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Abstract: 

For practical deployment of peer-to-peer (P2P) systems, it is one of the most important 

and challengeable aspects to achieve high data availability in structured P2P systems since the 

environment is much scalable and dynamic. 

The paper utilizes the hybrid of two data redundancy schemes, namely replication and 

erasure coding, to improve system availability to deal with churn. To mask or hide the high 

churn from the short-lived but churn-frequent peers and permanent failure peers, we use 

replication among the nodes in a certain interval that can be considered as a virtual node. 

Then with an erasure-coded redundancy scheme, we consider that a set of virtual nodes that 

cooperatively provide guaranteed over the networks. The paper presents the hybrid 

redundancy prototype and protocol, analyzes the stochastic behaviors for data availability of 

single virtual node and cluster. The approach is effective through the evaluation with an 

empirical trace. 
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1. Introduction  

Structured peer-to-peer (P2P) overlay networks has being investigated to build 

decentralized, cooperative systems including content distribution, information retrieval and 

cooperative storage systems etc. in much scalable and dynamic environment. The applications 

usually employ Distributed Hash Tables (DHTs) [1, 2] as an infrastructure to provide an 

efficient way for storing and locating data. However, they do not offer preferable guarantees 

about data availability for network nodes may join, leave, and fail concurrently and frequently 

(i.e. churn). Due to the dynamic and scalable nature of the network, it is an important 

foundational and challengeable issue to deploy P2P applications. Thus, it remains unclear 

whether the dependable potential of P2P systems can be realized for data storage in practice. 

Data items are the general notation that represents files or blocks of files stored in 

systems. Usually higher availability and better performance can be achieved by data 

redundancy to mask and cope with node failures in structured P2P overlay networks. Data 

redundancy is typically implemented in one of two approaches, namely replication and 

erasure coding. In replication approach, multiple copies of the same data item are distributed 

to different peers. Thus, an item can be accessed as long as at least one replica is available. By 

contrast, in erasure coding approaches an item is encoded using an erasure coding, and then 

divided into smaller fragments for storage in many different peers. As long as a certain 

minimum number of peers in which the coded fragments resided are available, the original 

data item can be recovered and accessed from the fragments. 

The paper utilizes the hybrid of the two data redundancy schemes, namely replication 

and erasure coding, to improve system availability to deal with churn. First, to hide the high 



churn from a portion of short-lived peers and the permanent failures of peers, we use 

replication among the nodes in a certain interval that can be considered as a virtual node. 

Then with erasure coding, we consider that a set of virtual nodes that cooperatively provide 

guaranteed over the networks. Finally, we try to quantitatively evaluate data availability of the 

hybrid approach with an empirical trace. 

2. Backgrounds and related works 

2.1 Node dynamics 

In structured P2P systems, churn can have important effects on a P2P system. Peers may 

be unavailable due to network isolation, system crash etc. Many peers may become 

unavailable and then return to service without any data loss. Such churn leads the number of 

peers in systems to grow or shrink and changes the availability. Node failure churn exhibits 

both temporary and permanent characteristics [10]. A temporary failure occurs when a node 

departs the system for a period and then comes back. Any data stored on the node becomes 

unavailable during this period and is preserved across a transient failure, such as a reboot or 

temporary network disconnection, but is not permanently lost There are many empirical 

measurements. For example, in Overnet system [14], it has observed that each peer joined and 

left the system over 6 times per day on average. In contrast, a permanent failure, such as host 

crash or disk failure, results in loss of the data stored on the node. A permanent failure 

corresponds to permanent loss of data resided on the node. We consider that a node is 

available if its data can be retrieved across the network, and an item is available if it can be 

reconstructed from the data stored on currently available nodes. In summary, node failure 

churn leads to data unavailability as a result of a combination of temporary and permanent 



failures.  

2.2 Data redundancy 

Data redundancy is typically implemented in one of two schemes, namely replication 

and erasure coding. P2P storage systems have employed replication. CFS splits every file in a 

number of blocks that are then replicated a fixed number of times based on [1]. PAST applies 

the same protocol, without chunking files into blocks based on [2]. Replication heavily relies 

on duplication data to related nodes, and its organization is simple and is mostly employed. 

Erasure Coding divides an item into m fragments which are then used to generate n 

encoded fragments. It has the property that any m (or slightly more) out of the n encoded 

fragments suffice to recover the original m data fragments. The redundancy scheme yields 

much higher probabilities of recovery and offers lower storage costs compared to replication 

compared to replication schemes, unfortunately, it introduces higher computational 

complexity. Erasure coding needs multiple communication and combination among related 

nodes.. For example in OceanStore [4] and TotalRecall [5], data items are replicated by using 

erasure coding. 

The availability relationship among the mean availability of peers, the number of 

replicas and the required data availability for the two redundancy schemes can be found in [6, 

7]. The paper utilizes the hybrid of two data redundancy schemes, namely replication and 

erasure coding, to improve system availability to deal with churn.  

3. Redundancy placement management 

3.1 Redundancy placement 

We categorize a variety of placement strategies into two types: Locally Neighboring 



Placement (LNP) and Globally Rehashing Placement (GRP). The metric is based on the 

distribution fashion of redundancy objects (replicas with replication and fragments with 

erasure coding of a data item) among nodes in systems. 

In LNP redundancy objects are placed on the neighboring nodes of the owner node, 

which is a node responsible for the objects according to consistent hashing. The neighbors can 

be successor nodes, predecessor nodes or entry nodes of routing table. For example, [1, 18] 

employs a successor-list scheme in which an item is replicated on the successive nodes with 

closest to the owner. In contrast, in GRP the responsible node of each replica is determined by 

a rehash function in the global space. The key of each replica can be obtained by re-hash 

function and then the corresponding node can be determined. For example, [19] provides a 

symmetric replication scheme in which the identifier space is partition into equivalence 

classes and an item is duplicated on each of the nodes in an equivalence class. 

In the paper, we employ the two placement strategies to distribute redundancy objects 

(replicas within a virtual node by LNP and fragments of by GNP) in the virtual identifier 

space. 

3.2 Cooperative management 

In such dynamic environment, cooperation between nodes is a fundamental property in 

P2P networks. With sufficient redundancy with many peers, at any moment couple of peers 

will be in the system to make a given data item available with high probability cooperatively. 

When a peer is available, the data stored on it contributes to the overall degree of redundancy 

and increases data availability. Many peers contribute to store the related data and supply the 

repair t of node failures for the availability of data in systems. 



In the optimizations of several DHTs [16, 17], the way of virtual node has been adopted. 

To pursue load balance, some work defines virtual nodes that each powerful physical peer 

pretends to be several distinct peers, i.e., virtual nodes per physical node. Many other 

optimizations [22, 23] take multiple physical nodes in an interval as a virtual node, to reduce 

routing latency for it can choose physical node from virtual node with lowest RTT, and to 

improve fault tolerance for only one node per interval needs to survive to allow routing 

through the interval. 

In the paper, we take the latter virtual node notation as the part of infrastructure. The 

physical nodes in the system perform cooperatively data maintenance. To mask or hide the 

high churn from the little portion of short-lived nodes and temporary failure nodes, we use 

replication among the nodes in a certain interval that can be considered as a virtual node. 

Then with erasure coding scheme, we consider that a set of virtual nodes that cooperatively 

provide guaranteed over the scalable and dynamic networks. 

4. Prototype 

In the section, we present the hybrid approach for data availability including redundancy 

layers and data maintenance protocol. A P2P storage system has persistent state. Thus, a node 

failure may be transient in that the node recovers with useful, for example if the failure was a 

network outage or a reboot. We suppose that when a node returns after a transient failure, 

such as a network outage, it does not affect data stored on disk. Since most p2p properties of 

interest require a sufficiently evolved system, our analysis of data availability is in the 

equilibrium state.  

4.1 System overview 



The system prototype has three parts including message handler, storage manager and 

data repairer in each peer. The message handler copes with the routing and forwarding 

requests and if it recognizes a message that is handled locally, the storage manager will be 

triggered to work by the incoming messages. At the same time, the repairer monitors the 

amount of redundancy and if the amount falls below the maintenance threshold, data recover 

mechanism will be trigger to increase the redundancy.  

4.2 Redundancy 

In the prototype, the whole identifier space is split into intervals, called virtual nodes. A 

virtual node could be taken as the abstraction of multiple physical nodes in an equal-size 

interval in which the physical nodes can cooperatively accomplish routing and storage 

requests. Each interval is maintained by multiple nodes at the same time and each peer in 

every virtual node contributes storage space and cooperatively makes stored data persistent 

and available (figure 1).  

virtual node A virtual node B
identification space

physical node

fragment  
Figure 1. Each virtual node consists of multiple physical peers and each peer in every virtual node contributes 

storage space to cooperatively store data fragments. When a fragment is to store, synchronization copy is required 

in the virtual node. 

Therefore, the prototype is organized into two layers for data storage: virtual node layer 

and physical node layer. We utilize the hybrid of two data redundancy schemes, namely 

replication and erasure coding, to distribute redundancy objects. On the whole, with erasure 

coding scheme each data item is divided into m fragments and recoded into n (n>m) 



fragments which are stored separately at virtual node layer; we distribute m fragments into 

different virtual nodes according to GRP scheme. Within a virtual node, a fragment is 

replicated into its physical nodes. The replicas of each fragment are distributed by LRP 

scheme. 

5. Protocol 

In the protocol, the system should support the following types of operations: node joins, 

data requests, data maintenance etc. 

5.1 Node joins 

When a node joins an active virtual node, it announces itself to all other nodes 

responsible for the same interval. System should recognize two cases: fresh join and return. 

Data synchronization should be taken among the nodes in the interval in both cases. All data 

associated in the virtual node is replicated to the node if it is a fresh one; and if it is back after 

a temporary failure period, it should exchange data that each other does not have, that is, 

synchronize offline replicas after going online again. When any node leaves the system for 

the process is inactive, the standard stabilization routine will be performed. The predecessors 

and successor will be informed, and afterwards, inconsistent routing table entries are 

identified and updated using the periodic maintenance routine [1]. 

5.2 Data requests 

Considering a new item is published into system, it is split into n fragments which are 

stored separately at different virtual nodes by (m, n) erasure coding. Notably, it requires that 

each fragment is independent to recover the original item from at least any m fragments in the 

distributed storage system. Fortunately, network coding [11-13] allow the creation of each 



encoded fragment independently and are therefore useful for distributed storage systems, 

which need to create new fragments continuously as nodes join and leave the system. The 

codes guarantee the correctness of data storage in structured P2P networks. Every fragment is 

mapped into a virtual node by consistent hashing. It will be replicated and distributed by the 

owner node to all other nodes responsible in the same virtual node. The retrieve request for an 

item takes the reverse operations. 

Data routing and location requests can be processed almost the same as the specification 

of DHT among the physical nodes in the identification space except little changes. Figure 2 

presents that when a fragment is mapped to an identifier k belonging to virtual node A but the 

successor of the identifier is physical node n belonging to virtual node B. Thus, the routing 

and location for the fragment to store and access may be redirected to the predecessor node m 

by node n. Even thought in the procedure the redirected hop may be an incidental expense, it 

maybe save one more hops when routing and location for a fragment reach the corresponding 

virtual node rather than the owner physical node. 

virtual node A virtual node B
identification space

physical node

fragment

k

nm

 
Figure 2. A fragment is mapped to an identifier k belonging to virtual node A but the successor of the identifier is 

physical node n belonging to virtual node B. In the case, the request message will be redirected to its predecessor. 

The related procedures are executed whenever data operation messages arrive at the 

related nodes. As a variation of Chord, the routing table can be the same as finger table in the 

protocol. Indeed the protocol can combine into the other DHTs as well.  

The data request message routing algorithm (figure 3) is crucial in the system design for 



data operations depend on it. Given a message, the node first checks to see if the identifier 

falls within the range of the virtual node. If so, the node determines the action by resolving 

the message. Otherwise (i.e., the virtual node does not cover the identifier), then one of the 

two cases may happen. The message is redirected to the predecessor node m by node n in one 

case as shown in figure 2 (case 1). If the redirected node is not responsible for the fragment, 

the virtual node is unavailable and the message will be abandoned (case 2). In the other case, 

the routing table is used and the message is forwarded to a node that is the closest to the 

identifier (case 3). 

//find the destination to execute the operation in msg by n according to the identifier k of the fragment in msg 

n.find_destination(msg){ 

if (msg.k )∈n.interval()// message falls into the virtual node which n belongs to. 

 return (function *)msg.oper;//invoke the operation of message by n 

  if(msg.redirect ){//if the message is redirected, virtual node has failed.(case 2) 

error(“could not routing the msg”); 

return(-1); 

} 

if(msg.k < n.interval().lowbound && msg.k ∈  (n.id, n.successor) ) {//case 1 

 msg.redirect = TRUE; 

p = n.predecessor(); 

forward(msg, p);//send msg to the predecessor of n. 

} 

  else {//case 3 

 n'= closest_preceding_node(msg.k);//search the closest node in routing table as in [1] 

 forward(msg, n'); 

} 

} 

Figure 3. The data request message routing 



In a message, one of the operations is packaged which will be executed by the routing 

destination node according to the packaged identifier k in the message. These messages are 

produced by the item operations (PUT_ITEM and GET_ITEM), and data repair operation. If 

a peer decides to put an item that consists of n independent fragments, then the peer issues the 

PUT_FRAGMENT message for each fragment which identifier is k. Once at least m messages 

are acknowledged, the item is putted into the system. Otherwise, the peer tries threshold times. 

Similarly, if a peer tries to get an item, then it issues the GET_FRAGMENT message for each 

fragment. Once m responses are received, then item can be recovered. Otherwise, the peer 

tries threshold times. If the destination node is routed, then the operation will be performed 

and response will be acknowledged to the original node. For PUT_FRAGMENT, store the 

fragment in the virtual node; for GET_FRAGMENT, get the fragment if it exists in the virtual 

node.  

5.3 Maintenance 

In the long run, many peers are permanently leave the system and the data resided on 

them is lost. It follows that the redundancy of items would decrease and furthermore the 

availability of relevant items would be hurt. Therefore data maintenance mechanism is the 

necessary part and is integrated into the protocol for toleration the amount of peer departures 

for a long-term availability. The occasion to trigger data recovery lost data is by given a 

maintenance period and a redundancy threshold. The maintenance mechanism ensure data 

availability level on the occasion that the repairer discovers the redundancy degree is lower 

than the given threshold l ( m l n≤ < ).  

In addition to the periodical maintenance, the repairer monitors data item requests issued 



from each node and trigger a repair if the redundancy degree drops below the threshold. If the 

requested item could be reconstructed from any m fragment resided in different nodes but the 

response is lower than l, the repairer will repair the lost fragments to related virtual nodes 

while supplying the item for requestor. Otherwise, the repairer records the unavailable data 

item and periodically checks the degree of fragments. During the upper bound time, the check 

could repair the redundancy to n, otherwise if beyond the bound time, the item would be 

taken as failed one. The advantage of the maintenance is without having to perform frequent 

fragment repairs, i.e., it extends the maintenance period and thereby reduce communication 

overhead. The maintenance ensures the higher availability of the frequent accessed items. In 

the way, the repair policy belongs to the lazy repair according to [5]. 

6. Analysis 

In the section, we present the analysis of the behaviors of single one virtual node and 

cluster of virtual nodes. According to the stochastic models of the behaviors, the data 

availability is presented based on one empirical trace dataset. 

6.1 Behavior characteristics of single virtual node  

The on-line/off-line alterations of an individual node can be modeled as an alternating 

renewal process, having an on process and an off process. We assume that physical nodes 

behave independently of each other and that each process {Zi(t)} is independent on each other.  

The collective effect of multiple nodes in one virtual node can be also modeled as the 

superposition of multiple alternating renewal processes. Let li and di denote separately the 

mean lengths of an on and off period of each node. The asymptotic availability of each node i 

in the long time t is given by lim ( ( ) 1) /( )i i i i i
t

a P Z t l l d
→∞

= = = + . If we treat all on and off 



processes as i.i.d sets of variables then the probability of a virtual node is on, that is, the 

availability of a virtual node is given by 1 i

i ii

dv
l d

= −
+∏  in the long run. Considering the 

heterogeneous lifetimes of various nodes, the data availability could hardly be estimated. 
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 Figure 3(a). The evolution of system size N(t). 
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Figure 3(b). The sessions distribution in the trace. 

According to the PlanetLab trace used in [20], this data set consists of pings sent every 

15 minutes between all pairs of 200~400 PlanetLab nodes from January, 2004, to June, 2005 

(i.e., 4.557*107 s). A node is considered to be on in one 15-minute interval when at least half of 

the pings sent to it in that interval succeeded. Nearly all PlanetLab nodes were off in a number of 

periods due to planned system upgrades or measurement errors likely. In [8] the trace were 

removed each period of downtime when less than half the average number of nodes up.  

As shown in figure 3(a) according to the cleaned trace, the evolution of system size N(t) 

is presented during the trace period. We consider the system in the stable state during the 

period. In the period, the system scale, i.e. the number of nodes amounts to 669 in the system. 

Figure 3(b) shows the session distribution in the trace (25130 sessions). The session 

distribution suggested in many studies is general, such as Pareto[14-15], Weilbull or 

lognormal distribution[9], which reveals the heterogeneous behaviors of nodes. 



We are primarily interested in the metric active replica degree (ard(t)) , which is defined 

as the number of active nodes in one virtual node (assume space size is s) at any time epoch t. 

The metric is a variation as nodes are turned on and off.  
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Figure 4. The sample paths of a virtual node in the trace period. 

Let {Z(t)} denote the evolving process of ard(t), i.e, the number of active peers in system 

at time t, and the process is a regenerative process with the regeneration point defined at an 

arrival epoch. The degree should be at least 1, then the superposed process {Z(t)} is 

considered on if at least one of the node processes is on, and it is off if and only if all of the 

node processes are off. The sample paths are shown for the virtual node size s=8 bits in figure 

4(a) and s=6 bits in figure 4(b). In the paths, a regeneration cycle contains an up period with 

at least one peer present and a down period with no one present. It can be observed that the 

max{ard(t)} is 5 in figure 4(a) and 3 in figure 4(b). As an important observation, the coverage 

behavior of each virtual node can mask failures effectively including temporary and 

permanent failures for the down periods are relatively little time, about 102~103s.  
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Figure 5. The number of active peers in a virtual node tends to a normal random variable observed in the stable. 

The relationship between the size of virtual node (s) and ard(t). 

Let Tk be the amount of time in a cycle with k peers present. Then we have 
0

i

i

C T
=

= ∑ . 

Let pk denote the limiting probability that there are k peers in one virtual node at any time. In 

the count process {Z(t)} produced by the M/G/∞ queue model, which can be considered that 

peers arrive at an infinite server queue according to a Poisson process and the on-time of each 

peer can be general. From queuing theory, if the queue is stable, then E[C] is finite and 

lim { ( ) } [ ] / [ ]k k
t

p P Z t k E T E C
→∞

= = = . Thereby, the availability of fragment in one virtual 

node is given by 01v p= − . The probability of pk can be reduced to the number distribution 

of active peers in one virtual node. The number of active peers in a virtual node tends to a 

normal random variable observed as shown in figure 5 for different sizes of virtual node, s=7 

and 6 respectively. The distribution parameters (mu, sigma) are (4.06, 1.91) for s=7 and (8.13, 

2.67) for s=6.  

It was observed that while a little amount of short-lived peers join and leave the system 

at such a high rate that they constitute a relatively large portion of sessions at any point of 

time. Those short-lived and churn-frequent nodes will have much negative impact on data 



availability. However, the impact can be reduced by the convergence behavior of nodes in a 

virtual node. Thereby the replication model could not be constrained to much heterogeneous 

nodes. That is, virtual node weakens even masks the behaviors of those churn-frequent nodes, 

i.e., those temporary failed nodes. As for the impact from those permanent failed nodes and 

fresh nodes, it could also be reduced to some extents. The on-time and off-time of one 

fragment replicated into one virtual node are shown as figure 6. In experiments, the size of 

virtual node is defined as the sum of physical nodes in the period, 3~7 nodes respectively. 

From the data as figure 6(a) and table 1, the convergence of heterogeneous nodes is much 

more effective as the size of virtual node increases. The quantity of off-times is similar as 

observed in figure 6(b). 
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 Figure 6(a). The on-time distribution of virtual node. 

0 1 2 3 4 5 6

x 106

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

off-time(3)
  fit 3
off-time(4)
  fit 4
off-time(5)
  fit 5
off-time(6)
  fit 6
off-time(7)
  fit 7

Figure 6(b). The off-time distribution of virtual node. 

Table 1. The convergence behaviors for different size virtual nodes 

Size #on-time Mean(e+006s) Max(sec) Weilbull Fit(a, b) 
3 309 1.2706 28288690 (92364.8, 0.286756)   
4 140 3.1158 44748925 (693478,0.337441) 
5 59 6.8204 45573054 (1.29659e+006,0.309017) 
6 49 8.5168 45573054 (2.45977e+006,0.350952) 
7 32 12.660 45573054 (5.37585e+006,0.401647) 

As intended, rather than tangle with various behaviors of single peer, the availability of 



each fragment is analyzed by the converge behavior of virtual node to mask the 

churn-frequent nodes. Further enhancement for data availability can be guaranteed by erasure 

coding among virtual nodes, as explained in next subsection to mask the little off time among 

virtual nodes as shown in figure 4. 

6.2 Behavior characteristics of virtual node cluster 

With the (m, n) erasure-coded redundancy scheme, an item will be encoded into n 

fragments and distributed in n different virtual nodes. There are e n+1 states for each item, 

0…n. State k is the state that k virtual nodes are alive and (n-k) virtual nodes are unavailable. 

Let { ,..., }A m n=  and {0,..., }A m - 1=  respectively denote the available states and the 

unavailable ones. The process is said to be up when in an available state and down when in an 

unavailable state. The change of a virtual node is independent and identical process with each 

other and data availability process changes states in accordance with a Markov chain having 

transition probabilities ijP , , {0,1,..., }i j n∈ . According to limiting probabilities for Markov 

chain [21],  for i A∈ and j A∈ the rate at which the process enters state j from state i is 

i ijPπ . And so the rate at which the process enters state j from an available state i in A  is 

i ij
i A

Pπ
∈
∑ . Hence, the rate at which it enters any unavailable state from any available one 

(which is the rate at which breakdowns occur) is i ij

j A i A

Pπ
∈ ∈
∑∑ . 

Now let u and d denote the average up-time and down-time separately in the process. 

Thereby, the transition frequency between any available state and unavailable one is 

1/( ) i ij

j A i A

Pu d π
∈ ∈

=+ ∑∑ . The average percentage of up-time in one cycle is i
i A
π

∈∑ . Since the 

process is up on the average u out of every ( )u d+  time units, the proportion of up-time is 

given by /( )
i A

iu u d π
∈

+ = ∑ . Therefore, the average up-time is /i i ij
i A j A i A

u Pπ π
∈ ∈ ∈

=∑ ∑ ∑  



and down-time is /i i ij
i A j A i A

d Pπ π
∈ ∈ ∈

=∑ ∑ ∑ . 

The up-time of an item is dependent on the parameters of the redundancy layers when it 

is put into the system which include the size of virtual node s and erasure coding parameters n 

and m. The tradeoff of parameters between the two redundancy layers is flexible and enviable. 

To achieve the same extents of available, the choices of the parameters are crucial. In one 

extreme, the size of virtual node s is to the greatest extent and erasure code parameters can be 

relaxed. In the other extreme, n is a larger number and m is close to 1, thereby the virtual node 

size s is relaxed. However, the former will consume much to maintenance synchronization 

and the latter will be degraded to replication that consumes much storage space.  

By exploring a large number of different settings with the parameters, we present the 

average availability of an item as shown in figure 7. In the experiments, the parameters are set 

as the following: s=3, 4 and m=4, 6. The choice of parameter n can be determined constrained 

by the requirements of the availability and related costs. According to the result of figure 

(a)~(d), the tradeoff values of n are setting. The system designers must choose the moderate 

values for (s, m, n) to make the data more available and reliable. Therefore, the result presents 

that the hybrid approach is effective. 
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               (a) s=3, m=4                                (b) s=4, m =4 
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                (c) s=3, m=6                               (d) s=4, m =4 

Figure 7. The availability results of cluster  

7. Conclusion 

The paper utilizes the hybrid of two data redundancy schemes to improve system 

availability to deal with churn. To mask or hide the high churn from the small portion of 

short-lived but frequent churn peers and permanent failure peers, we use replication among 

the nodes in a certain interval that can be considered as a virtual node. Then a set of virtual 

nodes that cooperatively provide guaranteed over the networks with erasure coding. The 

paper presents the prototype and protocol, and analyzes the behaviors of single one virtual 

node and cluster with an empirical trace.  
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