
Parallel Optimization of Queries in XML Dataset using GPU

Xujie Si1, Airu Yin1, Xiaocheng Huang2, Xiaojie Yuan2, Xiaoguang Liu2,Gang Wang2

1
 College of Software, Nankai University,Tianjin,300071,China

2
 College of I.T., Nankai University,Tianjin,300071,China

E-mail: {sixujie,yinairu,hxc,nk_yuanxj,liuxguang,wgzwp }@gmail.com

Abstract—As XML is playing a crucial role in web services,

databases, and document processing, efficient processing of

XML queries has become an important issue. On the other

hand, due to the increasing number of users, high throughput

of XML queries is also required to execute tens of thousands of

queries in a short time. Given the great success of GPGPU

(General-Purpose computations on the Graphics Processors),

we propose a parallel XML query model based on GPU, which

mainly consists of two efficient task distribution strategies, to

improve the efficiency and throughput of XML queries. We

have developed a parallel simplified XPath language using

Compute Unified Device Architecture (CUDA) on GPU, and

evaluate our model on a recent NVIDIA GPU in comparison

with its counterpart on eight-core CPU. The experiment results

show that our model achieves both higher throughput and

efficiency than CPU-based XML query.

Keywords-parallel optimization; GPU; XML query

I. INTRODUCTION

As the de facto standard for encoding tree-oriented, semi-
structured data, XML has brought interoperability and
standardization benefits in various fields. Due to the
explosive growth of XML dataset in all kinds of fields and
the significant improvement of XML[2], much more
efficient and higher throughput query methods are required.
How to accelerate the XML queries and how to improve the
query throughput are becoming hot research topics[10].

The way to increase the processor speeds of single-core
microprocessors to keep up with Moore’s law is severely
challenged in recent years because of the physical limits of
power and transistor density. The trend to increase
performance of processors is changing from increase the
single processor speed to increase the number of cores. How
to harness the processing power of new parallel processing
architectures is also becoming a hot research topic. Recent
researches like [8][9][11] are trying to accelerate the
performance of database operations using Graphics
Processing Units. So, considering the recent success of
GPGPU, we investigate whether and how we can design a
parallel XML query model based on GPU to achieve
response time and throughput requirements in XML query.

 In this paper, we propose a parallel XML query model to
accomplish better performance. We develop a parallel
optimized XPath to implement our model, however, our
model is not designed just for XPath, which can be easily

used in other XML queries. Our model mainly focuses the
data-partitioning in the process of query.

 The core contributions of the paper are summarized as
follows:
 We design a cost model to evaluate the XML query.

Using this cost model, we can efficiently distribute

query load between CPU and GPU.

 We propose improved data partition strategy presented

by [6], which is proved to be more efficient.

 We implemented a parallel version of XPath using

CUDA on GPU. The experimental results show that

our model is quite efficient.

II. RELATED WORK

 Many researches about improving XML traversal pattern

or structural join method to optimize performance of XML
queries have been done in [4][5][17]. Researches about
estimation of answer size and cost of queries have also been
explored in [3][15].

 Several works about parallel processing and querying
XML have been done in recent years. [12] investigates the
seemingly quixotic idea of parsing XML in parallel on a
shared memory multi-core computer. It prepares XML
document to determine the logical tree structure of an XML
document and then uses the logical tree to divide XML
document into chunks. As an improvement, [13] presents a
work-stealing parallel XML processing model, in which the
load balance among the threads is dynamically controlled. In
contrast, [14] gives a static load-balancing scheme for
parallel XML parsing on Multi-core CPUs. It uses a static,
global approach to reduce synchronization and load-
balancing overhead.

[6] considers a scenario where an XPath processor uses
multiple threads to concurrently navigate and execute
individual XPath queries on a shared XML document. It
proposes three strategies for parallelizing individual XPath
queries: Data partitioning, Query partitioning, and Hybrid
(query and data) partitioning. Furthermore, [7] proposes a
parallelization algorithm using the statistics and several
heuristics to find proper parallelization point in an XPath
query. It also shows that Data partitioning strategy is always
better than Query partitioning strategy or Hybrid partitioning
strategy.

III. PRELIMINARY

Since our model is implemented by XPath, it is necessary
to give a brief view to XPath. An XPath expression consists
of a sequence of location steps, each one of which has three
components: an axis, a node test, and a predicate. Given a
context node of an abstract XML tree, an XPath expression
uses the specified axis to navigate the XML tree. The node
test and the predicate are used to select the nodes specified
by the current axis. Though complicated test conditions and
predicates can be used to various kinds of XML queries, we
will ignore the test condition and predicate in this paper.
Because here we focus on how to improve the performance
of query by using parallel method rather than technique of
specific test conditions, which may be important in practice
but is not what this paper is about. So the form of XPath we
consider in this paper is as follows:

TagXPathTagXPathTagEXpath //|/||:: (1)

Where ‘E’ means empty path, ‘Tag’ means a tag (the
element names in XML document), ‘/’ is used to match child
node whose name is the tag, and ‘//’ is used to match all
progeny children whose name is the tag. Figure 1(a) is the
part of XML document, Figure 1(b) is an XPath query.

<Books>

<Book ISBN=’0743273567’>

<title>The Great Gatsby</title>

<author>F. Scott Fitzgerald</author>

</Book>

<Book ISBN=’0684826976’>

<title>Undaunted Courage</title>

<author>Stephen E.

Ambrose</author>

</Book>

</Books>
(a) An example of XML

/Books/Book//author

(b) An example of XPath

Figure 1 Example of XML and XPath

XPath’s execution model is inherently sequential: each
location step operates on the node set returned as a result of
evaluating the previous location step or the starting context.
It seems that the order of execution of location steps cannot
be changed. However, the following characteristics of XML
queries provide significant opportunities for parallelism:
access to the XML documents are read-only during the
process of querying; execution of queries can be reordered in
any manner as the queries are executed on different parts of
dataset. Our motivation for paralleling XML query is to
properly use intermediate query results.

IV. MODEL

Our XML query model uses statistics-based information
of XML document to decide whether a parallel query
processing plan is needed and how to execute parallel query
efficiently. Before any query begins, we read the XML
document into CPU memory and send a copy to GPU
memory. When given a XML query, we first use our cost
model to evaluate the costs of CPU query and GPU query. If
the cost of serial query is not expensive, the query will be
executed on CPU (in serial manner). Otherwise, the query
will be executed on GPU (in parallel manner). We propose
two data partitioning strategies for parallel query: query path

based partitioning and query dataset based partitioning. The
first is similar to the data partitioning strategy proposed in
[10], while the second is what we first proposed.

The cost of query can be estimated by the cardinality of
the query result. Though it is hard to know the accurate value,
we can estimate the approximate value, which is enough to
our model.

 (2)

 (3)

Here, n is the length of XPath, which indicates the
number of tags in XPath.),|(opTagTagF AB

means the

average number of children whose tag is
BTag and father tag

is
ATag if the operator is ‘/’, otherwise it means the average

number of descendants whose tag is
BTag and ancestor tag is

ATag . The function),|(opTagTagF AB
should be calculated

before any query begins. In fact, the cardinality of the result
is not always proper to estimate the cost of the query
/A/B/E//F, if the XML tree is similar to what in Figure 2.

Figure 2 An example of XML tree

To be more accurate, the cost of the query can be defined

as follows.

 (4)

(5)

If the cost of
nXPath , the estimation of the cardinality of

query result, is very small, it does not represent the cost of
the total query is really small. However, if the cost of

nXPath is zero, there is no need to execute the query.

The aim of the data partitioning strategy is to make
different processors execute queries at different sections of
the XML document. We should always try to make the CPU
perform the least amount of work and make the GPU get
enough parallel tasks at the same time.

A. Query Based Partitioning Strategy

This approach decomposes parallel tasks by splitting the
query into two parts: serial part and parallel part. The serial
part is executed on CPU. References of the resulting node set
and the parallel sub-query are transported to GPU, and then







1

1

1),|()(
n

i

iii opTagTagFXPathCost




 
n

i

ii TagopTagXPath
2

11)(




 
i

2

11)(
j

jji TagopTagXPath

)1)}(({cos niXPathtMaxQueryCost i 

GPU executes the second part query using the resulting node
set as the context node set in parallel.

Figure 3 Execution using Query Based Partition

Figure 3 illustrates the execution of XPath query:
/A/B//C, using query based partitioning strategy. This query
is split into two sub-queries: /A/B and .//C. The first part,
/A/B is executed on CPU and the resulting node set of c
nodes is distributed across N GPU threads. Each GPU thread
then executes the sub-query, .//C, on the set of c nodes
assigned to it. As a result, each GPU thread concurrently
navigates a distinct part of the XML tree. By combining the
local results from the GPU threads, we can get the final
result of the original query.

Obviously, this strategy will show different performance
if the XPath query is partitioned in different points. So what
we do now is to design a strategy to find the optimal partition
point of a specific query. Since the process of a query is a
traversal of the XML tree, a perfect partition point means
proper portion of traversals on CPU and GPU. Using our
cost model, we can estimate the optimal partition point.





i

j

ji XPathtXPathTraversal
1

)(cos)(
 (6)

The total traversal of the query implies the work of the
query. So if the execution of query is in a serial manner, we
can suppose the execution time is Traversal (XPath). The
parallel execution time would be

R
XPatht

XPathTraversalXPathTraversal
XPathTraversal

k

kn
k 




)(cos

)()(
)(

1

(7)

where k is the partition point of the query and R is the
traversal speed ratio of CPU and GPU when using only one
thread. We need to find the partition point k, which makes
the total parallel execution time be the least. Using our cost
model, the partition point k can be easily calculated.

B. Dataset Based Partitioning Strategy

Figure 4 Partition points of two strategies

Compared with the query based strategy, dataset based
strategy emphasizes much more on the dataset to be queried.
The most important aim of the dataset based strategy is to
make the load balance for each GPU thread. When the
dataset is not distributed evenly, the performance of the
query based strategy will be degraded. Figure 4 shows such a
circumstance.

We can see that query based strategy always choose the
same level nodes as partition points, while dataset based
strategy choose the nodes who have approximate the same
amount of descendant nodes. The dataset based strategy can
decompose the tasks in very fine granularity. When given the
number of threads, we can calculate the threshold of the
partition point. If there are p threads and T nodes of the
XML document, the ideal distribution is that each thread
execute query on T/p nodes. However, the XML document is
tree structure rather than relation structure. It is almost
impossible to distribute tasks n such an ideal way, since
additional traversal cost is needed when making a
distribution. We have following equations.

 (8)

(9)

(10)

Where B is the average number of children of each node,
H is the average depth of the queried XML document, h is
the average depth of the partition point, which can be
estimated by the query based strategy or simply supposed to
be the half of H.

In the serial phrase of query, we execute the XPath query
on CPU until we find some context node whose descendant
number is less than the Partition Limitation. We stop
executing query in current branch of XML tree, and add the
current context node and sub-query, which has not been
executed, to the stack of parallel tasks. After the serial phrase,
each node in the resulting set has almost the same amount of
progeny nodes.

V. EXPERIMENTS

A. Prototype Implementation

We use Xerces-C to parse XML document and
implement a parallel XPath engine on GPU using CUDA-C.
Before any query begins, we parse XML document into CPU
memory, and then transfer a copy to GPU. We also
implement a memory management class to collect the query
results on GPU.We tested our implementation on x86/Linux
machine with Intel i7 CPU and 4GB memory, the GPU is
NVIDIA GeForce GTX 480 and CUDA version 4.0.

B. Datasets and Queries

For our experiments, we used two typical XML datasets:
XMark[16] and the Penn Treebank[1]. Table 1 presents the
structural characteristics of the two datasets. Table 2 presents
the XPath queries used in experiment for each dataset.

imitationPartitionLpostAddtionalCT 

T
B

B
CostAdditional

H

n



p

T

B

B
imitationPartitionL

H

h

)1(

Table 1: Characteristics of the XML document
Dataset Size

(MByte)

Elements Attributes Max

Depth

Treebank.xml 82 2437666 1 36

Xmark.xml 111 1666315 381878 12

Table 2: XPath Queries used in Experiment
Treebank.xml T1：/FILE/EMPTY//NP

T2：/FILE/EMPTY/S//NP

T3：/FILE/EMPTY/S/NP//N

XMark.xml XM1：
/site/open_auctions/open_auction/bidder

XM2：
/site/regions//item/description/parlist/listitem

C. Evaluations

In order to compare the differences of performance, we
execute the same XML query in the same dataset using three
different strategies: serial strategy, query-based parallel
strategy and dataset-based parallel strategy. The serial
strategy is to execute the whole XML query using only one
thread on CPU, which is currently the common way. The
query-based strategy and dataset-based strategy are executed
in two phrases. The first phrase is to split the whole query
into an amount of sub-queries, which is executed on CPU in
a serial manner. The second phrase is to execute these sub-
queries on GPU in a parallel manner.

Figure 5 shows the query on Penn Treebank XML
document with different execution strategies. We can see
that both query based and dataset based strategies are better
than serial execution. Furthermore, dataset based strategy is
better than query based strategy. The sub-trees in Penn
Treebank are not balanced, since the maximum depth is as
many as 4.5 times as the average depth. As we have
discussed in Section 4B, the dataset based strategy is
expected to be better than query based strategy in such a
circumstance. Here, the experimental results show this point.

Figure 5 Results of T3 query

Figure 6 Speed up of two strategies

Figure 6 shows the speed up of two strategies. As we can
see, the speed up of two strategies increases significantly
when the number of threads increases. This is a normal result
since more threads mean high concurrency. However, when
the number of threads exceeds a threshold the speed up tends
to be const even go down, which implies the GPU’s
saturation. Another reason of going down speed up of the
dataset based strategy is that more serial work is needed as
the number of threads increases.

Figure 7 shows the result of XM2. It indicates that there
is no significant difference between query based strategy and
dataset based strategy. This reflects the queried XML
document should have balanced tree structure. Indeed,
compared to the Penn Treebank, XMark XML document is
much more balanced. The experiment shows that the two
strategies have no difference when the queried document is
balanced.

Figure 7 Results of XM2

Queries like XM1 are not suitable for parallelizing
because such a query is too short and there is no ‘//’
operation in the query, which is the most expensive operation
of the query. Let’s see the performance of the two strategies
when given such an unideal query.

Figure 8 Results of XM1

From figure 8, we can see that query based strategy
achieve a very bad performance, which much slower than the
serial execution. When using the query based strategy, we
cannot get enough resulting node set for the parallel phrase,
which make most threads on GPU be idle. So the strong
parallel ability of GPU is wasted when using query based
strategy.

Our experiments have demonstrated that in most cases,
the two strategies can achieve significant performance
improvement compared with the serial algorithm. And
dataset based strategy will be better than the query based
strategy when the XML document is not balanced or the cost
of query is inexpensive.

VI. CONCLUSION

In this paper, we evaluated the problem of parallelizing
XML query using GPU. We propose two data partitioning
strategies, and examine the two strategies by implementing a
parallel XPath engine on GPU. Both the strategies improve
the query performance significantly. We also realize that
other issue about the parallelizing need to be researched,
such as using GPU ability to support huge amount threads to
achieve high throughput of XML queries. We plan to explore
these issues in detail in our future work.

ACKNOWLEDGMENT

This paper is partially supported by NSFC of China
(60903028, 61070014, 61170184), Key Projects in the
Tianjin Science & Technology Pillar Program
(11ZCKFGX01100).

REFERENCES

[1] The PENN Treebank Project. http://www.cis.upenn.edu/

treebank.

[2] http://www.cs.washington.edu/research/xmldatasets/www/rep
ository.html.

[3] Ashraf Aboulnaga , Alaa R. Alameldeen , Jeffrey F.
Naughton, Estimating the Selectivity of XML Path
Expressions for Internet Scale Applications, Proceedings of
the 27th International Conference on Very Large Data Bases,
pages 591-600, September 11-14, 2001.

[4] A. Balmin, T. Eliaz, J. Hornibrook, L. Lim, G. M. Lohman, D.
Simmen, M. Wang, and C. Zhang. Cost-based optimization in
db2 xml. IBM Syst. J., 45(2):299–319, 2006.

[5] Andrey Balmin, Fatma Özcan, Ashutosh Singh, and Edison
Ting. Grouping and optimization of xpath expressions in db2
Rpurexml. In SIGMOD ’08: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data,
pages 1065–1074, New York, NY, USA, 2008. ACM.

[6] Rajesh Bordawekar, Lipyeow Lim, and Oded Shmueli.
Parallelization of xpath queries using multi-core processors:
challenges and experiences. In EDBT ’09: Proceedings of the
12th International Conference on Extending Database
Technology, pages 180–191, New York, USA, 2009. ACM.

[7] Rajesh Bordawekar, Lipyeow Lim, Anastasios
Kementsietsidis, and Bryant Wei-Lun Kok. Statistics-based
parallelization of xpath queries in shared memory systems. In
EDBT ’10: Proceedings of the 13th International Conference
on Extending Database Technology, pages 159–170, New
York, NY, USA, 2010. ACM.

[8] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W. Sheaffer, and Kevin Skadron. A performance
study of general-purpose applications on graphics processors
using CUDA. Journal of Parallel and Distributed Computing
68(10): 1370-1380, October 2008.

[9] Shuai Ding, Jinru He, Hao Yan and Torsten Suel. Using
graphics processors for high performance IR query processing.
Proceedings of the 18th International Conference on World
Wide Web, pages 421-430, 2009.

[10] Andrew Eisenberg and Jim Melton. Advancements in
SQL/XML, ACM SIGMOD Record, v.33 (3), page 79-
86 ,September, 2004.

[11] Bingsheng He and Jeffrey Xu Yu. High-Throughput
Transaction Executions on Graphics Processors. Proceedings
of the VLDB Endowment, 4(5):314-325, February 2011

[12] Wei Lu, Kenneth Chiu, and Yinfei Pan. A parallel approach
to xml parsing. In GRID ’06: Proceedings of the 7th
IEEE/ACM International Conference on Grid Computing,
pages 223–230, Washington, DC, USA, 2006. IEEE .

[13] Wei Lu and Dennis Gannon. Parallel xml processing by work
stealing. In SOCP ’07: Proceedings of the 2007 workshop on
Service-oriented computing performance: aspects, issues, and
approaches, pages 31–38, New York, NY, USA, 2007. ACM.

[14] Yinfei Pan, Wei Lu, Ying Zhang, and Kenneth Chiu. A static
load-balancing scheme for parallel xml parsing on multicore
cpus. Cluster Computing and the Grid, IEEE International
Symposium on, page 351–362, 2007.

[15] Sherif Sakr. Towards a comprehensive assessment for
selectivity estimation approaches of XML queries,
International Journal of Web Engineering and Technology,
6(1):58-82, August 2010.

[16] Albrecht Schmidt , Florian Waas , Martin Kersten , Daniela
Florescu , Michael J. Carey , Ioana Manolescu , Ralph Busse.
Why and How to Benchmark XML Databases. ACM
SIGMOD Record Vol30(3),page27-32, Sep. ,2001.

[17] Jens Teubner, Torsten Grust, Sebastian Maneth, and Sherif
Sakr. Dependable cardinality forecasts for xquery.
Proceedings of the VLDB Endowment, 1(1):463–477, 2008.

http://www.cs.washington.edu/research/xmldatasets/www/repository.html
http://www.cs.washington.edu/research/xmldatasets/www/repository.html

