
CAWRM:A Remote Mirroring System Based on AoDI Volume

Zhenhai Zhao, Tingting Qin, Fangliang Xu, Rui Cao, Xiaoguang Liu∗, Gang Wang∗

Nankai-Baidu Joint Lab
College of I.T., Nankai University, Tianjin, China, 300071

Email:{zhaozhenhai1985, paulaqin, xuflnk}@gmail.com, {caorui12001, liuxg74, wgzwp}@yahoo.com.cn

Abstract—Nowadays, data reliability and availability are big
challenges that the designers of large data centers have to
face. Remote mirroring technology is an effective approach for
data protection. It maintains a complete copy of primary site
at geographically distant locations. Data consistency is the key
point of the replication process in the remote mirroring system.
This paper improves the consistency strategy of traditional
remote mirroring architectures from three aspects: initial
synchronization , real-time replication logic and resumption
from network failure with the help of a novel logical volume,
AoDI. AoDI is an Allocation-On-Demand Incremental volume.
It uses an appending storage structure to provide the ability
of space allocation on demand and fast snapshot. This paper
presents two remote mirroring architectures based on AoDI
volume. One architecture incorporates the remote mirroring
logic with the AoDI structure loosely. It provides a way to
construct block-level heterogeneous remote mirroring system
and improves random write performance remarkably. Another
architecture combines the remote mirroring logic with the
AoDI structure tightly. Besides the advantages of the loosely
coupled architecture, the tightly coupled architecture simpli-
fies remote mirroring logic significantly. The remote backup
process separates from normal write process completely. The
remote mirroring module simply copy data sequentially from
the local volume (an AoDI volume) to backup site repeatedly, so
we call this architecture CAWRM (Copy After Write Remote
Mirroring).

Keywords-remote mirroring; AoDI volume; data consistency;
loose coupled; tight coupled;

I. INTRODUCTION

Nowadays, the demand for massive data storage increases
rapidly. The reliability and availability of data is particularly
important. The irreversible loss of data caused by various
disasters will lead to immeasurable loss, even bankruptcies
and bank failures. So data protection has aroused more
and more attention. Remote mirroring technology [1]–[4]
is a typical data protection technology. Remote mirroring
ensures that all data written to a primary site is also written
to a remote backup site as to support disaster recoverability.
As the primary site and backup site usually disperse in
geographically distant locations, how to transmit the data
correctly and fast to the backup site is the key issue of
remote mirroring. This paper mainly focuses on the data
consistency of remote mirroring [5], [6], which ensure the
integrity and accuracy of data.

WB21 ...WB32 WB0 WB21

B0 B1 ...

Write request

Visible volume

Physical volume

time

B21 ... B32 ...

B0 B1 B2 B3 B4 B5 ...

Figure 1. The schematic diagram of AoDI Volume.

Seneca [2] uses a log barrier technology to ensure
data consistency, however it needs a complex protocol.
Abandoning the complex and pursuing the simplicity are
the design goal of computer system. So in this paper,
we design a simple remote mirroring architecture based
on AoDI [7] volume. It guarantees the data consistency
naturally. Figure 1 shows the basic design idea of AoDI.
It uses an appending rather than overwriting strategy to deal
with the write requests. Therefore, it can translate random
requests into sequential requests which can speed up random
access obviously. Moreover, this log-like structure provides
a natural way to implement efficient multi-version snapshots
of logical volumes. The motivation of this paper is just
to improve traditional remote mirroring architectures using
these advantages of AoDI.

We first design a loosely coupled architecture: the remote
mirroring module is simply built above AoDI volume,
the two layers are independent. Although just a shallow
combination, this architecture also provides some distinct
advantages with the help of AoDI. First, block-level hetero-
geneous remote mirroring system can be constructed based
on this architecture. That is, we can deploy storage devices
of different sizes at the primary site and the backup site, and
replicate data between them at block level. Second, AoDI’s
appending structure improve random access performance
significantly.

We also design a tightly coupled architecture. The remote
mirroring module comprehends the structure of AoDI, and
consciously exploits its characteristics to achieve data con-
sistency in a very clear and efficient way. With the help
of the log-like structure of AoDI, the remote mirroring
module simply copy data sequentially from the local AoDI
volume to the backup site. It no longer concerns with how



to intercepts write requests in the normal request processing
path, and how to clone the requests, buffer them and send
them. Moreover, this architecture unifies the algorithms for
initial synchronization, real-time replication and resumption
from network failure - just copy. So we call this architecture
CAWRM (Copy After Write Remote Mirroring).

II. RELATED WORK

EMC Symmetrix Remote Data Facility (SRDF) [8] is
a disk array level remote mirroring technique. Although
EMC literature encourages the use of synchronous mode,
semi-synchronous mode is available, in which a subsequent
write request will be delayed until the completion of the
preceding remote write command to avoid inconsistency.
[9] proposed a special semi-synchronous remote mirroring
system. By using a log mechanism, the system allows a
limited number of write I/O operations to proceed before
waiting for acknowledgment of receipt from the remote site,
which significantly reduces write latency. Meanwhile the
consistency is guaranteed.

Seneca [2], an asynchronous remote mirroring protocol,
which uses logs at both primary site and secondary backup
site. By its transaction mechanism and two-phase commit
protocol, Seneca supports write coalescing and in-order de-
livery, and provides resilience to many kinds and sequences
of failures.

Veritas Volume Replicator (VVR) [10] is a volume level
remote replication technique like our system. It performs
asynchronous replication using a log and transaction mech-
anism to ensure consistency. SnapMirror [3], another asyn-
chronous and volume level mirroring technology, leverages
file system snapshots to provide a consistent copy in a
remote site and optimize data transfer.

III. CONSISTENCY OF TRADITIONAL REMOTE
MIRRORING

Figure 2 is a traditional architecture of remote mirroring
system. In primary site, write request is intercepted and
copied by the remote mirroring module. The original write
request is delivered to the local disk and the replica is entered
to the remote queue. The queue is a FIFO queue, which
guarantees data consistency. Remote volume is a virtual map
of the physical volume at the backup site constructed by
NBD (the Network Block Device) [11] module. NBD sends
the request to the backup site via network. The backup site
commits the new data to its local disk. We implement our
prototype in LVM (Logical Volume Manager) layer [12] of
Linux because it is a appropriate place to embed remote
mirroring logic.

A. Initial Synchronization

If we create a remote mirror for a volume immediately
after its creation, since no useful data has been written to
it, we can simply empty both the original and the mirror

Write Request

Remote 
Mirroring 
Module

Local Disk

NBD

Remote 
Volume

Primary Site Backup 
Site

Backup 
VolumeRequest Queue

Disk

NBD

Figure 2. The architecture of traditional remote mirroring system.

volumes. However, if we create a remote mirror for an
existing volume, we must copy all valid data from the
original volume to the remote mirror. We call this necessary
step initial synchronization.

The initial synchronization starts exactly after the creation
of the remote mirror. In a traditional remote mirroring
system, since there is no idea which blocks of the original
volume contain useful data, a synchronization thread must
be created to copy entire original volume to its remote mirror
block by block in background. Considering that modern stor-
age systems become larger and larger, initial synchronization
is obviously a extremely time-consuming process. Moreover,
the original volume must accept the normal read and write
requests from user applications simultaneously because even
a brief downtime will cause big losses. Therefore, the remote
mirroring module must carefully coordinate synchronization
I/Os and normal business I/Os, which leads to complex
remote mirroring logic. With the help of AoDI, our new
architecture addresses these problems effectively.

B. Real-time Remote Replication

After the completion of initial synchronization, the system
starts the real-time remote replication. The write requests
from user applications were intercepted, cloned, and then
put into the remote queue. Since the requests are sent to
the backup site in the same order as they enter the queue,
data is guaranteed to be written to the mirror volume in
the same order as they are written to the original volume.
In other words, this traditional real-time remote replication
logic ensures consistency between the primary site and the
backup site.

However, to boost transfer throughput, many remote mir-
roring systems accumulate write requests at the primary site,
and then send them to the backup site batch by batch rather
than one by one. The backup site must commit each batch
atomically to guarantee consistency. A general strategy is to
log the batch first, and then write data to the backup volume.
If the backup site crashes during batch committing, the log
can be used to re-commit.

By utilizing the appending structure of AoDI, our new
real-time replication logic is much more simpler than the
traditional one.



C. Resumption From Network Failure

Resumption from network failure is the problem a remote
mirroring system have to face. The key issue is how to
resynchronize the primary site and the backup site. A process
like initial synchronization is too inefficient because of
a great number of unnecessary block copy operations. A
common strategy is to mark the blocks actually need to be
resynchronized by an incremental bitmap.

1) Incremental Bitmap: An incremental bitmap indicates
which blocks were modified during network failure. Each
bit corresponds to a unique disk block. A set bit means a
modified block, and a zero bit means a unchanged block.
Therefore, after the network failure is repaired, we can only
copy modified data blocks from the original volume to the
mirror volume with the help of the incremental bitmap.

2) Re-synchronization: After the network recovered, the
resumption thread should be started to re-synchronize data. It
is very similar to initial synchronization except it only copies
data blocks corresponding to set bits in the incremental
bitmap.

Like initial synchronization, the resumption thread should
coordinate between synchronization I/Os and normal appli-
cation I/Os. More specifically, the application write requests
are divided into three categories according to synchronous
position, and be dealt with using different strategies respec-
tively.

i) The write request is before the synchronous position.
That is, it is in the area has been synchronized. The
system can simply perform normal replication and
local write.

ii) The write request conflicts with the synchronous posi-
tion. The resumption thread should suspend until the
write request is written to the original volume and the
incremental bitmap is set. We can use a hash table to
test this kind of conflicts efficiently.

iii) The write request is after the synchronous position. It
is inserted into the hash table, and will be removed
after it is written to the original volume. Therefore,
the resumption thread can test conflicts by looking up
the hash table.

Figure 3 shows the logics of the write request processing
and the resumption thread.

IV. AODI VOLUME BASED REMOTE MIRRORING
SYSTEM ARCHITECTURE

A. Design of AoDI volume

As shown in Figure 1, AoDI volume has a double volume
structure - visible volume exposed to users and physical
volume actually storing data. AoDI adopts appending rather
overwriting strategy to deal with write requests. That is,
each newly arrived data chunk is stored just behind the last
stored data chunk, instead of overwriting its old version (if
has). This strategy brings several advantages: easily obtain

Repairing thread

Check the 
request 
position

Do the remote 
replication and 
local writing 

Before the 
synchronous 

position

After the 
synchronous 

position

Write request

Conflict with the 
synchronous 

position

Do local writing
and marking the 

bitmap

Add to the hash
table and do 
local writ ing

Hash table 
is empty

Check the 
hash table

Do the remote 
repliaction

wait

Hash table is 
not empty

Figure 3. The maintenance of data consistency.

accurate storage utilization, therefore dynamically allocate
storage space according to users’ real-time requirements;
convert random user write requests into sequential disk write
operations. However, since dynamic mapping from user
address space to physical address space is used, mapping
table must be maintained.

Super Chunk Data ChunkMetadata Chunk

... Inverse Mapping Table

Figure 4. The disk layout of AoDI.

As Figure 4 shows, the disk layout for AoDI consists
of three parts: the super chunk, the metadata chunks and
the data chunks. In our system, the chunk size is 4KB.
To support remote mirroring, we add a inverse mapping
table to AoDI’s metadata area. It stores mapping from
physical address space to user address space. With this
inverse mapping table, we can reconstruct the original write
request of each data chunk in O(1), which will be sent to
the backup site by remote mirroring module. Next we will
introduce how to combination remote mirroring with AoDI
to provide distinct features and higher performance.

B. Loose Coupled Architecture

A simple way is to treat remote mirroring and AoDI as
two independent layers, and build the former simply above
the latter in the data path. The remote mirroring module does
not concern about the internal mechanism of the AoDI, but
consider it as a plain LVM volume. Although this loose
coupled architecture is too simple, it still provide some
important advantages:
∙ Improve random write performance. This is directly

inherited from AoDI.
∙ Provide the ability to construct heterogeneous remote

mirroring system at block level. In traditional remote
mirroring system, the physical size of the remote mirror
volume should be greater than or equal to that of its



original volume (generally equal to for cost reason).
Otherwise, some write requests to the end zone of
the original volume can not find their locations in the
backup site. However, since uses appending strategy
and has the ability of allocation-on-demand, AoDI gen-
erally occupies smaller physical space than its logical
size. Therefore, we can use storage devices of different
size at the primary and backup sites to construct a AoDI
based remote mirroring system. At the backup site, you
can build the mirror volumes using plain LVM volume
or AoDI. If the latter is used, real-time physical space
occupation is also saved in the backup site, especially
for multi mirrors case.

∙ Improve the write performance in the backup site.
As mentioned above, in traditional remote mirroring
system, a log mechanism is used to ensure atomic
batch committing. However, AoDI volume is substan-
tially log-like. Therefore, log recording is avoid, which
improves write performance greatly.

C. Tight Coupled Architecture

The loose coupled architecture does not take full ad-
vantage of AoDI’s structure properties. We design a tight
coupled architecture. It is illustrated in Figure 5. Although
in this architecture we separate the remote mirroring module
from AoDI (request processing module) completely, the two
modules are really combined tightly. The remote mirroring
module knows AoDI’s structure clearly, and simplifies itself
greatly using this structure. Since the remote mirroring
module is not in the normal data path, the user write requests
are not be intercepted and copied to the backup site when
they are being processed in the data path. Therefore, we
call this architecture CAWRM (Copy After Write Remote
Mirroring architecture), distinguished with traditional Copy
On Write method.

Visible 
Volume

Physical 
Volume

AoDI 
Volume

Write Request

Remote 
Mirroring 
Module

NBD

Remote 
Volume

Backup Site

Backup 
Volume

Disk

NBD

Primary Site

Read Data

Local Disk

Figure 5. The architecture of tight coupled architecture.

1) CAWRM Algorithm: The core algorithm is shown in
Algorithm 1.

Unlike traditional remote mirroring system and the loose
coupled architecture, after being created, a CAWRM system
starts a sync thread responsible for copying data from the
original volume to the remote mirroring volume, instead

Algorithm 1 CAWRM algorithm
1: loop
2: if Network is OK then
3: if sync ptr = end ptr then
4: sleep for a time interval T
5: else
6: copy chunks [sync ptr, sync ptr+ k− 1] from

the AoDI volume to the remote mirror volume
7: sync ptr+ = k
8: end if
9: else

10: sleep for a time interval T
11: end if
12: end loop

of embedding remote mirroring logic into normal request
processing logic. The thread uses two pointers: sync ptr
points to the first un-synchronized of chunk, and end ptr
points to the last written data chunk in the AoDI volume. If
sync ptr exceeds end ptr, which implies that all the valid
data chunks in the original volume have been copied to the
backup site, CAWRM simply sleeps a moment. Otherwise,
it copies an un-synchronized data chunk to the backup site.
The actually remote copy operation is performed by Linux
kernel function kcopyd. The chunks are copied to the NBD
device, and then be sent to the backup site by NBD module.
If a network failure occurs, CAWRM just waits until the
network connection is repaired, and then goes on copying
chunks..

2) Optimization: Separating the remote mirroring logic
from the normal request processing logic simplifies the re-
mote mirroring logic greatly. However, competition between
normal user requests and read requests is caused by sync
thread in the primary site.

Remote backup process

t1 t2

W

R S

WRITE

READ

WRITE

Normal write process

SEND

Figure 6. I/O competition in the primary site.

Figure 6 shows that the competition between user write
requests and synchronization read requests in the primary
site. The notations W , R and S represent the writing speed
of the the user application, the reading speed of AoDI
volume and the network transmission speed respectively.
Suppose that S ≤W .

Suppose that the sync thread read B bytes each time.
Then the average writing speed of the user application in



the primary site can be approximated by W ′ :

W ′ =
W ∗ t2
t1 + t2

=
W ∗ B

S
B
R + B

S

=
W

S
R + 1

(1)

It can be seen from the (1) that the local writing speed
in the primary site are the ratio of network transmission
speed to the AoDI read speed. The faster data is read
from the AoDI volume and the slower data is transmitted
on the network, the faster data is written in the primary
site. Otherwise, data is written more slowly. In practice,
network speed is usually fixed, so the performance can be
optimized by improving the reading speed of the AoDI
volume. According to the characteristics of the hard disk,
the reading speed would be improved if data was read
sequentially and in bulk. Therefore, the sync thread read a
large number of continuous chunks from the AoDI volume.
That is, we use a relatively large k rather than 1.

3) Advantages of CAWRM: Complete fusion of remote
mirroring and AoDI brings several advantages:

i) The remote mirroring logic is simplified greatly. The
remote mirroring module (the sync thread) needs not to
intercept, clone and send write requests. What it only
needs to do is data copy.

ii) Unified consistency processing. Note that when we
discuss consistency in traditional remote mirroring
system in the last section, we discuss three cases: ini-
tial synchronization, real-time remote replication and
resumption from network failure. However, CAWRM
unifies these three cases. No matter in which state
a CAWRM system is, it just copies. The log-like
structure of AoDI naturally guarantees the consistency.
Moreover, conflicts between user requests and synchro-
nization I/Os will never occur, because the sync thread
always reads the area behind the area of new data will
be written to.

iii) Reduce the amount of data need to be copied during
initial synchronization. Since AoDI knows how many
data chunks it stores and where they are stores (from
the beginning of the volume to end ptr), it only copies
these chunks during initial synchronization. They may
be only a small portion of the entire volume.

iv) Certainly, the advantages of loosely coupled architec-
ture are still.

V. EXPERIMENTS

We implemented both the traditional remote mirroring
system and the CAWRM system. Experiments were carried
out for the two systems.

A. Experimental Settings

We deployed both the primary site and the backup site
on the server with one 2.66GHz Intel Xeon processor, 4GB
RAM and a hardware RAID-0 composed of six 74GB SCSI
disks. The underlying OS was RedHat AS server 5 (kernel

0

500

1000

1500

2000

2500

3000

3500

500M 1G 2G 4G 8G 16G

T
im

e 
(s

)

volume size (Byte)

Figure 7. Initialization Time.

0

20

40

60

80

100

4K 8K 16K 32K
T

h
ro

u
gh

pu
t 

(M
B

/s
)

request size (Byte)

Loose_RndW Loose_SeqW

Traditional_RndW Traditional_SeqW

Figure 8. Loose coupled architecture performance.

version 2.6.18-128.el5). We employed WANemu [13] to
emulate the WAN environment.

All sites were connected by Gigabit Ethernet and
WANemu v2.2 which executed on another gateway site.

B. Experimental Results

1) Initialization Time: Figure 7 shows the initialization
time in the primary site of the traditional remote mirroring
system. Different sizes of logical volume corresponding to
different time. Because of the stable network transmission
speed, it is the linear relationship between the transmission
time and the size of the logical volume. However, CAWRM
only copies already stored user data rather than the entire
volume, which reduces disk I/O and network traffic signifi-
cantly. It even copies nothing if the remote mirror is created
on an empty AoDI volume.

2) Loose Couple architecture: Figure 8 shows the local
throughput. We can see that, compared with the traditional
remote mirroring system, the loose coupled architecture
achieves better random write throughput, and has compara-
ble throughput under other types of workload. This implies
that the loose coupled architecture brings lower overhead to
the primary site.

3) Tight coupled architecture: Figure 9 shows the local
throughput. We can see that, although CAWRM move re-
mote mirroring logic out of the normal request processing
path, it achieves almost the same throughput as the loose
coupled architecture under all kinds of workload, which



30

40

50

60

70

80

4K 8K 16K 32K

T
hr

ou
gh

p
ut

(M
B

/s
)

request size (Byte)

CAWRM_SeqW CAWRM_RndW

Loose_SeqW Loose_RndW

Figure 9. Local throughput.

0

1

2

3

4

5

6

4K 8K 16K 32K

T
h

ro
u

gh
p

u
t 

(M
B

/s
)

request size (Byte)

CAWRM_SeqW CAWRM_RndW

Loose_SeqW Loose_RndW

Figure 10. Backup throughput.

implies that the tight coupled architecture does not introduce
heavy overhead.

Figure 10 shows the backup throughput. The conclusion
is similar as Figure 9.

VI. CONCLUSION AND FUTURE WORK

The contributions of this paper can be concluded as
follows:
∙ We propose two remote mirroring architectures based

on a new kind of volume, AoDI.
∙ With the help of AoDI’s distinct characteristics, the

loose coupled architecture improves random write per-
formance and provides the ability construct heteroge-
neous remote mirroring system at the block level.

∙ Besides the advantages of the loose coupled architec-
ture, the tight coupled architecture also has advantages:
simple logic, unified consistency mechanism and better
initialization performance.

Virtualization is a fundamental technology in cloud com-
puting storage system, in which dynamic management of
storage resource is indispensable. The tight coupled architec-
ture (CAWRM) can both guarantee the reliability of the data
center and adapt to the command of storage management in
modern cloud computing system.

Optimizing the sync thread is an important future work.
Combining remote mirroring and AoDI with other tech-
nique, such as continuous data protection is also planned.

ACKNOWLEDGMENT

This work was supported in part by the National High
Technology Research and Development Program of China
(2008AA01Z401), NSFC of China (60903028,61070014),
Science and Technology Development Plan of Tianjin
(08JCYBJC13000), and Key Projects in the Tianjin Science
and Technology Pillar Program.

REFERENCES

[1] H. Weatherspoon, L. Ganesh, T. Marian, M. Balakrishnan,
and K. Birman, “Smoke and Mirrors: Reflecting Files at a Ge-
ographically Remote Location Without Loss of Performance,”
in Proceedings of the 7th USENIX Conference on File and
Storage Technologies, FAST 2009, San Francisco, California,
USA, Feb 2009, pp. 211–224.

[2] M. Ji, A. C. Veitch, and J. Wilkes, “Seneca: remote mirroring
done write,” in USENIX Annual Technical Conference, Gen-
eral Track, San Antonio, Texas, USA, 2003, pp. 253–268.

[3] R. H. Patterson, S. Manley, M. Federwisch, D. Hitz,
S. Kleiman, and S. Owara, “Snapmirror: File-system-based
asynchronous mirroring for disaster recovery,” in USENIX
Conference on File and Storage Technologies, Monterey,
California, USA, 2002, pp. 117–129.

[4] “Secure Data Protection With Dot Hills Batch Remote Repli-
cation,” Dot Hill Corporation, Tech. Rep., Jul 2009.

[5] J. MacCormick, C. A. Thekkath, M. Jager, K. Roomp,
L. Zhou, and R. Peterson, “Niobe: A practical replication
protocol,” ACM Transactions on Storage, vol. 3, no. 4, pp.
1–43, 2008.

[6] E. Gabber, J. Fellin, M. Flaster, F. Gu, B. Hillyer, W. T. Ng,
B. Özden, and E. A. M. Shriver, “Starfish: highly-available
block storage,” in USENIX Annual Technical Conference, San
Antonio, Texas, USA, 2003, pp. 151–163.

[7] R. Cao, C. Zhen, Y. Gao, G. Xu, X. Liu, G. Wang, and G. Xie,
“Aodi: An allocation-on-demand incremental volume based
on lvm,” in Proceedings of the 26th Symposium On Applied
Computing, TaiChung, Taiwan, 2011, pp. 132–137.

[8] “EMC SRDF - Zero Data Loss Solutions for Extended
Distance Replication,” EMC Corporation, Tech. Rep. P/N
300-006-714, Apr 2009.

[9] R. Yan, J. Shu, and D. chan Wen, “An implementation of
semi-synchronous remote mirroring system for sans,” in Grid
and Cooperative Computing Workshops, Wuhan, China, 2004,
pp. 229–237.

[10] “VERITAS Volume Replicator (tm) 3.5 Administrator’s
Guide (Solaris),” Symantec Corporation, Mountain View, CA,
USA, Tech. Rep. 249505, Jun 2002.

[11] P. T. Breuer, A. M. Lopez, and A. G. Ares, “The Network
Block Device,” Linux Journal, vol. 2000, no. 73, 2000.

[12] “LVM,” http://sources.redhat.com/lvm/.

[13] “WANemu,” http://wanem.sourceforge.net.


