Block Images (UBI) [11] is a mapping scheme

used in the Linux kernel. It has a layered architecture and

most other schemes adopt its design. UBI is a block-mapping

scheme. As discussed above, each page update in UBI brings

a block erase and several page copy operations. Block erase

and page copy are both time consuming operations. So page

updates in UBI have a high time cost.

There have been researches on hybrid mapping schemes.

Kim [5] presented a log block scheme in which each log

block (i.e., a block in log area) is dedicated to one data

block (i.e., a block in data area). This may cause low space

utilization of log blocks. e.g., there is an update to one data

block. Although the log area still has lots of free rooms, if

the log block it owns is fully occupied, a merge operation

will still be necessary. To fully utilize the log area space,

Lee [7] proposed a mapping scheme called fully associative

sector translation (FAST). In FAST, a page in log block can

be mapped to any data blocks. FAST merges fewer times

than [5], but it brings complex merge logic. A merge in [5]

only involves two blocks. While at the worst case, a merge in

FAST can involve as many as n+1 blocks (n is the number

of pages in a log block). Park [8] introduced a compromising

solution that maps K log blocks to N data blocks. He ran

a lot of workloads trying to find proper values for K and

N . Liu [9] tried to apply hybrid associations between log

blocks and data blocks. For one hot data block (i.e., the block

that accessed frequently), a exclusive log block is assigned,

while other cold data blocks use fully associations described

in FAST. However, the merge problem remains.

Partition based UBI (pUBI) is an improved hybrid map-

ping scheme. In pUBI, blocks are grouped into partitions.

Each partition is a contiguous region of the address space.

Blocks in a partition are divided into data blocks, log blocks

and m-blocks. Updates to a partition will be performed on

its corresponding log blocks. In one partition, there is only

one active m-block storing its metadata. A merge operation

is called when there are no free pages in the log area.

Compared with UBI, pUBI provides a better random write

performance. However, the merge operation in pUBI may

involve several data and log blocks, therefore it can bring a

number of block erase and page copy operations. In some

circumstance, such a time consuming merge operation may

cause a data update timeout.

hUBI adopts the layered architecture of UBI but designs

a new hybrid mapping mechanism. To solve the timeout

problem in pUBI, hUBI focuses on optimizing merge op-

erations. Experimental results show that hUBI solves this

�������	
�������
��

����������������

�����������

�� �����������
!"!�����	��������

���
���#��

$%��#��

&%��#��

Figure 1. Overview Architecture

��
� ��'�� ��(�����
���� ����

)�)
)��������

��)����
�*+��

,,� �*-��

Figure 2. Huawei SSD Page Layout

problem effectively and provides a comparable random write

performance with pUBI.

III. DESIGN OF HUBI

The major objective of hUBI is lowering the write laten-

cies and space consumptions of hybrid mapping schemes.

Our work is based on the NAND flash-based SSDs produced

by Huawei Inc. and can be applied to other SSDs. Overview

architecture of hUBI is shown in Figure1.

The raw memory technology device (MTD) driver pro-

vides a physical erasable block (PEB) view without wear

leveling. The hUBI driver implements a hybrid mapping

algorithm and provides a logical erasable block (LEB) view.

Finally, to use SSDs as normal block devices, the MTD

block driver emulates a sector view for upper applications.

A. Metadata Layout

1) Disk Layout: hUBI divides pages in each block into

log area and data area. The page-mapping info for log area

pages is stored on disk to record the relationships between

logical pages and physical pages. Since the page-mapping

info changes along with page updates, by storing the page-

mapping along with the page data, only one I/O operation

is needed when writing both the page data and the page-

mapping info. Figure2 shows the page layout of Huawei

MLC SSDs. The out-of-band (OOB) area is used for error

control and the first two bytes of OOB are used as a badblock

flag. Only 2 bits of the flag are actually used, therefore we

can use the second byte to hold the page-mapping info, as

shown in Figure3.

Two main advantages are gained by the above design: (1)

The number of I/O operations is reduced, as the page data

and the page-mapping can be written to disks in one I/O

operation. (2) By using the OOB areas to store the metadata,

hUBI does not consume extra storage spaces.

1016

��
� ��'�� ��(�����
���� ����

)�)
)��������

��)����
�*+��

,,� �*-��

��(�����
���� �.�� $&! �.��

Figure 3. hUBI Page Layout

2) Memory Layout: There are two alternatives to main-

tain the in-memory page-mapping table (PMT). One of them

stores the physical page number (PPN) for each page in the

log area. For a read/write access, if the required page is

in the log area, the PPN can be gotten by searching the

PMT. Otherwise, if the required page is in the data area, as

data area pages are stored in the order of logical addresses,

the PPN is equal to the logical page number (LPN). By

using this solution, fewer memory spaces are consumed to

maintain the metadata. However, a read operation may cause

as many as n comparisons to get the corresponding PPN

(n is the total number of log pages in one block). The

other method maintains the page-mapping info for both log

and data area pages, which is similar to the page-mapping

scheme. By this way, read operations avoid PMT searching.

But, more spaces will be occupied and things get even worse

when the size of storage grows larger.

To balance between memory consumptions and perfor-

mances, we come up with a compromising method. hUBI

optimizes the first design by adding a bitmap. One bit in the

bitmap corresponds to a unique logical page and indicates

whether it is in the log area or not. When accessing a page,

the corresponding bit in the bitmap is first tested. Since bit

test is a fast operation, we pay little performance penalty to

save a lot of memory space.

An overview of metadata layout for hUBI is shown in

Figure4. hUBI extends the eraseblock mapping table (EMT)

used by UBI to support hybrid mapping. Each entry of EMT

stores the metadata for a logical block. It contains four parts:

the block-mapping info, a pointer, an index and a bitmap.

The pointer points to the PMT. The index records the next

free log area page in PMT. The bitmap indicates whether a

page is in the log area. e.g., in Figure4, LEB 1 is mapped to

PEB 10. In PEB 10, an update operation is performed after

a merge operation. The LPN of the written page is 2.

B. Read and Write Algorithms

In this section, we describe the read and write algorithms

of hUBI in details.

The key logic of the read algorithm is the address trans-

lation. In hUBI, a logical address can be divided into three

parts: a LEB (logical erasable block) number, a LPN (logical

page number) in the LEB and an offset in the page. Usually,

read requests are aligned by pages, thus we can assume the

offset in the page to be zero and use a tuple <LEB, LPN>

$�����&���
!/�0��

�1(����2�!��
�
�����$��&�� ��
��3

4 ��+
.+ ..
555 555 555555

&��1
���
��&��6
��33�1���0��

�������	
�������������	��
����

���������������	��
����

&%�

�
4

+
.

�
��

+
.

$%�

�1(��

��
������
��

��������
��

&��
��
�

�����

$�����&���
!/�0��$&!

+
.
�

�7 �
4

47 4

��
��"���

$��"���

�����

-
8
*

*7 �
9

�� ��

Figure 4. hUBI Metadata Layout

to represent a logical address. In the following parts, we

use this form of logical address to demonstrate the read and

write algorithms.

Algorithm 1 shows the read algorithm of hUBI. To read

a page, the algorithm first locates the page-mapping table

for a given LEB. Then the corresponding bit in the bitmap

is tested to check whether the required page is in the log

area. For a read request to log area pages, the algorithm

will search the page-mapping table sequentially to find the

corresponding PPN. Otherwise, the required page is in the

data area, the PPN is equal to the LPN.

Algorithm 1: hUBI Read Algorithm

Input: leb, lpn
begin

emt_entry = get_entry_from_emt(leb);
peb = emt_entry.peb;
pmt = emt_entry.pmt;
bitmap = emt_entry.bitmap;

if is_in_log_area(lpn, bitmap) == true then
ppn = get_ppn_from_pmt(lpn, pmt);
else ppn = lpn;

read_page(peb, ppn);

end

Algorithm 2 shows the write algorithm of hUBI. The

algorithm first writes the data and the page-mapping info to

a free log area page. Then a new entry is added to the PMT

and the corresponding bit in the bitmap is also set. When

there are no free pages in the log area, a merge operation is

called to clean the log area.

Algoritm 3 describes the merge logic. When there are no

free log pages in the log area of current PEB P (LEB L), a

new PEB P ′ is allocated from the free PEB list. Then valid

1017

Algorithm 2: hUBI Write Algorithm

Input: leb, lpn, data
begin

emt_entry = get_entry_from_emt(leb);
peb = emt_entry.peb;
pmt = emt_entry.pmt;
bitmap = emt_entry.bitmap;

ppn = get_next_free_log_page(pmt);
set_oob_mapping(oob, lpn);

write_physical_page_with_oob(peb, ppn, oob,
data);

set_bitmap(lpn, bitmap);

set_pmt(lpn, pmt);
if no free log pages then

merge(leb);
end

end

pages are copied from P to P ′. After that, P will be put

on the erase list waiting to be erased by a garbage collector.

Finally, the EMT will be updated to map L to P ′. e.g., in

Figure4, according to algorithm 2, the second data update

to PEB 3 will trigger a merge operation, then a new PEB

K will be allocated and valid pages will be copied to PEB

K. Then entry 0 in EMT will be updated to map LEB 0 to

PEB K.

Algorithm 3: hUBI Merge Algorithm

Input: leb
begin

emt_entry = get_emt_from_emt(leb);
peb = emt_entry.peb;
peb′ = alloc_free_peb();

bitmap = emt_entry.bitmap;

pmt = emt_entry.pmt;
foreach ppn in pmt do

copy_page(peb′, peb, ppn);

end
foreach ppn in Data area do

if is_in_log_area(ppn, bitmap) == false then
copy_page(peb′, peb, ppn);

end
end
emt_entry.peb = peb′;
add_to_erase_queue(peb);

end

IV. ANALYSIS AND EXPERIMENTS

A. Analysis

By using bitmap, read algorithms of hUBI bring tiny extra

time cost. So the analysis below is focused on the write

algorithm.

Two performance metrics are concerned in evaluating the

write performance of SSDs.

Mean Time To Page Write(MTTPW) shows the average

time cost to write back a page. From this metric, the average

latency of write operations can be derived.

Mean Time To Merge(MTTM) shows the time cost of

one merge operation. Since write requests are blocked when

merging, the worst case of write latency can be derived from

this metric.

Assume the time cost of reading a page as tr, the time

cost to write a page as tw, the time cost to erase a block as

te and the time cost to deliver a page from upper application

to SSD storage as tx. For a single block, d stands for the

number of pages in the data area and l stands for the number

of pages in the log area. Since in hUBI, every l continuous

write requests will trigger a merge operation, and a merge

operation needs a block copy and an block erase operations,

we have:

MTTMh = d(tr + tw + 2tx) + te (1)

MTTPWh =
MTTMh

l
+ tw + tx (2)

We compare hUBI with two UBI-based mapping schemes,

UBI and pUBI.

UBI is a typical block-mapping scheme. A page update

in UBI will cause a merge operation, which then needs

a block read, a block write and a block erase operations.

Assume there are k pages in a block, then the MTTPW
and MTTM of UBI are:

MTTMu = k(tr + tw + 2tx) + te (3)

MTTPWu = MTTMu + tw + tx (4)

pUBI is a hybrid mapping version of UBI. In pUBI, blocks

are grouped into partitions. Blocks in a partition are divided

into data blocks, log blocks and m-blocks. Write requests

of a partition go to its log blocks and data blocks store the

merged data. Each partition stores its mapping info in a m-

block. To analyze the performance of pUsBI, we introduce

two metrics.

Locality ratio α: Suppose that there are D data blocks, L
log blocks in a partition and k pages in a block. As pUBI

uses FAST [7] on its log blocks, every L× k write requests

cause a merge operation. We define α as the average ratio of

different LEBs covered by L× k continuous write requests

to all data blocks in a partition.

Sequential ratio β: When merging, if a log block covers

exactly one LEB, pUBI will turn this log block into a data

block. We define β as the average ratio of log blocks that can

be turned into data blocks to all data blocks in a partition.

1018

We know that every L× k write requests cause a merge

operation. For these requests, there are D×α different LEBs

covered, and D × β LEBs can be turned into data blocks

directly. Therefore, in a merge operation, D × k × (α− β)
pages are copied and D × (α − β) + L blocks are erased.

In addition, as every partition in pUBI stores its mapping

info in a m-block page and mappings are changed during

merging, each merge operation will cause a page write to

a m-block, which then implies a 1/k erase operation. From

the above analysis, we can get the MTTW and MTTPM
of pUBI:

MTTMp = D(ktr + ktw + 2ktx + te)(α− β) + Lte + tw +
te

k
(5)

MTTPWp =
MTTMp

kL
+ tw + tx (6)

To optimize the sequential write performance of mapping

schemes, MTD block driver implements a write-back cache.

The size of the cache is equal to the size of a LEB. For

a write request, if the required LEB is contained in the

buffer, the write operation is performed directly on the

page cache. Otherwise, the cached LEB is discarded, dirty

pages are flushed to the disk and the required LEB is

fetched. To fully utilize this cache, hUBI optimizes its write

algorithm in two ways: (1) When the number of flushed

pages is below the size of a log area, each write request is

performed using the write logic described in Algorithm 2.

(2) When the number of flushed pages is not less than

the size of a log area, the required block will be merged

and valid pages will be directly copied to the data area of

a newly allocated block. From the above analysis, under

sequential write workloads, the MTTPMs of the three

mapping schemes can be changed into:

MTTPWh =
d(tw + 2tx + tr) + te

d
(7)

MTTPWp =
Lte + tw +

te

k
kL

+ tw + tx (8)

MTTPWu =
k(tw + 2tx + tr) + te

k
(9)

The performance metrics for ssds used in our experiment

are shown in Table I

Table I
HUAWEI MLC SSD PERFORMANCE METRICS

Operation Time(us)

256KB Block Erase te 1500

2KB Page Read tr 50

2KB Page Write tw 800

2KB Data Transfer tx 50

From Table I and eqs. (1) - (9). we compute the theoretical

write performances for UBI, pUBI and hUBI (Table II).

Assume each block contains 128 pages (k=128). For pUBI,

each partition has 16 data blocks (D=16) and 4 log blocks

(L=4). For hUBI, each block contains 100 pages for data

area (d=100) and 26 pages for log area (l=26), two pages

are remained for the block metadata.

Table II
THEORETICAL WRITE PERFORMANCE

UBI pUBI hUBI

SW(Sequential Write) RW(Random Write)

SW MTTPW 0.961ms 0.863ms(α = β) 0.965ms

RW MTTPW 123.1ms 4.71ms(α = 1, β = 0) 4.561ms

MTTM 123.1ms 6.65ms-1976.32ms 96.5ms

As we can see from TableII, under sequential workloads,

all three schemes have similar performances. And as hUBI

merges more times than pUBI, pUBI gets a higher sequen-

tial write performance. While under random workload, the

complex merge operation of pUBI effects its performance

and hUBI achieves a little better. Moreover, in the worst

case, pUBI will take nearly 2s to perform a merge operation,

which is unacceptable for some time sensitive applications.

In a word, hUBI provides a considerable write performance

and holds a steady write latency.

B. Experimental results

A overview of our experiment environment is given in

Table III.

Table III
EXPERIMENT ENVIRONMENT

OS 64-bit Redhat Linux AS 5 with kernel 2.6.18

Host

CPU Intel Xenon 5250 × 2

Memory DDR2 FBD 16GB

HDD SAS 146GB × 8 RAID 5

SSD

Manufacturer Huawei Inc.

Chip Type 2GB NAND MLC

Block Size 256K

page Size 2K

Tools

Iometer Ver 2006_07_27 (x86_64)

MySQL Ver 14.7 for Redhat-Linux-GNU (i686)

First, we use iometer [24] to evaluate the read perfor-

mance of hUBI(see Figure5 and Figure6). We can see that

hUBI performs much better than traditional HDDs. And as

read operations in the three schemes do not trigger time

1019

+

8+

.++

.8+

�++

�8+

4++

48+

-++

-8+

-� :� .*� 4�� *-� .�:� �8*� 8.�� .+�-�

;��

���

3���

����

��
��
/
�3
/

��
�
<	
�

��=/�	
���>��'��

Figure 5. Sequential Read Performance

+

.++++

�++++

4++++

-++++

8++++

*++++

-� :� .*� 4�� *-� .�:� �8*� 8.�� .+�-�

;��
���
3���
����

�,
&�

��=/�	
���>��'��

Figure 6. Random Read Performance

consuming write/erase operations. Their read performances

do not show much difference.

Then, we simulated three common scenarios to evaluate

the write performance of hUBI: (1) a single threaded wget

program [25] downloads files from a library of web indexes,

(2) a modified multi-threaded wget program downloads files

from a library of web indexes and (3) a program performs

random updates to a MySQL database. (1) is a sequential

write scenario, while (2) and (3) provide random write

workload. For (1) and (2), the total size of the library is

80G, there are 76 files with 1G size and a lot of small files.

For (3), there are 5 million records in the database. The

average length of records is 497 bytes. Results are shown in

Figure7.

From Figure7, we can see that under sequential workload-

s, the three mapping schemes have similar performances.

This is because a write cache is used in the MTD block

driver and the results are within our expectation. While

in random write scenarios, hUBI and pUBI perform much

better, because hUBI and pUBI merge much less times than

UBI.

Then, we use a mixed read and write workload to evaluate

+

�+

-+

*+

:+

.++

.�+

.-+

 �
6. �
6- /3(�
�

���
3���
����

?
��

��
�
�

��
�
�
<	
�

Figure 7. Write Benchmark

+

8++

.+++

.8++

�+++

�8++

;�� ��� 3��� ����

	����

	����
@/3(�
�

"
��
��
�
��
�	
3�
1	
���
��
��
/	
�

Figure 8. Mixed Read and Write Benchmark

the average write latency of hUBI. We perform concurrent

select and update queries to the MYSQL database used in

the above benchmark. Figure8 shows the average response

time of select queries. In the experiment, the number of

select queries ten times the number of update quires. As we

can see, the performance of UBI falls sharply when update

quires involve while UBI and pUBI remain a steady response

time.

To evaluate the worst case of write latencies for hUBI, we

observe the distributions of the response time in the above

experiment. Figure9 and TableIV show the detailed statistics

for timeout requests. As we can see, for one hundred thou-

sand select queries, pUBI has about four hundred queries

that take over 20ms. So, the timeout rate of pUBI is about

0.4%. However, in hUBI, the timeout rate is only 0.001%.

This is because the merge operations in hUBI involves only

one block. While in pUBI, a merge operation can involve

several block erase and a number of page copy operations.

V. CONCLUSION

Nowadays, NAND-based SSDs are widely used both in

the commercial area and the personal computing. However,

the poor random write performance of SSDs has proven to

be a serious problem. One way to solve such a problem is

1020

+

.++++

�++++

4++++

-++++

8++++

*++++

9++++

:++++

A++++

.+++++

�+B.� C.B8� C8B.+� C.+B�+� C�+B8+� C8+B.++� D.++

���6	����

���6	����
@/3(�
�
3���6	����

3���6	����
@/3(�
�
����6	����

����6	����
@/3(�
�

�
�=
/�
	

	

��	3�1	���������1���	�

Figure 9. Response Time Distribution

Table IV
STATISTICS OF TIMEOUT REQUESTS

[20,50) [50,100) >100

UBI-select 3 0 0

UBI-select+update 1089 921 389

pUBI-select 0 0 0

pUBI-select+update 123 15 250

hUBI-select 0 0 0

hUbI-select+update 1 0 0

optimizing the mapping algorithms of SSDs. Many works

have explored this area. In this paper, we introduce a

novel hybrid-mapping scheme for NAND-based SSDs called

hUBI. hUBI contributes in three aspects:

• hUBI uses a optimized hybrid mapping algorithm

achieving high random write performance.

• The merge operation in hUBI is performed on a single

block, which provides a guaranteed low write latency.

• hUBI stores the mapping info in OOB areas of SSD

pages which holds space-efficiency.

In a word, for NAND-based SSDs, hUBI improves their

random write performances and provides guaranteed low

write latencies. However, as a hybrid mapping scheme, the

log area of hUBI causes a waste of storage spaces. Our

future work will focus on reducing the space cost of mapping

schemes and providing a better write performance at the

same time.

ACKNOWLEDGMENTS

This work was supported in part by the National High

Technology Research and Development Program of China

(2008AA01Z401), NSFC of China (60903028, 61070014,

61170301), Science and Technology Development Plan of

Tianjin (08JCYBJC13000), and Key Projects in the Tianjin

Science and Technology Pillar Program.

REFERENCES

[1] Mendel Rosenblum, John K. Ousterhout. The Design and Im-
plementation of a Log-Structured File System In Proceedings

of the 13th ACM Symposium on Operating Systems Principles,
1991.

[2] F. Douglis, R. Caceres, F. Kaashoek, K. Li, B. Marsh, JA.
A. Tauber: Storage Alternatives for Mobile Computers In
Proceedings of the 1st Symposium on Operation Systems
Design and Implementation, 1994.

[3] A. Ban. Flash File System United States Patent, No.
5,404,485, April 1995.

[4] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: A Flash Trans-
lation Layer Employing Demand-based Selective Caching of
Page-level Address Mappings In Proceeding of the 14th
international conference on Architectural support for program-
ming languages and operating systems (ASPLOS 09), March
2009.

[5] Jesung Kim, Jong Min Kim, Sam H. Noh, Sang Lyul Min,
Yookun Cho. A Space-Efficient Flash Translation Layer for
CompactFlash Systems IEEE Transactions on Consumer
Electronics, Vol. 48, No. 2, 2002.

[6] Tae-Sun Chung, Dong-Joo Park, Sang-Won Park, Dong-Ho
Lee, Sang-Won Lee, Ha-Joo Song. System Software for Flash
Memory: A Survey In Proceedings of the 2006 IFIP Interna-
tional Conference on Embedded And Ubiquitous Computing,
August 2006.

[7] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and H. Song A
Log Buffer based Flash Translation Layer Using Fully Asso-
ciative Sector Translation IEEE Transactions on Embedded
Computing Systems, 6(3):18, 2007. ISSN 1539-9087.

[8] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, and J.-S. Kim.
A Re-configurable FTL (Flash Translation Layer) Architecture
for NAND Flash-based Applications ACM Transactions on
Embedded Computing Systems, 7(4), 2008.

[9] Z. Liu, L. Yue, P. Wei, P. Jin, and X. Xiang. An Adaptive
Block-Set based Management for Large-Scale Flash Memory
In Proceedings of the 2009 ACM Symposium on Applied
Computing, pages 1621-1625, 2009.

[10] L. P. Chang and T. W. Kuo. A Real-time Garbage Collection
Mechanism for Flash Memory Storage System in Embedded
Systems The 8th International Conference on Real-Time
Computing Systems and Applications, 2002.

[11] Thomas Gleixner, Frank Haverkamp, and Artem Bityutskiy.
UBI - Unsorted Block Images IBM Tech Report,2006-06-09.

[12] Y. H. Bae. Design of a high performance flash memory-based
solid state disk Journal of Korean Institute of Information
Scientists and Engineers,25 (6), 2007.

[13] Yuan-Hao Chang , Jen-Wei Hsieh , Tei-Wei Kuo. Endurance
enhancement of flash-memory storage systems: an efficient
static wear leveling design Proceedings of the 44th annual
conference on Design automation, June 04-08, 2007, San
Diego, California.

[14] Hyun-jin Cho, Dongkun Shin, Young Ik Eom.KAST: K-
associative sector translation for NAND flash memory in real-
time systems DATE 2009: 507-512.

1021

[15] Hyun Jin Choi , Seung-Ho Lim , Kyu Ho Park. JFTL: A
flash translation layer based on a journal remapping for flash
memory ACM Transactions on Storage (TOS), v.4n.4, p.1-22,
January 2009.

[16] Jen-Wei Hsieh , Li-Pin Chang , Tei-Wei Kuo. Efficient on-line
identification of hot data for flash-memory management Pro-
ceedings of the 2005 ACM symposium on Applied computing,
March 13-17, 2005, Santa Fe, New Mexico.

[17] Li-Pin Chang , Tei-Wei Kuo. Efficient management for large-
scale flash-memory storage systems with resource conservation
ACM Transactions on Storage (TOS), v.1 n.4, p.381-418,
November 2005.

[18] Intel Corporation. Understanding the Flash Translation Lay-
er(FTL) Specification Tech Report December 1998.

[19] J. Kang, H. Jo, J. Kim, and J. Lee. A Superblock-based Flash
Translation Layer for NAND Flash Memory In Proceedings
of the International Conference on Embedded Software (EM-
SOFT), pages 161ĺC170, October 2006. ISBN 1-59593-542-8.

[20] J.U. Kang, J. S. Kim, C. Park, H. Park, and J. Lee. A
multi-channel architecture for high-performance nand flash-
based storage system Journal of Systems Architecture,
53(9):644ĺC658, 2007.

[21] A. Kawaguchi, S. Nishioka, and H. Motoda. A flash-memory
based File System Proceedings of the USENIX Technical
Conference, 1995.

[22] Tei-Wei Kuo, Jen-Wei Hsieh, Li-Pin Chang, Yuan-Hao
Chang. Configurability of performance and overheads in flash
management Proceedings of the 2006 conference on Asia
South Pacific design automation, January 24-27, 2006, Yoko-
hama, Japan.

[23] Gye-Jeong Kim, Seung-Cheon Baek, Hyun-Sook Lee, Han-
Deok Lee, Moon Jeung Joe. LGeDBMS: a small DBMS for
embedded system with flash memory Proceedings of the 32nd
international conference on Very large data bases, September
12-15, 2006, Seoul, Korea.

[24] Iometer Project http://www.iometer.org/.

[25] GNU Wget Project http://www.gnu.org/s/wget/.

1022

