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1. INTRODUCTION
Intersection of sorted inverted lists is an important op-

eration in the web search engines. Various algorithms to
improve the performance of this operation have been intro-
duced in the literature [1, 3, 5]. Previous research works
mainly focused on single-core or multi-core CPU platform
and did not consider the query traffic problem arises in the
actual systems. Modern graphics processing units (GPUs)
give a new way to solve the problem. Wu et al. [6] pre-
sented a CPU-GPU cooperative model which can dynami-
cally switch between the asynchronous mode and the syn-
chronous mode. Under light query traffic, asynchronous
mode is triggered, each newly arriving query is serviced by
an independent thread. Under heavy query traffic, syn-
chronous mode is triggered, all active threads are blocked
and a single thread takes control of query processing. Queries
are grouped into batches at CPU end, and each batch is
processed by GPU threads in parallel. We summarize that
putting the operations on GPU has two advantages: The
massive on-chip parallelism of GPU may greatly reduce the
processing time of lists intersection; A great part of work on
CPU is offloaded to GPU. Overall the GPU will significantly
increase throughput and reduce average response time in the
synchronous mode. In this paper we consider techniques for
improving the performance of the GPU batched algorithm
proposed in [6] assuming sufficient queries at the CPU end.
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To intersect two sorted lists M and N with |M | ≤ |N |,
for each document ID (docID) of M we assign it to a unique
GPU thread. These threads use binary search to test whether
the docID appears in N in parallel, so every thread will make
O(logn) memory accesses. While in this paper, we propose
a novel intersection algorithm based on Bloom filter which
can greatly reduce the processing time. The main idea is
reducing the number of memory accesses from O(logn) to
O(1). The tradeoff is that Bloom filter will introduce some
false positives, besides we have to generate an extra hashed
index. The size of the extra space can be customized ac-
cording to the acceptable false positive rate.

2. METHODOLOGY
We generate the Bloom filter [2] for each inverted list off-

line. The hash functions are the same for all lists, while the
length of Bloom filter is variable according to the length of
the list. Taking m = 16n as example (n is length of an
inverted list, m is the number of bits we store the Bloom
filter information for a list, each docID is 32 bits long), the
size of Bloom filter data is half the size of the original in-
verted index, so the space of Bloom filter algorithm is 1.5x
of the original index. However, compression algorithm can
further be applied to the original inverted index to reduce
total space. We store the original index and Bloom filter
totally on the GPU global memory.

We implement the Bloom filter batched algorithm by re-
placing the binary search part of the PARA [6] algorithm
by membership testers of a given Bloom filter. Each GPU
thread is assigned one docID of the shortest list, it makes
O(1) lookups in the other lists’ Bloom filter to test whether
its corresponding docID exists or not. Once a docID exists
in all the other lists’ Bloom filter, the docID returns as a
common docID. Obviously, some false positives will be gen-
erated. However, as long as they only account for a very
small percentage, it is acceptable in practice. Moreover, the
following ranking step will calculate a relevance score for
each document and sort the document by score. False posi-
tive documents will get relative lower score, as they do not
contain every term of the query. So these documents will be
put at the end of results returned to the user.

3. EXPERIMENTAL RESULTS

3.1 Experimental Setup
The performance of all algorithms is measured on a sys-

tem with AMD Phenom II X4 945 CPU. The GPU cards
equipped are Tesla C1060 and GTX480.
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We use TREC GOV data set and Baidu data set in our ex-
periments. The GOV data set has about 1.25 million pages
collected from gov domain web sites, and the Baidu data
set is used in real world search engine instead of a synthetic
one, which consists 1.5 million web pages.

3.2 Evaluation
We are concerned about performance of binary search

and Bloom filter under different computational threshold [6].
We will review the concept of computational threshold first.
`(ti) represent the inverted list for term i, and assume:

|`(t1)| ≤ |`(t2)| ≤ · · · ≤ |`(tk)|, (1)

Suppose we receive a stream of queries that give rise to
the inverted lists `j(ti) from the i-th term in the j-th query.
The assumption (1) implies that |`j(t1)| = mini |`j(ti)|. In
PARA, a CPU continuously receives queries until

∑
j |`j(t1)| ≥

c, where c is some desired “computational threshold”, and
sends the queries onto the GPU as a batch. The thresh-
old indicates the minimum computational effort required for
processing one batch of queries. Given a certain amount of
queries, larger batch size means less GPU kernel invokes, so
the overhead of PCI-E transferring could be reduced. There-
fore, larger batch size can better use the processing power of
GPU. However, the response time per batch will be longer
since the computational effort contained in one batch in-
creases.

As Figure 1 shows, compared with the binary search, the
Bloom filter improves the throughput significantly. On GOV
data set, when the threshold is set to 1920K, Bloom filter al-
gorithm boosts the throughput by 52.7% to 44204 query/s.
The price we pay for such achievement is 1.5x space us-
age and 0.1% false positive results. As there is only one
more false result among 1000 correct results, most users will
hardly notice such mistake. Besides, the order of the re-
sults is determined by the weight in all inverted index lists
after intersection, so an incorrect result can not get high
rank since it does not actually exists in all lists. There-
fore, incorrect results will not appear in the first few pages.
The throughput growth on GOV slows down obviously af-
ter threshold goes over 480K, which means we have taken
nearly full use of GPU’s processing power. The speedup of
Bloom filter under low threshold is much worse.
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Figure 1: Throughput comparison.

Throughput on different devices (queries/s)
CPU Tesla C1060 GTX480

GOV 4064 42858 85636
Baidu 21247 164750 303751

Table 1: Bloom Filter performance comparison on
different devices. # of hash function: 5, and the
threshold is 960K.

GTX480 doubles the number of cores and increases the
cores frequency. Besides, GPU memory bandwidth is 1.74x
compared with the bandwidth of Tesla C1060. In our Bloom
filter algorithm, after a GPU thread complete a read opera-
tion from global memory, they simply check whether a par-
ticular bit is 1. The comparison result determines whether
the thread goes on for the next hash function. So the mem-
ory bandwidth is the bottleneck of our scheme. Table 1
shows the speedup of Bloom filter algorithm on GTX480
compared C1060 is similar with the bandwidth improve-
ment.

We use the optimized version of skip list [4] as the baseline
algorithm on CPU. The algorithm partitions each longer list
into several disjoint segments, and jumps with the step of the
segment length. Table 1 also demonstrates the throughput
of the CPU algorithm. The throughput of Bloom filter algo-
rithm is 10.55x compared with the CPU algorithm on GOV
data set, and such speedup increases to 21.07x on GTX480.
The intersection throughput of GTX480 has reached 85636
queries/s, which is achieved just by a single node in a server
cluster. So the Bloom filter intersection algorithm on GPU
improves the system performance significantly.
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