
M. Ropo et al. (Eds.): EuroPVM/MPI 2009, LNCS 5759, pp. 84–93, 2009.
© Springer-Verlag Berlin Heidelberg 2009

In-Memory Checkpointing for MPI Programs
by XOR-Based Double-Erasure Codes*

Gang Wang, Xiaoguang Liu, Ang Li, and Fan Zhang

Nankai-Baidu Joint Lab, College of Information Technical Science,
Nankai University, 94 Weijin Road, Tianjin, 300071, China
wgzwp@163.com, liuxg74@yahoo.com.cn,
{megathere,zhangfan555}@gmail.com

Abstract. Today, the scale of High performance computing (HPC) systems is
much larger than ever. This brings a challenge to fault tolerance of HPC sys-
tems. MPI (Message Passing Interface) is one of the most important program-
ming tools for HPC. There are quite a few fault-tolerant extensions for MPI,
such as MPICH-V, StarFish, FT-MPI and so on. Most of them are based on
on-disk checkpointing. In this paper, we apply two kinds of XOR-based double-
erasure codes - RDP (Row-Diagonal Parity) and B-Code to in-memory check-
pointing for MPI programs. We develop scalable checkpointing/recovery
algorithms which embed erasure code encoding/decoding computation into MPI
collective communications operations. The experiments show that the scalable
algorithms decrease communication overhead and balance computation effec-
tively. Our approach provides highly reliable, fast in-memory checkpointing for
MPI programs.

Keywords: MPI, fault-tolerant, erasure codes, collective communication.

1 Introduction

Today, the scale of High performance computing (HPC) systems is much larger than
ever. 54.8% of Top500 systems are composed of 129-512 processors in June 2003. In
November 2007, 53.6% of Top500 systems are composed of 1025-2048 processors.
The fastest system in 2007 consists of more than twenty thousand processors [1].

A challenge to the systems of such a scale is how to deal with hardware and soft-
ware failures. Literal [2] reports the reliability of three leading-edge HPC systems:
LANL ASCIS Q (8192 CPUs) has a MTBI (Mean Time Between Interrupts) of 6.5
hours, LLNL ASCI White (8192 CPUs) has a MTBF (Mean Time Between Failures)
of only 5.0 hours, and Pittsburgh Lemieux (3016 CPUs) has a MTBI of 9.7 hours. In
order to deal with such frequent failures, some fault tolerance mechanisms must be
considered in both hardware and software design.

* This paper is supported partly by the National High Technology Research and Development

Program of China (2008AA01Z401), RFDP of China (20070055054), and Science and Tech-
nology Development Plan of Tianjin (08JCYBJC13000).

 In-Memory Checkpointing for MPI Programsby XOR-Based Double-Erasure Codes 85

MPI (Message Passing Interface) [3] is one of the most important programming
tools for HPC. Fault-tolerant MPI is obviously necessary for users to run jobs reliably
on large HPC systems. Some fault-tolerant extensions had been developed for MPI [4,
5, 6, 7]. Their common fault tolerant method is checkpointing. We have studied MPI
in-memory checkpointing technique based on erasure codes [10]. In this paper, we
apply two kinds of XOR-based double-erasure codes - RDP and B-Code to in-
memory checkpointing. Scalable checkpointing/recovery algorithms combing erasure
code encoding/decoding and collective communication operations are developed. The
experiments show that the scalable algorithms decrease communication overhead and
balance computation effectively.

2 Fault Tolerant MPI and Checkpointing

Today’s HPC applications typically run for several days, even several weeks or sev-
eral months. To deal with the frequent system failures, checkpointing technique is
generally used. Checkpoints - the states of processes are written into nonvolatile stor-
age (often hard disk) periodically. If a process failure occurs, the last checkpoint is
read and then all (surviving and re-spawned) processes roll back to the latest state.
The current MPI specification doesn’t refer to any fault tolerance strategy. Therefore,
quite a few extensions had been developed to help programmers handle failures more
conveniently and efficiently. Cocheck [4] is the first checkpointing extension for MPI.
It sits on top of the message passing library. Its shortcoming is global synchronization
and implementation complexity. Starfish [5] implements checkpointing at a much
lower level. It uses strict atomic group communication protocols, and thus avoids the
message flush protocol of Co-Check. MPICH-V uses a coordinated checkpoint and
distributed message log hybrid mechanism [6]. Several MPICH-V architectures with
different features are developed.

Our work is based on FT-MPI [7] which is another important MPI fault tolerant
implementation. It extends some of the semantics of MPI for allowing the application
the possibility to survive process failures. FT-MPI provides four “communicator
modes” to deal with the status of MPI objects after recovery and two “communication
modes” to deal with on the fly messages. FT-MPI handles failures typically in three
steps: 1) the run-time environment discovers failures; 2) all surviving processes are
notified about these events; 3) the MPI library and the run-time environment are re-
covered, and then the application recovers its data itself. So, programmers are respon-
sible for checkpoints recording in the fault-free mode and application data recovery
after MPI system level recovery.

Apparently, disk write/read operations are the major source of overhead in on-disk
checkpoint systems [8]. Diskless checkpointing technique, or so-called in-memory
checkpointing, stores checkpoints in the main memory instead of hard disks. Because
checkpoints are stored in the address space of the local process, process/node failures
induce checkpoint loss. Generally erasure coding techniques are used to protect
checkpoints. An erasure code for storage systems is a scheme that encodes the content
on n data disks into m check disks so that the system is resilient to any m disk failures
[11]. In checkpointing context, processes correspond to disks, n working processes
(responsible for original HPC tasks and checkpoints maintenance) correspond to n

86 G. Wang et al.

data disks, and m redundant processes (dedicated for check information maintenance)
correspond to m check disks. It seems that diskless checkpointing introduces extra
communication and computation overhead. But in fact, in order to tolerate node fail-
ures, on-disk checkpointing often relies on reliable distributed or parallel storage
systems which generally are also based on erasure codes [8].

There are two kinds of in-memory checkpointing techniques: one treats checkpoint
data as bit-streams [8] and the other treats checkpoint data as its original type [9]
(generally floating-point numbers in scientific applications). The advantage of the
former is that it can introduce erasure coding schemes smoothly and has no round-off
errors. The advantage of the latter is that it is suitable for heterogeneous architectures
and can eliminate local checkpoints for some applications. Our work uses the former
strategy. However it can be translated into the latter strategy easily.

3 Erasure Codes

The most common used erasure codes in diskless checkpointing are mirroring and
simple parity [8]. They are also the most popular codes used in storage systems
known as RAID-1 and RAID-4/5 [12]. As the size of HPC systems becomes larger
and larger, multi-erasure codes are necessary to achieve high reliability. But unfortu-
nately, there is no consensus on the best coding technique for n, m > 1.

The best known multi-erasure code is Reed-Solomon code [13]. It is the only
known multi-erasure code suitable for arbitrary n and m. RS code is based on Galois
Field, thus the computational complexity is a serious problem. A real number field
version of RS code has been used in diskless checkpointing [9].

Another kind of multi-erasure is so-called parity array codes. They arrange the data
and parity symbols into an array, and divide symbols into overlapping parity groups,
hence the name. Array codes are inherently XOR-based, thus are far superior to RS
codes in computational complexity. In this paper, we focus on RDP (Row-Diagonal
Parity) - a double-erasure horizontal code with dependent symbols [14]. “Horizontal”
means that some disks contain only data symbols and the others contain only parity
symbols. Its opposite - “Vertical” means that the data and parity symbols are stored
together. Fig 1.a shows the 6-disk RDP code. A standard RDP code with (p+1) disks
can be described by a (p-1)*(p+1) array. The parity groups are organized along hori-
zontal and skew diagonal directions. Dij denotes the data symbol that participates in
the ith horizontal parity Pi and the jth diagonal parity Qj. Di denotes the data symbol

Fig. 1. RDP code and B-Code

 In-Memory Checkpointing for MPI Programsby XOR-Based Double-Erasure Codes 87

that participates in the only ith horizontal parity. Pij denotes the horizontal parity that
also acts as a data member of another diagonal parity Qj - they are “dependent parity
symbols”. RDP achieves optimal encoding performance and good decoding perform-
ance. Note that p must be a prime number. But this limitation can be removed by
deleting some data disks (assuming they contain nothing but zeros). Another advan-
tage of RDP is that it has been generalized to more than 2 erasures [15].

Another array code used in our work is B-Code [16]. It’s a double-erasure vertical
code. B-Code has no prime size limitation because it is constructed by perfect one-
factorizations (P1F) of complete graphs. There is a widely believed conjecture in
graph theory: every complete graph with an even number of vertices has a P1F [17].
Fig 1.b shows a 7-disk B-Code. Dij denotes the data symbol that participates in pari-
ties Pi and Pj. The number of disks p is an odd number. The last disk contains (p-1)/2
data symbols. Every other disk contains (p-1)/2-1 data symbols and 1 parity symbol.
We use B2n+1 denotes this kind of B-Codes. Deleting the last disk produces a B-Code
with even number of disks. This kind of B-Codes is denoted by B2n. That is to say, B-
Code exists for all sizes if P1F conjecture holds. B-Code achieves optimal encoding
and decoding performance. Another advantage of B-Code is its inherent distributed
structure. Because the parities are scattered over all disks, communication and compu-
tation workload are naturally distributed evenly.

We chose RDP and B-Code because they both have good encoding/decoding per-
formance and perfect parameter flexibility - they can be applied to any number of
MPI processes - this is obviously significant for the practice.

4 Scalable Checkpointing and Recovery Algorithms

4.1 Encoding and Decoding

FT-MPI system is responsible for failure detection and MPI environment rebuilding.
We just need to add checkpointing and recovery functions into user applications. In
our scenario, checkpointing and recovery are essentially erasure codes encoding and
decoding respectively. So we first examine RDP and B-Code encoding/decoding.

RDP encoding is straightforward. The data symbols in the same row (with the
same in-disk offset) are XORed into the horizontal parity symbol in the same row,
and then the data symbols and the horizontal parity symbol in the ith skew diagonal
(the sum of the row index and the column index equals to i, 0≤i≤p-2) are XORed into
the ith diagonal parity symbol.

Unlike RDP, B-Code doesn’t guarantee regular structure. So we can’t determine
the two parity symbols of a data symbol according to its row and column indices
directly. We store the mapping from the data symbols to the parity symbols into a
table g. g[i, j, k] stores the index of the lth parity symbols of the ith data symbol in the
jth disk. Given a B-Code instance, we can calculate g easily. Therefore encoding is
performed by XORing every data symbol into all of its parity symbols according to g.

Decoding is somewhat complicated. Both RDP and B-Code encoding can be de-
scribed by a matrix-vector multiplication, therefore decoding is just a matrix inversion
followed by a matrix-vector multiplication [18]. But this method inherently has

88 G. Wang et al.

non-optimal computational complexity and is hard to be parallelized. A better way is
chained decoding.

Single-erasures in a RDP coding system are easy to recover. If one of the parity
disks fails, decoding is just (half) encoding. Otherwise, the failed data disk is recov-
ered through the horizontal parity disk. Double-erasures involving the diagonal parity
disk are also trivial - another failed disk is recovered through horizontal parity groups
and then the diagonal parity disk is re-encoded. The most complicated double-
erasures are those excluding the diagonal parity disk. In this case, the horizontal parity
disk is regarded as a data disk. Observing Fig 1.a, we can see that each data disk ex-
cept the first one touches only (p-2) diagonal parities (touching a parity means that
contains symbols belonging to the parity), and every data disk misses different diago-
nal parity. Thus, a pair of data disks including the first data disk touches (p-2) diago-
nal parities twice and another diagonal parity once; a disk pair excluding the first data
disk touches (p-3) diagonal parities twice and other 2 diagonal parities once. Anyway,
parity group(s) losing only one symbol always exists. We can start decoding from this
kind of parities, and then recover the lost symbols using horizontal and diagonal par-
ity groups alternatively. For example, if a double-erasure (disk0, disk1) occurs in the
RDP coding system shown in Fig 1.a, we recover D00 by XORing all surviving sym-
bols in the parity group Q0, then recover D01 using P0, and then recover D11 using Q1,
and so on, finally recover D3 using P3. If a double-erasure excluding the first data disk
occurs, decoding goes along two paths. Because RDP has a very regular structure, we
can deduce starting points and directions of the decoding chains easily.

B-Code decoding also can be done in chained method. “1-missing” parities and de-
coding chains are determined according to the mapping table g. For example, the two
decoding chains in the double-erasure (disk0, disk1) in the B-Code system shown in
Fig 1.b are “D34 D24 D25 D15 P1” and “P0”.

4.2 Checkpointing and Recovery Algorithms

The last section outlines the basic RDP and B-Code encoding/decoding methods. In
fault-tolerant MPI context, they should be translated into a distributed style, particu-
larly should be merged into MPI collective communication primitives. In this section,
we only focus on checkpointing systems based on standard RDP codes and B2n. Those
based on shortened RDP codes and B2n+1 can be dealt with in a similar way. More-
over, we only concern with double-erasures excluding the diagonal parity disk, be-
cause other double-erasures and single-erasures are much easier.

A plain idea is appointing a root process (generally a redundant process or a
re-spawned process) to execute all encoding/decoding computation. Fig 2.a depicts
plain RDP checkpointing algorithm. The first redundant process gathers all check-
point data from n working processes, then calculates horizontal and diagonal parities
locally, and finally sends diagonal parities to the second redundant process. This algo-
rithm can be transformed into recovery algorithm simply by exchanging the role of
the re-spawned processes and the redundant processes and replacing local encoding
by local decoding. Suppose each working process contributes s bytes checkpoint data
and linear time gather algorithm [19] is used. Because per data word cost of RDP
encoding/decoding is about 2 XOR operations, the time complexity of plain RDP

 In-Memory Checkpointing for MPI Programsby XOR-Based Double-Erasure Codes 89

checkpoint/recovery algorithm is O(sn). The algorithm also requires an extra buffer of
size O(sn) which is obviously induced by local encoding/decoding.

Fig 2.b shows the plain B-Code Checkpoint algorithm. The first working process
collects checkpoint data, then encodes them into parities, and finally scatters parities
over all processes. This algorithm also can be converted into recovery algorithm. The
time complexity and extra memory requirement are O(sn) too.

Apparently, the plain algorithms lead to serious load imbalance and unnecessary
communication traffic. In order to distribute computation workload evenly and mini-
mize communication traffic, a natural idea is embedding encoding/decoding into MPI
collective communication operations. This idea is actually feasible. The basic opera-
tion in encoding and decoding is XORing data from all processes into parity at a sin-
gle destination process. This is in fact a typical all-to-one reduction [19]. Therefore a
RDP checkpointing can be accomplished by two successive reductions. Fig 3.a shows
a checkpointing procedure in a fault-tolerant system based on the 6-disk RDP code.
Horizontal parity reduction is trivial. Diagonal parity reduction requires a buffer pre-
processing. The ith process shifts its buffer to the up by i steps (with wraparound) to
align data with parity. Because every process except the first one misses a diagonal
parity, the corresponding area in the buffer is zeroed. If logarithmic time reduction
algorithm [19] is used, the time complexity is O(slogn). Total extra memory require-
ment is also O(sn), but per process extra memory requirement is only O(s).

Fig. 2. Plain Checkpointing Algorithm

Fig. 3. Scalable Checkpointing Algorithm

90 G. Wang et al.

Fig 3.b illustates the scalable B-Code checkpointing algorithm. This example is
based on the B-Code shown in Fig 1.b. Buffers must be preprocessed too. Every data
packet (data symbol) is duplicated and the two copies are aligned with its two parities
respectively. The buffer areas corresponding to missing parities are zeroed too. Unlike
RDP, B-Code uses all-to-all reduction [19] instead of all-to-one reduction because
parities should be distributed across all processes. The time complexity is O(s+logn).
Per process extra memory requirement is O(s).

Designing scalable recovery algorithms has an obstacle - chained decoding is in-
herently a serial procedure. So we must reorganize the computation to exploit its

potential concurrency. The notations so-called syndromes are used here. îP and ˆ
iQ

denote the XOR sum of all surviving symbols in Pi and Qj respectively. They equal to
the sum of all lost symbols in the same parity group. Observing the double-erasure

(disk0, disk1) in a 6-disk RDP coding system, 0Q̂ is just D00, D01 is decoded by

XORing 0̂P and D00, D00= 1Q̂ XOR D01, and so on. Although each step depends on
the last one, but in fact syndromes can be calculated independently. So we can calcu-
late all syndromes by two all-to-one reduction, then the root process (one of the
re-spawned process) performs decoding locally (this step is not suitable for paralleli-
zation because of high communication overhead), and finally the root process sends
recovered checkpoint data to another re-spawned process. This is an O(slogn) algo-
rithm. The space complexity is O(s). Scalable B-Code recovery algorithm is similar.
But only one all-to-one reduction is executed to calculate syndromes.

5 Experimental Evaluation

We implemented our algorithms in FT-MPI. For RDP, the scalable algorithms were
used. For B-Code, we chose the plain algorithms. We also implemented RAID-4 and
RAID-5 based checkpointing for comparison. RAID-4 checkpointing and RAID-4/5
recovery were implemented by an all-to-one reduction. RAID-5 checkpointing was
implemented by an all-to-all reduction.

We implemented in-memory checkpointing at the application level. We designed a
common interface for erasure code based checkpointing. The checkpointing and re-
covery algorithms were implemented as helper functions. When checkpointing or
recovery needs to be performed, the interface function packs user checkpoint data into
a buffer first, and then calls the helper function to execute actual checkpointing or
recovery. This framework simplifies new codes incorporating. We can simply imple-
ment a set of helper functions for a new code.

We mainly tested the performance overhead of our XOR erasure codes based fault
tolerance approach using the Preconditioned Conjugate Gradient (PCG) application.
The underlying PCG parallel program with FT-MPI is from Innovative Computing
Laboratory (ICL) at University of Tennessee. Namely, it is just the one used in [9].
The input instance used is BCSSTK23 [20] which is a 3134*3134 symmetric matrix
with 45178 nonzero entries.

All experiments were performed on a cluster of 8 single-core 3.06 GHz Intel Cel-
eron nodes. The nodes are connected with a Gigabit Ethernet. Each node has 512MB
of memory and runs Red Hat Enterprise Linux AS release 4 (Nahant Update 2). The
FT-MPI runtime library version is 1.0.1. We ran the PCG program for 100000

 In-Memory Checkpointing for MPI Programsby XOR-Based Double-Erasure Codes 91

iterations. For PCG with checkpoint, we took checkpoint every 25 iterations. That is
to say, 4000 checkpoints were taken in each run. For PCG with recovery, we simu-
lated a single or double process failure by killing the first process or the first two
processes at the 50000-th iteration. MPI_Wtime was used to measure the execution
time. Each data point is the average of 3 runs.

The purpose of the first set of experiments is to measure the performance overhead
of taking checkpoints. For RAID-4, 6 working processes and 1 redundant process are
invocated. For RDP, 6 working processes and 2 redundant processes are used. For
RAID-5 and B-Code, 6 working processes are used. Fig 4 shows the execution time
of PCG w/wo checkpoint, and the overhead of taking checkpoint. As expected, the
single-erasure codes have lower overhead than the double-erasure codes. RAID-5 has
higher overhead than RAID-4. The reason is that the checkpoint data size s is rela-
tively small which favor all-to-one reduction than all-to-all reduction. The overhead
of the plain B-Code algorithm is obviously higher than that of the scalable RDP algo-
rithm. It seems that the checkpoint overhead of our approach is considerably worse
than the result published in [9]. But please note, the checkpoint interval in our ex-
periments is only about 30ms, while that in [9] ranges from 24s to 330s. It takes our
algorithms 0.875ms~2.5ms to take a checkpoint. While the time of the single- and
double-erasure algorithms presented in [9] ranges from 205ms to 500ms. After strip-
ping out the impact of system size and input size, our bitwise, XOR-based approach is
still superior to floating-point arithmetic coding approach used in [9].

Execution Time (s)

105

110

115

120

125

112.3 115.8 117.1 122.4 120.9

nochk raid4 raid5 B-Code RDP

Checkpoint Overhead (%)

0%

5%

10%

0.000 0.031 0.043 0.089 0.077

nochk raid4 raid5 B-Code RDP

Fig. 4. PCG Checkpointing Overhead

Recovery Overhead (ms)

0

1

2

3

4

0.90 1.01 3.28 3.24 0.91 3.27 2.21

raid4 raid5 bcode1 bcode2 rdp1 rdp2p rdp2s

RDP Plain vs. Scalable (ms)

0

0.5
1

1.5
2

2.5
3

3.5

plain scalable

gather/reduce compute scatter/snd-rcv

Fig. 5. PCG Recovery Overhead Fig. 6. RDP Plain vs. Scalable

92 G. Wang et al.

Fig 5 shows the overhead of recovery. “bcode1” and “bcode2” denote single- and
double-failure recovery based on B-Code respectively. “rdp1” denotes RDP based
single-failure recovery. “rdp2p” and “rdp2s” denote RDP plain and scalable double-
failure recovery respectively. We can see that the three single-failure recovery algo-
rithms have the lowest overhead, because they only perform one all-to-one reduction.
Compared with the plain algorithm, the scalable RDP double-failure recovery algo-
rithm decreases overhead remarkably. It is also superior to the plain B-Code algo-
rithm. It is worth while to note that our recovery algorithms are almost as fast as their
checkpointing buddies. However the recovery algorithms presented in [9] are much
slower than their corresponding checkpointing algorithms..

Fig 6 shows the detailed comparison between the plain RDP double-failure recov-
ery algorithm and the scalable algorithm. Obviously, although the reduction step of
the scalable algorithm is slightly slower than the gather step of the plain algorithm
because the former undertakes numerous XOR operations, but the next two steps of
the scalable algorithm are much faster than those of the plain algorithm.

6 Conclusion and Future Work

In this paper, we made a preliminary attempt to applied XOR-based erasure codes to
in-memory checkpointing for MPI programs. Our main contributions include: 1) in-
troduces two XOR-based double-erasure codes - RDP and B-Code into fault-tolerant
MPI scenario; 2) incorporates encoding/decoding computation into MPI collective
communication primitives. Our fault-tolerant approach is resilient to any two
node/process failures. The experiments show that the scalable algorithms decrease
communication overhead and balance computation effectively. Our approach is supe-
rior to related work in checkpointing and recovery overhead.

Evaluating our approach in larger systems using more different MPI applications is
the principle work in the future. Optimizing computation and communication further
is another important work. A possible way is to design new collective communication
operations because some encoding/decoding processes conform to all-to-k patterns
instead of standard all-to-one or all-to-all. Using multi-erasure codes to tolerate more
than two failures is obviously a valuable work. In addition, translating our approach
into floating-point arithmetic style will improve its applicability. For MPI applications
with local communication patterns, we plan to try erasure codes with good locality.

References

1. http://www.top500.org
2. Wu-Chun, F.: The Importance of Being Low Power in High Performance Computing. Cy-

berinfrastructure Technology Watch Quarterly 1(3), 12–21 (2005)
3. Message Passing Interface Forum: MPI: A Message Passing Interface Standard. Technical

report, University of Tennessee (1994)
4. Stellner, G.: CoCheck: Checkpointing and Process Migration for MPI. In: 10th Interna-

tional Parallel Processing Symposium, Honolulu, USA, pp. 526–531 (1996)

 In-Memory Checkpointing for MPI Programsby XOR-Based Double-Erasure Codes 93

5. Agbaria, A., Friedman, R.: Starfish: Fault-Tolerant Dynamic MPI Programs on Clusters of
Workstations. In: 8th IEEE International Symposium on High Performance Distributed
Computing, Redondo Beach, California, USA, pp. 167–176 (1999)

6. Bosilca, G., Bouteiller, A., Cappello, F., Djilali, S., Fedak, G., Germain, C., Herault, T.,
Lemarinier, P., Lodygensky, O., Magniette, F., Neri, V., Selikhov, A.: MPICH-V: Toward
a scalable fault tolerant MPI for volatile nodes. In: 2002 ACM/IEEE conference on Super-
computing, Baltimore, Maryland, USA, pp. 1–18 (2002)

7. Fagg, G.E., Dongarra, J.: FT-MPI: Fault tolerant MPI, supporting dynamic applications in
a dynamic world. In: 7th European PVM/MPI Users’ Group Meeting, Balatonfüred, Hun-
gary, pp. 346–353 (2000)

8. Plank, J.S., Li, K., Puening, M.A.: Diskless checkpointing. IEEE Trans. Parallel Distrib.
Syst. 9(10), 972–986 (1998)

9. Chen, Z., Fagg, G., Gabriel, E., Langou, J., Angskun, T., Bosilca, G., Dongarra, J.: Fault
Tolerant High Performance Computing by a Coding Approach. In: 10th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Chicago, IL, USA, pp.
213–223 (2005)

10. Liu, X.G., Wang, G., Zhang, Y., Li, A., Xie, F.: The Performance Of Erasure Codes Used
In FT-MPI. In: 2nd International Forum on Information Technology and Applications,
Chengdu, China (2005)

11. Plank, J.S.: Erasure Codes for Storage Applications. Tutorial. In: 4th Usenix Conference
on File and Storage Technologies, San Francisco, CA, USA (2005)

12. Chen, P.M., Lee, E.K., Gibson, G.A., Katz, R.H., Patterson, D.A.: RAID: High-
Performance, Reliable Secondary Storage. ACM Computing Surveys 26(2), 143–185
(1994)

13. Plank, J.S.: A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like Sys-
tems. Software - Practice & Experience 27(9), 995–1012 (1997)

14. Corbett, P., English, B., Goel, A., Grcanac, T., Kleiman, S., Leong, J., Sankar, S.: Row-
Diagonal Parity for Double Disk Failure Correction. In: 3rd USENIX Conference on File
and Storage Technologies, San Francisco, CA, USA, pp. 1–14 (2004)

15. Blaum, M.: A Family of MDS Array Codes with Minimal Number of Encoding Opera-
tions. In: 2006 IEEE International Symposium on Information Theory, Washington, USA,
pp. 2784–2788 (2006)

16. Xu, L., Bohossian, V., Bruck, J., Wagner, D.G.: Low-Density MDS Codes and Factors of
Complete Graphs. IEEE Trans. on Information Theory 45(6), 1817–1826 (1999)

17. Colbourn, C.J., Dinitz, J.H., et al.: Handbook of Combinatorial Designs, 2nd edn. CRC
Press, Boca Raton (2007)

18. Plank, J.S.: The RAID-6 Liberation Codes. In: 6th USENIX Conference on File and Stor-
age Technologies, San Francisco, USA, pp. 97–110 (2008)

19. Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Parallel Computing, 2nd
edn. Addison Wesley, Edinburgh Gate (2003)

20. http://math.nist.gov/MatrixMarket/data/
Harwell-Boeing/bcsstruc3/bcsstk23.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

