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Abstract. Protein folds prediction is one of the most important problems in 
computational biology. In previous works, local optimization algorithms were 
used mostly. A new global optimization algorithm is presented in this paper. 
Compared with previous works, our algorithm obtains much lower energy 
states in all examples with a lower complexity.

1   Introduction 

Predicting the structure of proteins, given their sequence of amino acid, is one of the 
core problems in computational biology. With the rapid advances in DNA analysis, 
the number of known amino acid sequences has increased enormously.  However, the 
progress in understanding their 3D structure and their functions has lagged behind 
owing to the difficulty of solving the folding problem. 

Since the problem is too difficult to be approached with fully realistic potentials, 
many researchers have studied it in various degrees of simplifications. By the simpli-
fications, protein fold prediction is converted to a combinatorial optimization problem. 
Its main target is to design algorithms which can find the lowest energy states of the 
amino acid sequences in three-dimensional space. The most popular model used in 
related works is HP model [1,2] which only consider two types of monomers, H (hy-
drophobic) and P (polar) ones.  Hydrophobic monomers tend to avoid water which 
can only attract mutually by themselves. All the monomers are connected like a chain. 
There are repulsive or attractive interactions among neighboring monometers. The 
energies are defined as εHH= -1 , and εHP=εPP= 0.  

Many computational strategies have been used to analyze these problems, such as 
Monte Carlo simulations[3], chain growth algorithms[4], genetic algorithms[5], 
PERM and improved PERM[6], etc. Most models mentioned above are discrete. It’s 
possible that some potential solutions  are missed by the discrete models in 3D space. 
In reference 7, Huang devised a continuous model  for 3D protein structure predic-
tion. But the results from reference 7 had some errors owing to the defects  in algo-
rithm . Following the idea of Huang’s model, we present a continuous optimization 
algorithm in the paper.  



2   The Algorithm  

In HP model, all amino acid monomers are connected and form a n-monomer chain. 
It’s easy to understand that every monomer can be considered as a rigid ball. In order 
to present more succinctly, hydrophobic monomers are denoted as H balls and polar 
monomers are denoted as P balls in the following sections. 

If the number of the balls in the chain is n and the radius of every ball is one, then 
protein folds prediction can be transformed into discovering the fit positions of these 
balls in 3D Euclidean space. It requires all the neighboring balls connected each other 
are tangent and all H balls are close as much as possible. 

More precisely, the algorithm wants to obtain a n-dimensional position vector 
P(P1,P2…Pn) in 3D Euclidean space satisfying the following  three conditions: 
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E is the gravitational energy of all balls. 
We can consider all the balls in the chain are connected by a spring. Thus there are 

three types of forces in the n-ball chain, the pull forces of spring between the adjacent 
balls, the repulsion forces between two embedded balls and the gravitational forces 
between two H balls (since εHP=εPP= 0).  

At any time, the external force that each ball received is the sum of forces that all 
the other balls in the same chain imposing on it. From the initial state, all the balls in 
the chain will be moved continuously driven by the external force. The n-ball system 
keeps moving until all the forces reach the equilibrium. During the process, the pull 
and repulsion forces drive the system to meet the requirements of equation (1) and (2), 
the gravitational forces among all H balls  pull them together as close as possible. In 
the equilibrium state, the position vector of all the balls P(P1,P2…Pn) represent a 
best fit approximation to 3D protein structure prediction. The value of P can be de-
termined according to equations (1) ,(2) and (3).  

Considering the pull forces that ball i put on ball j , 
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Where ir ( jr ) is the vector pointing to the position of ball i ( j ) from grid origin, 

 is the distance between ball i and j , and is the elastic coefficient of the spring ijd pk



in the chain. It’s easy to understand that there is only one pull force to the first and 
the last ball in the n-ball chain. To the others, the pull forces will be produced by the 
previous and the following balls.   Obviously, the pull forces will be changed into 
push forces if  according to equation (4).  20 << ijd

To  the repulsion forces between ball i and j, 
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Where  is the repulsive coefficient of the balls rk in the case that two balls 
are embedded each other. To the gravitational forces between two H balls, 
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According to equations (4), (5) and (6), the force iF , which exerted to ball i at 
any time,  is the composition of the forces giving by the other balls in the chain. 
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Our algorithm can be described as following,  
Initially, all the balls in the chain are distributed orderly on the surface of 

a virtual sphere in the 3D Euclidean space as even as possible. Therefore every 
ball will be coequal in the initial state. In the next period, each ball is moved in a 
small distance by the composition of external forces. This process repeats continu-
ously until the n-ball system reaches the equilibrium. The positions of all the balls in 
the equilibrium state should be the solution to 3D protein structure prediction. 

The pseudocode of the algorithm  

Initialization.    
for (t=0;t<tMAX;t++)   
  for (i=0;i<n;i++) 
  { 

  iF =Compute_Force(i);//Computing the Force to ball i; 

   i
t

i
t

i Frr ×+=+ λ1 ; 
   }; 
    



Where the upper bound of the periods, and λ is is the movement coefficient in 
the iterative equation. 

maxt

3   Experimental Results 

Four 3D HP sequences with length N equals to 58,103,124 and 136 respectively were 
described in reference 6 as models of actual proteins. Using our algorithm, we re-
calculated the four sequences and found much lower energy states for all these se-
quences.  

In our experiments, we set the maximal number of periods , set 

the movement coefficient . 
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To the other coefficients used in the algorithm,  
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Where t is the current period. 
Furthermore, the precision is set to in order to determine 7101 −× whether the two 

H balls are tangent or not. The details of the results are shown in table 1. 
 Among all previous work, the growth algorithm in reference 6 provided the best 

results. Compared with the results from reference 6, our algorithm can find much 
lower energy states for all the four HP sequences. The big gap is mainly caused by 
the differences in algorithm.  

The growth algorithm used in reference 6 is a depth-first implementation of the 
“go-with-the-winners” strategy. Actually, it can be regarded as a special type of 
greedy algorithm. It always takes the local optimal solution while resolving the prob-
lem. As we known, a winner of a battle may not be a winner of the whole war. The 
solutions found by the growth algorithm may not be the global optimal to the prob-
lems. 

On the contrary, the algorithm in present paper is a global optimization algorithm. 
All the monomers in the HP sequences have the same weights initially. The n-

http://www.nist.gov/dads/HTML/optimization.html


monomer chain can move in many directions. After long-time iterations, many possi-
ble positions can be reached following our algorithm.  
For the shorter chains, our algorithm is more time consuming than growth algorithm 
used in reference 6, but the situation inverses to the longest chain. Indeed, growth 
algorithm requires exponential time consuming with the increase of the chain’s length. 
Comparing the results, it is apparently that the times increase much slower in our 
experiments which demonstrate that our algorithm has better performance when ap-
plied to longer HP sequences.

Table 1.   Experimental results  

N (εHH,

εHP,ε

PP) 

Sequence Emin
a Emin

b CPU 
timec

CPU 
timed

58 (-1,0,0) PHPH3PH3P2H2PHPH2PH3P
HPHPH2P2H3P2HPHP4HP2H
P2H2P2HP2H 

-
63 

-
44 

3.81 0.19 

103 (-1,0,0) P2H2P5H2P2H2PHP2HP7HP3
H2PH2P6HP2HPHP2HP5H3P4
H2PH2P5H2P4H4PHP8H5P2H
P2  

-88 -
54 

10.39 3.12 

124 (-1,0,0) P3H3PHP4HP5H2P4H2P2H2P4
HP4HP2HP2H2P3H2PHPH3P4
H3P6H2P2HP2HPHP2HP7HP2
H3P4HP3H5P4H2PHPHPHPH
  

-109 -
71 

24.25 12.3 

136 (-1,0,0) HP5HP4HPH2PH2P4HPH3P4
HPHPH4P11HP2HP3HPH2P3
H2P2HP2HPHPHP8HP3H6P3
H2P2H3P3H2PH5P9HP4HPHP
4  

-117 -
80 

36.01 110 

aLowest energies found in present work 
bLowest energies found in reference 6 
cCPU times (hours) cost on 3.0 GHz Intel P4(results in our experiments)  
dCPU times (hours) cost on 667 MHz DEC ALPHA 21264 (results from reference 6) 



 
Fig. 1.  The experimental results shown in 3D space 

4    Discussion   

In this paper we present a new continuous optimization algorithm for 3D protein 
structure prediction. The main idea of the algorithm is that all monomers share the 
same initial weight and will move in continuous three-dimensional space following 
certain physical theories.  As a global optimization algorithm, our algorithm can 
search many potential solutions to find the optimum solution to the problems.  

Comparing our results to the best results in previous works, we obtain lower en-
ergy states in all 3D cases. Moreover, our algorithm has lower time complexity than 
previous work. It will show more advantages to the proteins which have longer amino 
acid sequence.  

Following the way of previous work, we used HP model, an abstract model of pro-
tein folds prediction, to study the problem. Actually, our algorithm can be used for a 
much wider range of applications. We anticipate it can be applied to more realistic 
protein models. 

In the future work, we will try to add more information about the proteins into our 
algorithm, such as molectronics, experiential data, and examine the improvement on 
performance of the enhanced algorithm.
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