A New Hybrid Parallel Algorithm for MrBayes

Jianfu Zhou, Gang Wang, and Xiaoguang Liu

Nankai-Baidu Joint Laboratory, Nankai University, Tianjin, China
jugeombu@gmail.com, wgzwp@163.com, liuxg74@yahoo.com.cn

Abstract. MrBayes, a popular program for Bayesian inference of phy-
logeny, has not been fast enough for Biologists when dealing with large
real-world data sets. This paper presents a new parallel algorithm that
combines the chain-partitioned parallel algorithm with the chain-parallel
algorithm to obtain higher concurrency. We test the proposed hybrid al-
gorithm with the two old algorithms on a heterogeneous cluster. The
results show that, the hybrid algorithm actually converts more CPU
cores into higher speedup compared with the two control algorithms for
all of four real-world DNA data sets, therefore is more practical.

Key words: MrBayes; hybrid; parallel; algorithm

1 Introduction

MrBayes is a widely-used program for phylogenetic inference. It uses Bayes’s the-
orem to estimate the posterior probability of a phylogenetic tree, which is called
Bayesian inference of phylogeny [1,2]. The posterior probability, although easy
to formulate, involves a summation over all trees and, for each tree, integration
over all possible combinations of branch lengths and substitution model parame-
ter values. The explicit solution of such a problem is computationally intractable
for trees of biologically significance, so heuristics must be used to simplify the
problem. MrBayes uses Markov chain Monte Carlo (MCMC) method to approxi-
mate the posterior probability of a phylogenetic tree. Standard implementations
of MCMC can be prone to entrapment in local optima, so a variant of MCMC,
known as Metropolis-coupled MCMC [or (MC)? for short], is proposed. It allows
peaks in the landscape of trees to be more readily explored. However, both the
standard MCMC and the (MC)? methods are suffering from the unacceptable
execution time when dealing with large data sets. Fortunately, some effective
methods are available that can execute MrBayes in parallel. A chain-partitioned
parallel algorithm for MrBayes [3] distributes Markov chains among processes.
It is based on the fact that a relatively small amount of messages are needed to
be exchanged among those chains during a run of (MC)3. However, this algo-
rithm has a fatal drawback. It can not break the upper bound of concurrency
caused by the typically small number of chains during a run, which is enough for
most of real-world applications. Another chain-parallel algorithm exclusively fo-
cuses on element-level parallelism in the Phylogenetic Likelihood Functions [5].
Although it solves the problem of the chain-partitioned algorithm, the chain-
parallel algorithm has higher interaction overhead. This paper presents a new

2 Jianfu Zhou, Gang Wang, Xiaoguang Liu

hybrid parallel algorithm for MrBayes, which tries to combine the advantages
of the chain-partitioned and chain-parallel algorithms. Then, this paper empiri-
cally compares the proposed algorithm with the two previous algorithms on four
real-world DNA data sets.

2 The Hybrid Algorithm

2.1 The Chain-Partitioned Parallel Algorithm

Metropolis-coupled MCMC [or (MC)?] algorithm runs one cold Markov chain
with some heated Markov chains to sample the posterior probability distribu-
tion of a phylogenetic tree [2,4]. Relatively small amount of information is ex-
changed among these chains during a run. So we can distribute these chains
among processes, and run them in parallel efficiently [3]. A process just per-
forms all computation associated with chain(s) assigned to it. This algorithm
exchanges heat values instead of complete state information between cold chains
and heated chains to reduce communication overhead. Another advantage of this
algorithm is only local instead of global synchronization is needed.

Considering its data partition method and synchronization mechanism, the
chain-partitioned parallel algorithm is very suitable for Message-Passing Inter-
face (MPI) implementing. Of course it can also be implemented in shared mem-
ory platforms (multi-core systems) easily and efficiently.

2.2 The Chain-Parallel Algorithm

According to the profiling of MrBayes’s execution, the functions CondLike Down,
CondLikeRoot and CondLikeScaler spend more than 85% of the total execution
time. Fortunately, the main part of each function is independent vector/matrix
operations. So a chain-parallel algorithm that executes these operations by mul-
tiple threads in parallel is presented [5]. In this algorithm, the likelihood vec-
tor elements (therefore the associated computational work) are distributed over
threads evenly. During a run of MrBayes, these three functions are called it-
eratively. Since the results of CondLikeDown or CondLikeRoot are used by
CondLikeScaler in each iteration, and the result of CondLikeScaler is used by
the next iteration, a global synchronization must be done in each iteration which
is the major overhead of this algorithm.

Apparently, the chain-parallel algorithm is more suitable for the shared-
memory mode than the message-passing mode.

2.3 The Proposed Hybrid Parallel Algorithm

The proposed hybrid parallel algorithm combines the advantages of the chain-
partitioned and the chain-parallel algorithms. First, the chain-partitioned strat-
egy is used, that is, each chain is assigned to a unique process. Then each chain is

A New Hybrid Parallel Algorithm for MrBayes 3

calculated by its owner process and auxiliary threads using chain-parallel strat-
egy. For load balance, the number of chains (processes) assigned to a physical ma-
chine is approximately proportional to its relative computing power. Since cores
in a machine are typically homogeneous, computational work in CondLike Down,
CondLikeRoot and CondLikeScaler of a chain is evenly distributed over its
owner process and auxiliary threads.

In a word, the proposed algorithm breaks through the concurrency limit of
the chain-partitioned algorithm caused by the relatively small number of Markov
chains involved in MrBayes. It exploits two-level parallelism to make its concur-
rency greater than the total number of chains.

3 Experiments

This section compares the performance of the proposed hybrid parallel algorithm
with the chain-partitioned and the chain-parallel algorithms on a heterogeneous
cluster with a head node and five computation nodes. The head node has one
Intel Core i7 920 processor and 2GB*3 of DDR3 1333 memory. The first com-
putation node has one AMD Phenom II X4 945 processor and 2GB*2 of DDR3
1333 memory. The second one has one Intel Core 2 Quad Q6600 processor and
2GB*2 of DDR2 1066 memory. Both the third one and the fourth ones have one
Intel Core 2 Duo E4400 processor and 1GB*2 of DDR2 800 memory. The fifth
one has one Intel Core i7 920 and 2GB*3 of DDR3 1333 memory. These nodes
are connected by gigabit Ethernet. The operating system is Red Hat Enterprise
Linux 5. MPICH2 1.1 was used to compile and execute the hybrid algorithm
and the chain-partitioned algorithm. For the chain-parallel algorithm program,
GCC 4.3 was used. Table 1 shows the DNA data sets used in our experiments.
These data sets come from real-world DNA data used in the research projects of
the College of Life Sciences, Nankai University. Each data point is the average
of 10 executions. Each execution computed 2 runs with 4 chains, which is a typ-
ical setting for MrBayes executions. All the executions used the 4by4 nucleotide
substitution model and lasted 10000 generations.

Table 1. Data sets used in our experiments

Number of taxa Number of characters
Data set 1 26 1546
Data set 2 37 2238
Data set 3 100 1619
Data set 4 111 1506

We first performed a baseline test. As Fig. 1 on the next page shows, the orig-
inal serial version of MrBayes runs fastest on the head node. In our experiments,
the speedup of a parallel algorithm is defined as the result of the average run-
ning time of the original serial version of MrBayes on the head node divided by

4 Jianfu Zhou, Gang Wang, Xiaoguang Liu

the average running time of a parallel algorithm program on our heterogeneous
cluster for the same problem.

111x1506

¥ fifth node

» 100x1619
D
(;) ® fourthnode
= B third nod
S 37x2238 frénodq
l]:ondnode
B first node
26x1546 B head node
0 100 200 300 400 500 600 700

Average Running Time (S)

Fig. 1. Performance of different nodes.

3.1 Comparison on the same number of cores

Fig. 2 on the facing page shows the performance of the proposed hybrid paral-
lel algorithm and the chain-parallel algorithm on the head node. For the chain-
parallel algorithm, the likelihood vector elements were assigned among 8 threads
(including the main thread). Therefore, 8 (logical) CPU cores were used. For the
hybrid algorithm, the 8 Markov chains were distributed evenly among 4 pro-
cesses. Then each process created a child thread. The likelihood vector elements
were distributed to the process (namely the main thread) and its child thread.
Hence the hybrid algorithm also used 8 cores.

Fig. 3 on the next page shows the performance of the proposed hybrid parallel
algorithm and the chain-partitioned parallel algorithm. For the chain-partitioned
algorithm, the 8 Markov chains were distributed evenly over 8 processes. 4 of
these processes were assigned to the head node, and the remaining processes
were distributed evenly between the first and the second nodes. For the hybrid
algorithm, the 8 Markov chains were distributed evenly over 4 processes, of
which 2 were assigned to the head node and the remaining were distributed
evenly between the first and the second nodes. Then each process created a child
thread and the likelihood vector elements were assigned between the process and
its child thread evenly. Therefore, both algorithms used 8 cores.

A New Hybrid Parallel Algorithm for MrBayes

Speedup

35
3 \
25 =
/ —— —=
2 /
1.5 o
1
—&— chain-parallelalgorithm
0.5
—— hybrid algorithm
0
26x1546 37x2238 100x1619 111x1506

Data Sets

Fig. 2. The hybrid algorithm vs. the chain-parallel algorithm on a single node.

Speedup

4
3
i ./
1.5
1
0 —&— chain-partitioned algorithm
5
—— hybrid algorithm
0
26x1546 37x2238 100x1619 111x1506
Data Sets

Fig. 3. The hybrid algorithm vs. the chain-partitioned algorithm on a cluster.

6 Jianfu Zhou, Gang Wang, Xiaoguang Liu

We can see that the performance of the hybrid algorithm is between the chain-
parallel algorithm and the chain-partitioned algorithm. This result is expected.
The global synchronization in element-level parallelism causes much higher over-
head than the local synchronization in chain-level parallelism. The hybrid algo-
rithm mixes the two parallel formulations, therefore has mixed synchronization,
and the other two both have pure synchronization pattern.

3.2 The Hybrid Algorithm on more CPU cores

Although the chain-partitioned algorithm performs slightly better than the hy-
brid algorithm in the previous test, as mentioned above, it can not break through
the concurrency limit caused by the total number of Markov chains involved. In
our experiments, the total number of chains was 8. When the chain-partitioned
algorithm assigned all the chains to 8 processes, it reached its maximum concur-
rency. There would be no more performance increase even if more processors are
available. By contrast, the hybrid algorithm does not have this problem. Even
if it has distributed the 8 chains among 8 processes, it can use the element-level
parallelism to improve its concurrency. Moreover, the number of the likelihood
vector elements is generally large. In our experiments, to achieve higher concur-
rency, we distributed all the chains among 8 processes, of which 4 were assigned
to the head node and the remaining were distributed evenly between the first
and the second nodes. Then each process created a child thread. The elements
were distributed between the process and its child thread. The hybrid algorithm
used 16 threads in total, thus reached the maximum concurrency (namely 16
cores) provided by these nodes. Fig. 4 on the facing page shows that, the hybrid
algorithm indeed uses extra CPU cores effectively and gains higher speedup than
the chain-partitioned algorithm.

3.3 Load Balance for the Hybrid Parallel Algorithm

As Fig. 1 on page 4 shows, inside our heterogeneous cluster, the computing power
of each node is different with each other. Without considering the difference, it
will result in load imbalance and therefore a poor performance.

The relative computing power of cores on nodes is about:

Head : First : Second : Third : Fourth : Fifth=2:2:1:1:1:2 . (1)

Comparison on the same number of cores. Fig. 5 on page 8 shows the
performance of the hybrid algorithm without or with load balance on the same
number of cores. As a control group, the hybrid algorithm without load balance
just assigned the 8 Markov chains evenly among 8 processes, which were dis-
tributed evenly to the head, the first, the second and the fifth nodes. Then each
process created a child thread. The likelihood vector elements were distributed
to the process and its child thread. Hence the computation associated with one
chain was performed by two threads (namely a process and its child thread),

A New Hybrid Parallel Algorithm for MrBayes 7

6
4
= = > N
T 3 = >
%]
2
)
2
—&— chain-partitioned algorithm
1
—— hybrid algorithm
0
26x1546 37x2238 100x1619 111x1506
Data Sets

Fig. 4. High concurrency of the hybrid algorithm.

both of which used one core respectively. So, 16 cores were used. We denote the
“relative load” (load divided by computing power - roughly the equivalent of the
running time) of node X by Rx:

Rhead : Rfirst : Rsecond : Rfifth
_ 2chain 2 chain 2 chain 2 chain @)

8 power ~ 8 power ~ 4 power = 8 power
1:1:2:1

which implies serious load imbalance.

The hybrid algorithm with load balance also assigned the 8 Markov chains
among 8 processes. Considering the computing power of one core on each node,
3 of the 8 processes were assigned to the head node, 1 to the second node, and
the remaining were divided evenly between the first and the fifth nodes. Each of
the processes assigned to the head node, the first node and the fifth node just
created a child thread respectively. And the process assigned to the second node
created 3 child threads. For all of the four nodes, the likelihood vector elements
were distributed to the process and its child thread(s). Therefore, for the head
node, the first node and the fifth node, the computational work associated with
one chain was performed by two threads, both on one core respectively. For the
second node, the computation associated with one chain was performed by four
threads, each on one core respectively. Note that, although the head node has
only 4 physical cores, it is arguably that each thread run on unique physical core
since hyper-threading is supported by Intel i7 CPU. Therefore, this test also

8 Jianfu Zhou, Gang Wang, Xiaoguang Liu

used 16 cores, and:

Rhead : RfiTst : Rsecond : Rfifth
_ 3chain 2chain 1 chain 2 chain 3)

12 power = 8 power ~ 4 power =~ 8 power
=1:1:1:1,

which implies approximate load balance.

8
' f
6
% ——— —
o 5
=
T 4
D
2
<3
2
—&— without load balance
1
—l— with load balance
0
26x1546 37x2238 100x1619 111x1506

Data Sets

Fig. 5. Performance of the hybrid algorithm with or without load balance on the same
number of cores.

The result shown in Fig. 5 verifies our analysis. Load balance strategy actually
achieves a higher speedup. In particular, when dealing with the relatively large
data sets (i.e. data set 3 and 4), load balance strategy increases performance by
about 25%.

Comparison on different numbers of cores. Fig. 6 on the facing page shows
the speedup of the hybrid algorithm with or without load balance on different
numbers of cores. For the hybrid algorithm without load balance, the 8 Markov
chains were assigned evenly among 8 processes, of which 4 were distributed to
the head node, and the remaining were divided evenly between the first and
the second nodes. Then each process created a child thread. And the likelihood
vector elements were distributed to the process and its child thread. So the
computational work associated with each chain was performed by two threads,
both of which used one core respectively. Hence 16 cores were used, and:

dchain Zchain 2 chain .,y

R Reirst + R = : :
head first second 16 power 8 power 4 power

A New Hybrid Parallel Algorithm for MrBayes 9

which implies serious load imbalance.

For the hybrid algorithm with load balance, the 8 Markov chains were divided
into 3 groups. The first group included 4 chains, while the remaining two groups
included 2 chains respectively. Then the first group was assigned to the head
node, while one of the remaining two groups was distributed to the first node,
and the other to the second node. On the head node, the 4 chains were assigned
evenly between 2 processes; on the first node, the 2 chains were assigned to
1 process; on the second node, the 2 chains were assigned evenly between 2
processes. And all of these processes created a child thread respectively. The
likelihood vector elements were distributed to the process and its child thread.
Therefore, on the head node and the first node, each thread group (a process and
its auxiliary thread) calculated 2 chains in sequential; on the second node, each
thread group calculates only one chain. Each thread run on a unique real core.
So the hybrid algorithm with load balance only used 10 cores in total, which
was less than the number of cores used by the hybrid algorithm without load
balance. And:

4 chain 2 chain 2 chain

Rea:RiTs:Rsecon: : : :1:1:17 5
head - Hfirst d 8 power 4 power 4 power (5)

which implies rough load balance.

6
5 ./H/‘\\\#__.
4
2
=
T 3
D
2
@n
2
—&— withoutload balance
! = with load balance
0
26x1546 37x2238 100x1619 111x1506
Data Sets

Fig. 6. Performance of the hybrid algorithm with or without load balance on different
numbers of cores.

As Fig. 6 shows, although using less physical cores, the hybrid algorithm
with load balance achieved approximately the same speedup as the hybrid algo-
rithm without load balance. When dealing with the relatively large data set (i.e.

10 Jianfu Zhou, Gang Wang, Xiaoguang Liu

data set 4), the hybrid algorithm with load balance achieves even a little higher
speedup than the hybrid algorithm without load balance.

All in all, with load balance, the proposed hybrid parallel algorithm can yield
better performance.

4 Related Works

As far as the authors know, except PBPI [7], that conducts multigrain Bayesian
inference on the BlueGene/L, no result has been published on hybrid paral-
lelization for MrBayes. PBPI basically represents a proof-of-concept work rather
than a production level parallelization. It is not qualified for real-world analyses
required urgently by Biologists. However, some results are known for the chain-
partitioned parallelization or the chain-parallel parallelization for MrBayes, which
both accelerate the execution of MrBayes for large data sets.

Gautam Altekar et al. [3] presented a parallel algorithm for Metropolis-
coupled MCMC. This algorithm keeps the advantage to explore multiple peaks in
the posterior distribution of trees while getting a shorter running time. This algo-
rithm was implemented using both message passing parallel programming model
and shared memory parallel programming model. Experiment results showed
speedups in both programming models for small and large data sets.

Frederico Pratas et al. [5] proposed a chain-parallel algorithm for MrBayes
and its Phylogenetic Likelihood Functions using different architectures. The ex-
periments compared the scalability and performance achieved using general-
purpose multi-core processors, the Cell/BE, and Graphics Processor Units (GPU).
The results showed that the general-purpose multi-core processors resulted in the
best speedup, and yet GPU and Cell/BE processors both got poor performance
because of data transfers and the execution of the serial portion of the code.

5 Conclusion and Future Work

A new hybrid parallel algorithm has been proposed for MrBayes. On our het-
erogeneous cluster, when using more processors (namely 16 processors), the pro-
posed algorithm without load balance runs maximum 3.67 times faster than
the chain-parallel algorithm and maximum 1.447 times faster than the chain-
partitioned parallel algorithm on four read-world DNA data sets. With load
balance strategy, a further up to 25% performance increment was achieved.
Therefore, the proposed hybrid parallel algorithm is very practical for many
real biological analyses.

In this paper, a static, manual load balance method was used. Dynamic and
automatic load balance algorithms are worth studying in the future. GPU for
general purpose computing has shown its great power in many areas. Accelerat-
ing MrBayes using GPU is also planned.

A New Hybrid Parallel Algorithm for MrBayes 11

Acknowledgement. This work was supported in part by the National High
Technology Research and Development Program of China (2008AA01Z401),
NSFC of China (60903028), REDP of China (20070055054), and Science and
Technology Development Plan of Tianjin (08JCYBJC13000). In order to get the
four real-world DNA data sets, in addition to the chance to do this research,
we would like to thank Professor Xie Qiang with the College of Life Sciences in
Nankai University.

References

1. Huelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J.P.: Bayesian inference of
phylogeny and its impact on evolutionary biology. Science 294, 2310-2314 (2001)

2. Huelsenbeck, J.P.; Ronquist, F.: MrBayes: Bayesian inference of phylogenetic trees.
Bioinformatics 17, 754-755 (2001)

3. Altekar, G., Dwarkadas, S., Huelsenbeck, J.P., Ronquist, F.: Parallel Metropolis cou-
pled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics
20, 407-415 (2004)

4. Ronquist, F., Huelsenbeck, J.: MrBayes 3: Bayesian Phylogenetic Inference under
Mixed Models. Bioinformatics 19, 1572-1574 (2003)

5. Pratas, F., Trancoso, P., Stamatakis, A., Sousa, L.: Fine-grain Parallelism Using
Multi-core, Cell/BE, and GPU Systems: Accelerating the Phylogenetic Likelihood
Function. In: The 38th International Conference on Parallel Processing, pp. 9-17.
Vienna, Austria (2009)

6. Stamatakis, A., Ott, M.: Load Balance in the Phylogenetic Likelihood Kernel. In:
The 38th International Conference on Parallel Processing, pp. 348-355. Vienna,
Austria (2009)

7. Feng, X., Cameron, K.W., Buell, D.A.: PBPI: a High Performance Implementa-
tion of Bayesian Phylogenetic Inference. In: Proceedings of the 2006 ACM/IEEE
conference on Supercomputing, pp. 75. ACM Press, New York (2006)

8. Larget, B., Simon, D.: Markov chain Monte Carlo algorithms for the Bayesian anal-
ysis of phylogenetic trees. Molecular Biology and Evolution 16, 750-759 (1999)

9. Yang, Z., Rannala, B.: Bayesian phylogenetic inference using DNA sequences: a
Markov chain Monte Carlo method. Molecular Biology and Evolution 14, 717-724
(1997)

10. Mau, B., Newton, M., Larget, B.: Bayesian phylogenetic inference via Markov chain
Monte Carlo methods. Biometrics 55, 1-12 (1999)

11. Ott, M., Zola, J., Stamatakis, A., Aluru, S.: Large-scale Maximum Likelihood-
based Phylogenetic Analysis on the IBM BlueGene/L. In: Proceedings of the 2007
ACM/IEEE conference on Supercomputing, pp. 1-11. ACM Press, New York (2007)

